Was haben Kerzen mit Astronomie zu tun?

Seid herzlich und weihnachtlich gegrüßt,
im letzten Jahr schrieb ich zur Weihnachtszeit einen Artikel über Feuerchen und Kerzenschein im Weltall im Hinblick auf gewisse Randbedingungen, die die Astronauten auf der ISS haben, die dort Weihnachten verbringen müssen.
Wer das nochmal lesen möchte findet hier den gemeinten Artikel.
Weihnachtsbeitrag 2017
Da eine Kerzenflamme in Schwerelosigkeit einen erbärmlichen Anblick bietet, könnte man meinen, das Thema Kerzen wäre astronomisch uninteressant.
Dennoch wird in der Astronomie der Begriff “Kerze”, genauer, “Standardkerze” verwendet. Im Gegensatz zum Stern von Betlehem, der plötzlich auftaucht und den Retter der Welt ankündigen soll, führt uns die Klärung dieses Begriffes eher an das andere Ende des Lebens eines Sternes.
Kerzen, die  aus dem selben Wachs gemacht sind und
selbe Dicke,
selbe Höhe,
Dochtlänge,
Dochtdicke,
Dochtsorte,
sollten unter gleichen atmosphärischen Bedingungen und auf gleicher Meereshöhe auch gleich hell sein.
So eine Gewissheit ist sehr praktisch, wenn man die Entfernung messen möchte. Sieht man die Kerze, auf deren Helligkeit Verlass ist, kann man Rückschlüsse auf ihre Entfernung schließen und den Abstand berechnen.
Die Astronomen haben bei Messungen genau dieses Problem. Es stellt sich immer die Frage, wieso ein Himmelsobjekt, z. B. eine Galaxie heller leuchtet, als eine andere.
Hat sie mehr Leuchtkraft
Ist sie nur größer?
oder ist sie einfach näher dran, um heller zu erscheinen? So ein Licht, auf das Verlass ist, wäre super hilfreich. Auf das Sternenlicht alleine kann man hier nicht bauen. Die Sterne funktionieren zwar alle ähnlich, unterscheiden sich aber zum einen durch ihre Masse, zum zweiten in ihrer Zusammensetzung und zum dritten durch ihr Alter. All das bewirkt, dass sie sich in Lichtintensität, Temperatur und Größe unterscheiden.
Glücklicherweise gibt es eine Lichtquelle, die hier Sicherheit bietet.
Da Sterne meist in räumlich relativ begrenzten Umgebungen entstehen, finden sie sich oft zu Doppelsternsystemen zusammen.
Die beiden Partner können aber durchaus unterschiedlich sein.
Sie unterscheiden sich vor allem durch ihre Masse.
Es ist so, dass massereiche Sterne mehr futtern und ihren Brennstoff somit verschwenderischer verbrauchen. Somit leben massereiche Sterne deutlich kürzer, als leichtere.
Es kann nun sein, dass bei einem Doppelsternsystem der eine schon zu einem weißen Zwerg geworden ist, während sich der andere noch seiner Jugend erfreut oder zu einem roten Riesen aufgebläht hat. (Über Sternlebensläufe reden wir separat, weil das den Artikel sprengen würde)
Stehen sich die beiden nahe, kann der weiße Zwerg Masse von seinem Partner zu sich herüber ziehen.
Das bedeutet, dass er im Grunde nochmal schwerer wird und sein Leben etwas verlängern kann.
Nimmt er an Masse zu, ist irgendwann der Punkt erreicht, bei dem die Temperatur so hoch wird, dass die Wasserstoff-Kernfusion zünden kann.
Das führt dazu, dass der geklaute Wasserstoff in der Hülle des Zwerges mit einem Schlag so viel Energie erzeugt, dass der Zwerg aufblitzt und die Hülle weggesprengt wird.
Dieses Szenario kann sich innerhalb eines Doppelsternsystems durchaus wiederholen, wenn danach noch was übrig ist.
Das ist eine Nova.
Zur Standardkerze wird das Szenario deshalb, weil ganz genau bekannt ist, bei welcher Masse der Druck ausreicht, den Wasserstoff zu zünden. Außerdem ist genau bekannt, wieviel Energie und Licht dieser Prozess liefert.
Das hat mit Kernphysik zu tun.
Die Masse, die nötig ist, um so etwas auszulösen, ist eine kritische Masse. Es gibt sie auch bei der Kernspaltung. Hat man einen Block aus spaltbarem Uran, der eine gewisse Masse übersteigt, dann reichen statistisch gesehen die spontanen Kernzerfälle in seinem Inneren aus, um die Kettenreaktion anzustoßen, derer wir zwar viel Wärme und Strom in der Vergangenheit zu verdanken hatten, die aber auch Verheerung und Elend in die Welt brachte.
Beobachten Astronomen mit ihren Teleskopen so einen Nova-Ausbruch,  können sie anhand der Lichtintensität ihren Abstand berechnen, weil sie wissen, wie hell dieser Prozess ist und dass die Lichtintensität mit dem Quadrat zum Abstand der Lichtquelle abnimmt.
Es gibt noch weitere Standardkerzen, aber die bewahre ich mir für ein weiteres Weihnachtsfest auf.

Das ist es, was Weihnachten, Sterne und Kerzen miteinander gemein haben.
Ich hoffe, es hat etwas Freude bereitet.
Bis zum nächstem Mal grüßt euch
euer Gerhard.

Ein kleiner Nikolaus

Meine lieben,
Heute ist Nikolaus. Hier kommt mein kleiner Nikolaus für euch.
Weihnachtsmann mal ganz anders. Es sei hier nebenbei bemerkt, dass ich Weihnachten irgendwie sehr mag. Ich glaube, das hängt damit zusammen, dass Weihnachtsmärkte am Abend in Dunkelheit die stärkste visuelle Erinnerung sind, die ich noch aus der Zeit habe, als ich noch über einen kleinen Sehrest verfügte. Gehe ich heute in Dunkelheit über einen Weihnachtsmarkt, dann erstehen diese Erinnerungen neu und ich ergänze jeden Eindruck an den Ständen mit Licht.
Aber nun einige physikalische Betrachtungen zum Weihnachtsmann:

kennt ihr noch dieses lustige alte Ding?

Es kursiert meist ohne Autor, aber vor etwa 25 Jahren kannte es vor allem an technischen Hochschulen jeder.

Viel Freude und eine besinnliche Vorweihnachtszeit wünscht euch

Euer Gerhard.

——————————————
Es gibt gar keinen Weihnachtsmann!
Das sagt jedenfalls die klassische Physik!

1) Keine bekannte Spezies der Gattung Rentier kann fliegen. ABER es gibt 300.000 Spezies von lebenden Organismen, die noch klassifiziert werden müssen, und obwohl es sich dabei hauptsächlich um Insekten und Bakterien handelt, schließt dies nicht mit letzter Sicherheit fliegende Rentiere aus, die nur der Weihnachtsmann bisher gesehen hat.

2) Es gibt 2 Milliarden Kinder (Menschen unter 18) auf der Welt. ABER da der Weihnachtsmann (scheinbar) keine Moslems, Hindu, Juden und Buddhisten beliefert, reduziert sich seine Arbeit auf etwa 15 % der Gesamtzahl – 378 Millionen Kinder (laut Volkszählungsbüro). Bei einer durchschnittlichen Kinderzahl von 3,5 pro Haushalt ergibt das 91,8 Millionen Häuser. Wir nehmen an, daß in jedem Haus mindestens ein braves Kind lebt.

3) Der Weihnachtsmann hat einen 31-Stunden-Weihnachtstag, bedingt durch die verschiedenen Zeitzonen, wenn er von Osten nach Westen reist (was logisch erscheint). Damit ergeben sich 822,6 Besuche pro Sekunde. Somit hat der Weihnachtsmann für jeden christlichen Haushalt mit braven Kindern 1/1000 Sekunde Zeit für seine Arbeit: Parken, aus dem Schlitten springen, den Schornstein runterklettern, die Socken füllen, die übrigen Geschenke unter dem Weihnachtsbaum verteilen,

alle übriggebliebenen Reste des Weihnachtsessens vertilgen, den Schornstein wieder raufklettern und zum nächsten Haus fliegen. Angenommen, daß jeder dieser 91,8 Millionen Stops gleichmäßig auf die ganze Erde verteilt sind (was natürlich, wie wir wissen, nicht stimmt, aber als Berechnungsgrundlage akzeptieren wir dies), erhalten wir nunmehr 1,3 km Entfernung von Haushalt zu Haushalt, eine Gesamtentfernung von 120,8 Millionen km, nicht mitgerechnet die Unterbrechungen für das, was jeder von uns mindestens einmal in 31 Stunden tun muß, plus Essen usw.

4) Das bedeutet, daß der Schlitten des Weihnachtsmannes mit 1040 km pro Sekunde fliegt, also der 3.000-fachen Schallgeschwindigkeit. Zum Vergleich: das schnellste von Menschen gebaute Fahrzeug auf der Erde, der Ulysses Space Probe, fährt mit lächerlichen 43,8 km pro Sekunde. Ein gewöhnliches Rentier schafft höchstens 24 km pro STUNDE.

5) Die Ladung des Schlittens führt zu einem weiteren interessanten Effekt. Angenommen, jedes Kind bekommt nicht mehr als ein mittelgroßes Lego-Set (etwa 1 kg), dann hat der Schlitten ein Gewicht von 378.000 Tonnen geladen, nicht gerechnet den Weihnachtsmann, der übereinstimmend als übergewichtig beschrieben wird.

Ein gewöhnliches Rentier kann nicht mehr als 175 kg ziehen. Selbst bei der Annahme, daß ein “fliegendes Rentier” (siehe Punkt 1) das ZEHNFACHE normale Gewicht ziehen kann, braucht man für den Schlitten nicht acht oder vielleicht neun Rentiere. Man braucht 216.000 Rentiere. Das erhöht das Gewicht – den Schlitten selbst noch nicht einmal eingerechnet – auf 410.400 Tonnen. Nochmals zum Vergleich: das ist mehr als das vierfache Gewicht der Queen Elizabeth.

6) 410.400 Tonnen bei einer Geschwindigkeit von 1040 km/s erzeugt einen ungeheuren Luftwiderstand – dadurch werden die Rentiere aufgeheizt, genauso wie ein Raumschiff, das wieder in die Erdatmosphäre eintritt. Das vorderste Paar Rentiere muß dadurch 16,6 TRILLIONEN Joule Energie absorbieren. Pro Sekunde. Jedes. Anders ausgedrückt: sie werden praktisch augenblicklich in Flammen aufgehen, das nächste Paar Rentiere wird dem Luftwiderstand preisgegeben, und es wird ein ohrenbetäubender Knall erzeugt.

Das gesamte Team von Rentieren wird innerhalb von 5 Tausendstel Sekunden vaporisiert. Der Weihnachtsmann wird währenddessen einer Beschleunigung von der Größe der 17.500-fachen Erdbeschleunigung ausgesetzt. Ein 120 kg schwerer Weihnachtsmann (was der Beschreibung nach lächerlich wenig sein muß) würde an das Ende seines Schlittens genagelt – mit einer Kraft von 20,6 Millionen Newton.

Damit kommen wir zu dem Schluß:

WENN der Weihnachtsmann irgendwann einmal die Geschenke gebracht hat, ist er heute tot.

(unbekannter Verfasser)

Alles gute zum Geburtstag ISS

Seid herzlich gegrüßt,

Das ist wirklich unglaublich. Mir kommt es vor, als wenn es erst vor wenigen Jahren begann, aber es sind wirklich schon zwanzig Jahre.
Am 20.11.1998 starteten die ersten drei Module der Internationalen Raumstation mit dem Space Shuttle ins all.
Lasst uns einfach mal dieses Geburtstages gedenken.
Es gibt so viele Aspekte, welche die Raumstation ausmachen.
Sie ist technisch vermutlich die komplexeste Maschine, die je von Menschen gebaut wurde.
Mich fasziniert und begeistert, wieviele Nationen Hand in Hand an dieser Maschine bauen und sie gemeinsam betreiben.
Da gibt es Russische Segmente, den Arm aus Canada (Canadarm), das Europäische Columbus-Modul, ein Japanisches Forschungslabor, verschiedene Möglichkeiten, unterschiedlichste Raumfähren andocken zu lassen, und, und, und. Und am Ende passt alles zusammen, die verschiedenen Standards und Adapter verbinden sich zur Raumstation zusammen und Nationalitäten und Sprachen scheinen keine Probleme mehr zu sein.
In diesem Sinne ist diese Raumstation ein Zeichen des Friedens. Schon bald nach Beendigung des kalten Krieges flogen Shuttles auch zur Mir und Astronauten verschiedener Nationen durften auf dieser Russischen Station forschen. In diesem Sinne überwindet Raumfahrt Grenzen und zeigt uns, dass wir sehr wohl in der Lage sind, sehr komplexe Probleme anzugehen und gemeinsam zu lösen. Die ISS ist ein Beispiel hierfür.

Ich war damals noch Student und verfolgte das mit großem Interesse.
Russland hatte ja mit seinen Raumstationen, z. B. der Mir viel Erfahrung wie das so ist, wenn man Menschen über Monate hinweg im All belässt. Schon vor dem Apollo-Programm gab es Ideen und Wünsche, mal eine Raumstation zu bauen. Über die erste Raumstation der USA, schrieb ich bereits in
Gedenken an die erste Raumstation der Welt
Zur Jahrtausendwende zogen dann die ersten drei Astronauten ein. Für Forschung war zunächst nicht viel Zeit, da die Station noch aufgebaut werden musste.
Als im Jahre 2003 das Shuttle, die Columbia beim Wiedereintritt in die Atmosphäre verglühte, geriet das Projekt ISS in große Gefahr. Bis zur Aufklärung des Vorfalles mussten alle Shuttles am Boden bleiben.
Betroffen davon war z. B. auch das Deutsche Forschungslabor Kolumbus.
Niemand wusste genau, ob es zum Einsatz kommen könnte, denn für Russische Trägerraketen war es zu groß.
Somit wurde für zwei Jahre die ISS nur mit zwei Astronauten besetzt, die versuchten, den Betrieb aufrecht zu halten. Nach zwei Jahren Pause flogen dann die Shuttles wieder. Man war sich aber bewusst, dass die Shuttles in die Jahre gekommen waren und es war fraglich, ob man die Station noch mit deren Hilfe fertigstellen können wird.
Mit dabei war 2006 Thomas Reiter, der sogar einen Außenbord-Einsatz hatte.

2008 war es dann so weit. Endlich konnte das Kolumbus-Modul der ESA an die Raumstation geflantscht werden.
Der Deutsche Astronaut Hans Schlegel half dabei.
Seit 2011 ist die ISS fertig und umkreist in etwa 400 km Höhe ein mal in 90 Minuten die Erde.
2014 arbeitete Alexander Gerst auf dem Kolumbusmodul.
Seit der Ausmusterung der Shuttles, werden die Astronauten mittels der Russischen Sojus-Kapseln transportiert.
Es gibt auch noch die Progress-Kapsel zur unbemannten Versorgung der ISS. Außerdem hatte Europa das ATV.
Mittlerweile finden auch japanische Versorgungsflüge zur ISS statt.

Ihr Aussehen kann ich mir als Blinder nicht vorstellen. aber man kann sie auch schlecht erklären. Sie hat im Grunde genommen keine Form. Die dosenartigen Module sind über eine Gitterstruktur miteinander verbunden.

Ich finde es großartig, dass die Medien jetzt so Anteil haben, an dem, was auf der Raumstation geschieht.
Wenn ich mir vorstelle, ich hätte in meiner Schulzeit die Möglichkeit gehabt, eine Frage an Alexander Gerst zu stellen, dann wäre ich vermutlich, keine Ahnung, was ich dann wäre, aber ich wäre sicher nicht der, der ich vorher war.
In einer Ausgabe des Vereinsorgan Deutscher Amateurfunker konnte ich ganz genau lesen, was alles gebraucht wurde, um so einen Kontakt zur ISS, her zu stellen.
Antennen, Kabel, Rotoren zur Nachführung Transceiver und vieles mehr. Die Kinder wurden im Vorfeld auf das Ereignis vorbereitet. Sie durften beim Aufbau der Anlage helfen, mussten ihre Fragen üben, weil das Zeitfenster knapp ist und erhielten einen Einblick in so viele verschiedene Technologien.
Von denen, welchen ein derartiges Erlebnis vergönnt war und noch sein wird, sollte sich der eine oder die andere in einem Ingenieurs- oder MINT-Fach später wieder finden.
Vielleicht war ja in einem Klassenzimmer schon der nächste Astronaut dabei, der dann vielleicht mal auf der Mondstation sein wird und seinen Kindern vom Funkkontakt zu Alexander Gerst erzählt.
Auf jeden Fall ist das genau der richtige Weg, Kinder an MINT-Berufe heran zu führen. Raumfahrt und Astronomie ziehen bei Kindern doch irgendwie immer.
Es gäbe hier noch viel zu schreiben, aber an dieser Stelle überlasse ich das Feld gerne den Experten. Ich habe mal diverse Links zu Podcast-Folgen, Youtube etc. gesammelt, mit denen man sich für Stunden in das Thema ISS vertiefen kann.

Um eine Vorstellung über die ISS und deren Geschichte zu bekommen, lohnt sich auf jeden Fall das hier:
ISS bei Wikipedia

Podcast-Hörer werden nun in folgendem bemerken, dass meine Linksammlung einiges des Podcasts @raumzeit von Tim Pritlove, aufführt. Er hat einfach viele Interviews mit Experten zur ISS und sich darum rankende Themen geführt. Seit Jahren höre ich diesen Podcast und habe unglaublich viel darüber lernen dürfen.
In Folge 64 des Podcast Raumzeit von Tim Pritlove geht es um die ISS.
Episode 64 ISS

Folge 56 desselben Podcasts befasst sich mit dem Thema “Forschung in Schwerelosigkeit”. Viele Experimente lassen sich wegen der Schwerkraft auf der Erde nicht durchführen. Es gibt zwar Parabelflüge und Falltürme, in welchem man für wenige Sekunden quasi Schwerelosigkeit erzeugen kann, das reicht aber beispielsweise für medizinische Langzeitversuche nicht aus. Und diese Versuche benötigen wir, wenn wir Menschen wieder zum Mond, Mars oder sonst wohin aufbrechen wollen.
Episode 56, Forschung in Schwerelosigkeit

In RZ010 geht es um Raumstationen allgemein.
Zu Folge 10
Und in Folge 17, um das Europäische Transportschiff ATV.
Zum ATV

Ich habe mal nach Sounds gesucht, wie es auf der ISS so klingt.
Man hört meist nicht viel. Im Grunde hört sich vieles ähnlich an, als wäre man in einem Server-Raum, aber so bescheiden ein Geräusch auch klingen mag, die Tatsache, dass es von der ISS stammt, wertet es für mich schon unheimlich auf.
Soundbeispiel 1
oder
Beispiel 2
Das fliegende Klassenzimmer mit Alexander Gerst ist ein sehr hörenswerter Youtube-Kanal
Zum Fliegenden Klassenzimmer
Ach ja, es gibt hier noch ein Interview mit Alexander Gerst vom @Omegataupodcast. Dieser Podcast ist wirklich extrem hörenswert.
Interview mit Alexander Gerst

So, jetzt wünsche ich der ISS alles gute zu ihrem Geburtstag.
Vielleicht hat ja jemand von euch Lust, mal in das ein oder andere Thema feierlich mit einzusteigen.
Wenn jemand einen Link hat, von dem er glaubt, der wäre noch unbedingt erwähnenswert, dann darf sie oder er den gerne über einen Kommentar mit uns teilen.
Beste Grüße
Euer Gerhard.

Brenne auf mein Licht, aber nur meine liebe Laterne nicht

Seid herzlich gegrüßt,

In den Läden weihnachtet es schon seit September. Überall werden schon die Weihnachtsmärkte aufgebaut und man bereitet sich auf diese Lichterzeit vor. Den Anfang machten gestern die Kinder mit ihren Laternenumzügen.
“Gehe auf mein Licht, aber nur meine liebe Laterne nicht”,
ist der Satz aus dem Kinderlied, das wir noch alle kennen.
Die Bitte, die in diesem Lied steckt, können viele heutige Kinder im Grunde nicht mehr verstehen, Da wir Kerzen, meist Teelichter in unseren Laternen verwendeten, kam es schon mal vor, dass die eine oder andere Laterne durch eine kleine Unachtsamkeit in Flammen aufging und als kurzes Feuerspektakel endete.
Heute werden die LED-Laternen, die sogar flackern, mit Batterien gespeist. Die können zwar auch leer werden, aber in Flammen wird dort eher nichts mehr aufgehen.

Die Weihnachtszeit mit all ihren Lichtern, ist neben meiner Mondscheibe, über die ich in meinem Buch im Kapitel “Einmal und nie wieder” schrieb, die stärkste visuelle empfindung, die ich mit meinem Sehrest wahrnahm, und deren Erinnerung mir bis heute geblieben ist. Vermutlich ist das mit ein Grund, dass ich so gerne Abends auf Weihnachtsmärkte gehe, weil mir neben all dem, was man dort so riechen, schmecken tasten und hören kann, immer wieder diese kindlichen visuellen Erinnerungen erscheinen.
Aber dieses nur am Rande.
Gerade in klaren Winternächten gibt es so einiges am Himmel, das aufglüht, und wieder erlischt, in Form von Sternschnuppen zu sehen. Im November und Dezember kreuzt die Erde mindestens drei Meteorschauer.

Die Leoniden

Da sind zunächst die Leoniden
Die Leoniden bilden einen Meteorstrom (Sternschnuppenstrom), der alljährlich im November zu beobachten ist. Sein Radiant liegt im Sternbild des Löwen. Das bedeutet, dass es so aussieht, als kämen diese Sternschnuppen aus dem Löwen.
Viele Meteorströme sind nach den Sternbildern benannt, aus denen sie zu kommen scheinen.
Der prominenteste Strom, den die Erde so im Jahreslauf passiert, ist vermutlich der Perseiden-Strom im August, der aus dem Sternbild Perseus uns mit Sternschnuppen versorgt. Ich schrieb darüber in
“Sternschnuppen Sehen und Hören”
Der Ursprung des Leonidenstroms ist der Komet Tempel-Tuttle, der auf seiner Umlaufbahn um die Sonne zahllose Bruchstücke (Meteoroiden) hinterlässt, wenn er gerade mal wieder in unserer Nähe ist.
Kreuzt die Erdbahn eine solche Wolke von Bruchstücken, und geraten diese in die Erdatmosphäre, so verglühen sie und können als Sternschnuppen (Meteore) wahrgenommen werden.
Das Aktivitätsmaximum ist in der Nacht vom 17. auf den 18. November zu beobachten. Die Sternschnuppen sind dabei mit einer geozentrischen Geschwindigkeit von ca. 71 km/s außerordentlich schnell. Einst war der Leonidenstrom wesentlich aktiver als heute, weshalb in früheren Zeiten der November als Sternschnuppenmonat schlechthin galt. Inzwischen ist die Trümmerwolke des Ursprungskometen jedoch schon sehr weit gestreut, weshalb der Strom in der Regel ein nur mehr schwach ausgeprägtes Maximum aufweist.
Alle 33 Jahre kann es jedoch zu einem besonderen Himmelsspektakel kommen: Kreuzt die Erde die Umlaufbahn des Kometen Tempel-Tuttle kurz nachdem dieser das innere Sonnensystem durchquert hat, so ist die Zahl der sichtbaren Leoniden-Meteore besonders groß. Es kommt dann zu einem Meteorsturm mit mehreren tausend Meteoren pro Stunde, wie es beispielsweise 1966 der Fall war. Im November 1833 sollen pro Stunde sogar bis zu 200.000 Sternschnuppen beobachtet worden sein.
Dieses Spektakel war damals sicherlich gut zu sehen, als die Lichtverschmutzung in unseren Städten noch nicht so schlimm war, weil es einfach noch deutlich weniger Lichtquellen gab. Über die Lichtverschmutzung schrieb ich letztes Jahr im Artikel “Im Dunkeln sieht man besser”.

Und noch mehr Winter-Feuerwerk

Geminiden (aus dem Sternbild Zwillinge und Ursiden (vom kleinen Bären, Ursa Minor) sorgen im Dezember für viele Sternschnuppen.
Diese beiden Funkenregen im Dezember stehen leider etwas im Schatten der Perseiden im August, obwohl hier eigentlich deutlich mehr Sternschnuppen zu erwarten sind. Das hängt einfach mit dem Wetter zusammen. Im August ist es sommerlich warm und oft nicht so bewölkt.
Bis 1983 war nicht klar, woher die Geminiden eigentlich kommen. Sind sie Reste eines zerbrochenen Kometen oder Trümmer eines Asteroiden, z. B. aus dem Asteroidengürtel.
Als Ursprungskörper der Geminiden gilt der 1983 entdeckte kleine Asteroid 1983 TB, welche später den Namen Phaeton erhielt. Seine Bahn um die Sonne ähnelt stark der eines Kometen, wenn man davon absieht, dass er die Sonne in nur 1,4 Jahren umrundet. Derartig kurze Umlaufzeiten kennt man eigentlich nur von Planeten her.
Es wurde verschiedentlich vermutet, dass Phaeton ein “erloschener” Komet ist, der seine flüchtigen Bestandteile (Gas und Staub) bereits vollständig verloren hat. In diesem Fall gäbe es dann keinen Schweif aus Gas mehr und auch keine Koma, die den nun “nackten” Kometenkern einhüllte.

Eine andere Hypothese besagt, das Phaeton ein Bruchstück des Hauptgürtel-Asteroiden Pallas ist, das bei einem Zusammenstoß mit einem anderen Asteroiden abgetrennt wurde. Dabei sollen dann auch die Geminiden entstanden sein. Allerdings könnten die Geminiden auch die Überreste einer Kollision von Phaeton selber mit einem anderen Objekt darstellen.
Für diese Theorie sprechen die Entdeckungen der beiden kleinen Asteroiden 1999 YC und 2005 UD, welche sich auf ähnlichen Bahnen wie Phaeton bewegen und scheinbar ähnlich zusammengesetzt sind.

Nach Beobachtungen mit Raumsonden ist Phaeton ein “Steinkomet”. Da der Asteroid im Perihel (sonnennächster Punkt) dicht an die Sonne heran kommt, könnten durch die Aufheizung Risse im Fels entstehen, wodurch dann Staub und Steinbrocken freigesetzt werden. Tatsächlich wurde bei zwei Perihelpassagen des Asteroiden in 2009 und 2012 eine schweifartige Struktur beobachtet. Es handelt sich hier dann nicht um den vom Sonnenwind verwehten und stets von ihr weg zeigenden Gas-Schweif, sondern um einen aus Staub und Trümmern.

Die Ursiden sind ein Meteorstrom, der in der letzten Dezember-Woche beobachtbar ist. Der Ursprung dieses Meteorstromes ist der Komet 8P/Tuttle. Sein Radiant liegt im Sternbild Ursa Minor (Kleiner Bär)
Im Maximum weisen die Ursiden eine Schnuppenhäufigkeit von 10 Meteoren pro Stunde auf. Jedoch wurden vereinzelt auch deutlich höhere Zahlen beobachtet.
Die Ursiden wurden um 1900 von William F. Denning entdeckt, wurden aber erst mal nur wenig beachtet,weil sie eben nicht so viele Sternschnuppen produzierten, wie andere Ströme.
Am 22. Dezember 1945 beobachteten tschechische Astronomen durch Zufall einen kräftigen Ausbruch des Meteorschauers, wobei eine Häufigkeit von über 100 Schnuppen pro Stunde erreicht wurde.
Aufgrund dieser Tatsache, schauten die Astronomen nun etwas genauer hin. Allerdings ließ das Interesse mit der Zeit wieder nach, weil sich diese Ausbrüche scheinbar nicht wiederholen wollten.
Anfang der 1970er Jahre erfolgten weitere Untersuchungen durch britische Amateurastronomen, die zunächst keinen signifikanten Anstieg feststellen konnten.
Durch Radiobeobachtungen wurde jedoch in den Tagesstunden des 22. Dezember 1973 ein kurzer Ausbruch mit einer Schnuppenrate von etwa 30 Meteoren pro Stunde nachgewiesen.
Im Artikel
“Sternschnuppen Sehen und Hören”
beschrieb ich, dass Sternschnuppen ob ihrer Ionisierung auch Radiowellen erzeugen. Das ist dann eine Messmethode, mit der man Sternschnuppen auch am Tag nachweisen kann, wo das Sonnenlicht fast alles andere am Himmel überstrahlt.
Vergleichbar stark traten die Ursiden am 22. Dezember 1979 in Erscheinung, diesmal waren es norwegische Beobachter, die die Meteore am Nachthimmel sichten konnten.
Seit langem war bekannt, dass es sich bei 8P/Tuttle um den Ursprungskometen der Ursiden handelt. Die Umlaufszeit dieses Schweifsterns beträgt 13,5 Jahre. Interessanterweise fielen die beobachteten Ausbrüche der Ursiden in den Jahren 1945, 1973 und 1986 nicht etwa mit der Sonnennähe, sondern mit der Sonnenferne des Kometen zusammen.
Eigentlich sollte es doch so sein, dass mehr Sternschnuppen fallen sollten, wenn der Komet gerade mal wieder bei uns war, und seine Trümmerspur wieder neu aufgefüllt hat.

Zwei Astronomen, Peter Jenniskens und Esko Lyytinen, entwickelten ein Modell, das diese merkwürdigen Ausbrüche durch die Schwerkraftwirkung des Planeten Jupiter zu erklären versuchte, was nicht abwägig wäre.
In der Regel ist Jupiter der Staubsauger unseres Sonnensystems, weil er viele gefährliche Einschläge von uns fern hält, indem er den Gefahren-Brocken aufsaugt, bevor er uns schaden könnte. Die Frage, ob die Erde ohne ihn genügend Ruhe gehabt hätte, dass Leben entstehen könnte, kann man in diesem Zusammenhang durchaus stellen. Es ist hinlänglich bekannt, dass das Aussterben der Dinos wahrscheinlich durch einen großen Asteroideneinschlag und dessen Folgen, verursacht wurde.
Manchmal kann Jupiter uns aber durch seine Schwerkraft auch etwas entgegen schleudern, was in diesem Fall so zu sein scheint.
Dieselben Autoren sagten für den 22. Dezember 2000 – wieder war der Komet in Sonnenferne – einen erneuten Ausbruch der Ursiden voraus.
Die Ergebnisse waren nicht eindeutig. Vor allem Radioechos deuteten auf verstärkte Meteor-Aktivität hin, aber visuelle Beobachtungen verzeichneten keinen nennenswerten Anstieg.
Dass ein Planet einen Kometen oder Asteroiden, der Sternschnuppen produzieren soll, durch seine Schwerkraft beeinflusst, ist durchaus denkbar und auch nachgewiesen.
Dieser, und noch weitere Effekte führen dazu, dass sich Kometen z. B. um wenige Jahre verspäten können.

So schön Sternschnuppen auch sind, so mahnen sie uns stets, dass wir vor größeren Brocken auf der Hut sein müssen. Schön nach zu lesen in
“Droht Gefahr durch Asteroiden aus dem All?”

Jetzt wünsche ich euch viele Sternschnuppen in der Vorweihnachtszeit, passende Wünsche dazu, und dass diese dann auch in Erfüllung gehen.
Quellen dieses Artikels sind:
Wikipedia,
alte Artikel von mir,
das buch “Rückkehr des Halleyschen Kometen” von Isaac Asimov
und sicherlich noch andere, die ich mit den Jahren las und in mein Wissen assimiliert habe.

Kommt gut mit den Schnuppen durch den Vorweihnachtsstress.
Bis zum nächsten Mal grüßt euch
Euer Gerhard.

Mein Gastbeitrag auf @lydiaswelt

Guten Morgen zusammen,

Lydia ist eine blinde Bloggerin, die ihren Alltag und damit verbundene Themen als blinde Mutter beschreibt.

Es lohnt sich wirklich mal auf diesen Blog zu gehen, wer sich für Probleme und Lösungen interessiert, die blinden Menschen so im Alltag begegnen können.

Für ihren Blog, hatte ich die Ehre, einen Gastbeitrag über “Astronomie für benachteiligte Kinder” schreiben zu dürfen.

Diesen teile ich mit euch gerne. Ich wünsche euch viel Freude damit. Ihr findet ihn hier:

Astronomie für benachteiligte Kinder

 

Wenn jemand sich vorstellen könnte, auch mal einen Blog bei mir veröffntlichen zu wollen, dann bin ich für derartige Gastbeiträge sehr offen.

Und wenn andererseits jemand von euch BloggerInnen mir so ein Angebot unterbreiten möchte, dann höre ich mich auch nicht “nein” sagen.

 

Jetzt wünsche ich euch viel Freude mit diesem Gastbeitrag.

Es grüßt euch herzlich

euer Gerhard.

 

Gastro-Astronomie

Seid herzlich gegrüßt,

Gestern habe ich vielleicht die leckersten Königsberger Klopse meines Lebens gegessen.
Wer mal zufällig nach Rheinstetten kommt, sollte in der #Giebelstuben in Mörsch
Die Giebelstuben in Rheinstetten
vorbei schauen. Vielleicht gibt es ja grad welche.
Und bei diesem herrlichen Abendmahl viel mir ein, dass Königsberg und Astronomie durchaus etwas miteinander zu tun haben.

Johann Müller aus Königsberg war einer der größten Mathematiker und Astronomen des 15. Jahrhunderts.
Er ist auch unter dem Namen “Regio Montanus” bekannt. Dieser Lateinische Name, leitet sich aus seinem Geburtsort “Königsberg” ab.

Er erstellte u. a. Sternkarten und Sterntafeln für Seefahrer, die sich großer Beliebtheit erfreuten und die Navigation deutlich verbesserten.
In Wikipedia steht unglaublich viel von ihm.
Hätte Kolumbus nicht seine Efimeriden auf seinen Schiffsfahrten benutzt, so wäre es ihm einmal richtig schlecht ergangen und es hätte ihn vermutlich das Leben gekostet. Dank Müller blieb er am Leben.

Kolumbus und die Mondfinsternis vom Februar 1504:

Er war mit seiner Mannschaft auf Jamaika gestrandet. Der Sturm hatte die Schiffe zerstört und teile der Mannschaft begannen zu meutern.
Auch Nahrung und Wasser wurden knapp.
Außerdem mussten sie mit Racheangriffen der Indianer rechnen, die sie zuvor geplündert hatten.

Nun erkannte Kolumbus, dass eine Mondfinsternis bevorstand. Hierfür benutzte er astronomische Karten zur Navigation des Astronomen Johannes Müller.
Er ist vermutlich eher unter dem Namen Regio Montanus bekannt, was der lateinische Name seines Heimatortes Königsberg, bedeutet.
Kurz um, wandte sich Kolumbus mit dieser Tatsache derart an den Häuptling, dass er für den Fall, dass keine weitere Hilfe von Seitens der Indianer käme, er seinem christlichen Gott befehlen würde, ihnen Leid zu zu fügen. Als Zeichen, dass dieser Gott es Ernst meine, werde er in der folgenden Nacht dem Mond den Glanz nehmen.

Zum Glück sagten Kolumbusens Sternkarten die Mondfinsternis richtig voraus, ansonsten wären vermutlich einige in den Kochtöpfen der Ureinwohner  gelandet.
So aber, bekamen diese Angst und versorgten die Mannschaft weiterhin mit Nahrung und was sonst von Nöten war, um die Heimreise antreten zu können.

Es gäbe noch mehr über Königsberg zu berichten, z. B. das Sieben-Brücken-Problem, aber das ist eher für Informatiker und weniger für Astronomen interessant.

Es ist halt schon so. Astronomie klingt fast, wie Gastronomie…

Beste Grüße

Euer Gerhard.

Die Unreine Sonne

Liebe Leserinnen und Leser,

leider ist der 31.10., der Reformationstag, in diesem Jahr kein Feiertag mehr. Dieses Geschenk erhielten wir im letzten Jahr anlässlich des 500 Jahre Luther-Jubiläums.
Immerhin ist in manchen Bundesländern der 01.11. einer.
Und weil das im letzten Jahr mit dem zusätzlichen Feiertag so schön war, nehme ich in diesem Jahr nochmal ein Thema, das mit der Evang. Kirche und Astronomie zu tun hat.

Zur Reformation, Martin Luther  und Astronomie, findet sich nicht gerade viel. Was ich anlässlich des Jubiläums letztes Jahr zu Tage förderte, kann, wer mag, nochmal zur Erinnerung zum Luther-Jahr hier nachlesen.
Luther und Kopernikus

Zu diesem Reformationstag möchte ich mal eines Pastors aus Norddeutschland und seines Sohnes, gedenken. Ich wandle gerne auf den Spuren alter Astronominnen und Astronomen, und da waren eben vor allem viele Kirchenmänner dabei, weil Bildung und Wissenschaft damals zu einem erheblichen Teil in Klöstern stattfand. Auch Kopernikus war ein Mann der Kirche.

Es geht um Pfarrer David Fabricius und seinen Sohn, Johann.

War der Pastor tagsüber für seine Gemeinde da, so widmete er sich des Nachts und in den frühen Morgen- und Abendstunden dem Studium des Sternenhimmels und der Sonne.

Der Evangelische Pastor David Fabricius wurde als Sohn eines Schmiedes in Esens geboren. Über seine Kindheit und Jugend ist nicht viel bekannt. Er besuchte die Lateinschulen in Norden und vermutlich in Braunschweig. Er bemerkte später einmal, dass Heinrich Lampadius, ein Gelehrter aus Bremen († 1583) in Braunschweig ihn in die Astronomie und Mathematik eingeführt habe.

Huch, in einem Jahr eine Einführung in die Mathematik, dass man damit schon astronomische Probleme berechnen kann?

Nach Abschluss der Schule studierte er, vermutlich in Helmstedt.

Nach seinen Studien, trat er bereits im Alter von 20 Jahren eine Stelle als Pastor  in Resterhafe bei Dornum an.

Ich bin immer wieder tief beeindruckt, wie jung viele damals schon sehr verantwortungsvolle Tätigkeiten übernahmen. John Goodricke, der gehörlose Astronom, machte sich beispielsweise auch schon mit 21 Jahren einen Namen in der Astronomie.
Ich meine, der SchriftstellerWillhelm Hauff verfasste seinen riesigen Roman “Lichtenstein”, als er gerade mal 21 Jahre alt war. Also ich hatte mit 21 Jahren noch Mühe, gute Schulaufsätze zu schreiben, geschweige denn ganze Bücher zu füllen.

Von dieser Zeit an beschäftigte sich der Pastor intensiv mit der Astronomie. Er beobachtete Sonne, Mond, Sterne, Planeten, Kometen und Polarlichter und trat in Briefwechsel mit den großen Gelehrten seiner Zeit, darunter Tycho Brahe, dem Astronom Simon Marius und Johannes Kepler. Mit letzterem tauschte er zwischen 1601 und 1609 vierzig Briefe aus, in denen es hauptsächlich um den Planeten Mars ging.

Man stelle sich heute mal vor, ein Jüngling von 20 jahren träte in Kontakt mit den Gelehrten unserer Zeit, und würde dabei sogar noch ernst genommen.
Gerade Günstling von Tycho Brahe zu sein, war sicherlich nicht einfach, denn Tycho galt nicht unbedingt als der friedlichste und zugänglichste Zeitgenosse. Sicherlich war auch eine gewisse Arroganz eine Charaktereigenschaft Tychos. Zumindest gab er seine gesammelten Daten nur Häppchenweise an Kepler heraus.
Und sehr streitbar soll Tycho wohl auch gewesen sein. Immerhin trug er eine goldene Nasenprotese, nachdem er seine eigene bei einem Duell verloren hatte.

Im Juli/August 1596 des Gregorianischen Kalenders, bemerkte Fabricius als Erster die Veränderlichkeit des Sterns Omikron Ceti im Sternbild Walfisch. Dieser Stern verändert mit einer Periode von etwa 331 Tagen seine Helligkeit, wobei er im Maximum deutlich sichtbar ist, im Minimum dagegen für das bloße Auge unsichtbar wird. Aufgrund dieses eigenartigen Verhaltens nannte er den Stern in Briefen res mira, seit Johannes Hevelius heißt er Mira.

Und hier schließt sich wieder der Kreis zu dem gehörlosen Astronomen John Goodricke, denn auch er befasste sich mit den Cefeiden, Sternen, die ihre Helligkeit ändern.

Interessant ist an dieser Stelle, dass der Pastor offensichtlich keine größeren Probleme mit der Dynamik des Sternenhimmels zu haben schien, die durchaus im Widerspruch zu manchen Inhalten der Bibel stand.

Neben der Astronomie setzte sich Fabricius mit der Meteorologie auseinander, wobei er seine Wetterbeobachtung in ein „Calendarium“ eintrug, das bis heute erhalten ist.
Wie viele andere auch, ging er davon aus, dass Sterne und Mond, unser Wetter beeinflussen könnten.
Dieser Glaube besteht noch heute. Für viele Zeitgenossen ist der Mondwechsel für die Änderungen einer Wetterperiode verantwortlich. Der Stern Sirius brachte den Ägyptern die Nielflut. Es ist aber anders herum. Die Nielflut kam und ging mit den Jahreszeiten. und der Stern Sirius fiel in die Zeit dieser Flut. Nicht die Sommersternbilder machen den Sommer, wie auch z. B. das Wintersechseck nicht für den Winter verantwortlich ist. Unsere Jahreszeiten kommen und gehen ungeachtet der Sternbilder am Himmel, aber sie sind eine gute Orientierung für das, was z. B. wettermäßig eintreten könnte.

1611 kehrte sein Sohn Johann (der älteste von sieben Söhnen) vom Studium aus der Stadt Leiden zurück und brachte ein Teleskop mit.
Damit beobachtete dieser u. a. die Sonne, was nicht ungefährlich war, da er keine Hilfsmittel hatte, um das helle Licht abzuschwächen. Er verlegte lediglich die Beobachtungszeit in die Morgen- und Abendstunden, in denen das Sonnenlicht weniger grell war.

Am 27. Februar 1611 nahm Johann erstmals dunkle Flecken auf der Sonne wahr. Da er sich zunächst unsicher war, ob es sich um atmosphärische Erscheinungen oder eine optische Täuschung handelte, wiederholte er seine Beobachtungen, wobei er seinen Vater hinzuzog. Da diese Art der Beobachtung ihren Augen schadete,
wandten sie später eine ungefährlichere Beobachtungsmethode an: Mittels einer Lochblende lenkten sie das Sonnenlicht in ein abgedunkeltes Zimmer und betrachteten die Sonnenscheibe auf einem weißen Papierschirm (das Prinzip der Lochkamera (Camera Obscura).
Die stellt zwar alles auf den Kopf, aber oben und unten, ist in der Astronomie nicht so wichtig. Viele Teleskope tun das auch.

Die Existenz der Flecken konnte zweifelsfrei nachgewiesen werden. Deren tägliche Bewegung auf der Sonnenscheibe wurde ganz folgerichtig auf die Rotation der Sonne zurückgeführt. Im Juni des gleichen Jahres veröffentlichte Johann Fabricius in Wittenberg eine 22seitige Schrift De Maculis in sole observatis et apparente earum cum Sole conversione narratio, worin er alle Einzelheiten der Entdeckung beschreibt und seinem Vater einen gebührenden Anteil zuspricht.
bereits der Mönch Christoph Scheiner aus Ingolstadt, Galileo Galilei in Pisa und Thomas Harriot in London hatten im Jahre 1610 Flecken auf der Sonne entdeckt, Johann Fabricius war aber der Erste, der darüber eine wissenschaftliche Abhandlung verfasste und veröffentlichte.

Ein wesentlicher Grund für die Erblindung Galileis, dürfte auch bei ihm die häufige Sonnenbeobachtung ohne ausreichenden Lichtschutz vor den Augen gewesen sein.
Lassen Sie und ihr es euch um Himmels Willen niemals einfallen, die Sonne ohne ein Filter direkt und schon gar nicht durch ein optisches Instrument zu beobachten. Das könnte der letzte Blick gewesen sein, und man wird künftig meine Artikel vorgelesen bekommen müssen…

Die Entdeckung der Sonnenflecken stand im Gegensatz zur klassischen Anschauung des Aristoteles, nach der die Sonne vollkommen war, und der Lehrmeinung der Kirche, wonach die Sonne gleichsam „unbefleckt“, wie die Jungfrau Maria sein sollte.
Für einen Katolischen Mönch, wie Scheiner es war, war es nicht ohne Risiko, über derlei zu schreiben. So riet ihm sein Abt, besser nicht zu veröffentlichen. Scheiner entdeckte auch, dass die Sonne keine perfekt glatte Oberfläche habe, sondern eher gekörnt sei, vergleichbar vielleicht mit der rauen körnigen Oberfläche einer Orange.
Wie Galilei mit der Inquisition in Konflikt kam, ist hinlänglich bekannt, und die Mutter von Kepler entging nur knapp einem Hexen-Prozess.

Zumindest dieses unrühmlichen Kapitels der Inquisition muss sich die Evangelische Kirche nicht verantworten, was nicht heißen soll, dass es in ihrer Geschichte keine dunklen Flecken gegeben hätte.

Das Ende von David Fabricius ist etwas kurios. So soll er kurz vor seinem Tod eine Predigt gehalten haben, in der er behauptete, einen Gänse- und Hühnerdieb zu kennen, er wolle dessen Namen aber nicht preisgeben. Ein selbst erstelltes Horoskop sah für den 7. Mai 1617 Unheil voraus und Fabricius verbrachte den Tag in seinem Haus. Am Abend wähnte er die Gefahr vorüber und machte sich zu einem Spaziergang auf. Auf dem Weg wurde er von einem Bauern, Frerik Hoyer, mit einem Torfspaten erschlagen. Hoyer fühlte sich offensichtlich als Dieb bloßgestellt und war darüber in Zorn geraten. Er wurde wegen seiner Tat zu Tode gerädert.
Heute erinnern ein Denkmal auf dem Friedhof von Osteel und eine Sandsteinplakette an der Kirche von Resterhafe an David Fabricius. Der Mondkrater Fabricius ist nach ihm benannt.
Sein Sohn Johannes starb jung auf einer Fahrt nach Basel, was keppler äußerst bedauerte.

Als Quellen zu diesem Artikel verwendete ich zum einen Wikipedia, und zum anderen das Buch “Der Stern von dem wir leben – Den Geheimnissen der Sonne auf der Spur” von Rudolf Kippenhahn.

Da die damaligen Entdecker der Sonnenflecken nicht wussten, was sie sind und wie sie entstehen, bewahre auch ich mir das für einen meiner nächsten Artikel auf.

Jetzt wünsche ich Ihnen und euch, wenn auch der Reformationstag kein Feiertag ist, einen geruhsamen 01.11., Aller Heiligen, der zumindest bei uns in Baden-Württemberg einer ist.
Bis zum nächsten Mal grüßt Sie und euch

Gerhard Jaworek.

Zum Vollmond heute Nacht eine Mondgeschichte

Ja, Morgen ist Vollmond. Das kommt vor und ist nichts besonderes an sich.

Besonders ist vielleicht, dass jetzt auch Indien mit einer Raumsonde nach dem Mond greift. Es könnte spannend werden, wer der neue erste Mensch des 21. Jahrhunderts auf dem Mond sein wird, und welche Nation dahinter steckt. Ich fände es schön, wenn es ähnlich, wie die ISS ein grenzen überschreitendes Projekt sein würde; ein Beispiel dafür, dass die Menschheit durchaus in der Lage ist, Hürden und Probleme zu meistern, wenn man sie gemeinsam angeht.

 

Vielleicht wundert ihr euch jetzt, wieso ich nichts über die momentan wirklich unglaublichen und zahlreichen Missionen schreibe, die momentan gestartet sind. Ihr kennt mich ja. Das tue ich immer dann, wenn die Medien davon abgelassen haben. Dann kann ich aus dem vollen schöpfen, und die Sache in meine Art von Kontext einbinden.

Deshalb hier einfach mal eine Mondgeschichte, Keplers Traum zum Mond.

Passend zu einem ganz normalen Vollmond ohne Supermond und ohne Mondfinsternis.
Ich werde nicht zum Werwolf und bin auch sonst nicht mondfühlig.

Trotzdem faszinierte der Mond die Menschen schon immer. Heute erzähle ich kurz etwas über eine Mondgeschichte, die mir auch noch gar nicht so lange vertraut ist.

Ich habe sie aus dem Buch “Das Weltgeheimnis”. Das gibt es wunderbar aufgelesen in der Hörbücherei Hammburg.

 

Kein geringerer, als Johannes Kepler, hatte einen Traum vom Mond. Er verfasste ein Traktat, in welchem er seine Vorstellung vom Mond, wie man dort hin kommen könnte, und welche Lebensbedingungen dort herrschten, festhielt.

Der Text diese Traktats ist heute kaum noch bekannt.
Ein Dämon wird zum Erzähler und berichtet zunächst von dem komplizierten und anspruchsvollen Auswahlverfahren, wer mondtauglich sei. “Keinen von sitzender Lebensart – keinen wohlbeleibten – keinen Wolllüstigen nehmen wir mit, sondern, wir nehmen solche, die ihr Leben im eifrigen Gebrauch der Jagdpferde verbringen, oder die häufig zu Schiff Indien besuchen und gewohnt sind, ihren Unterhalt mit Zwieback, Knoblauch, gedörrten Fischen und anderen von Schlemmern verabscheuten Speisen, zu fristen”…
Wie wichtig diese Tauglichkeitsprüfung ist, wird klar, wenn man sich den Start näher betrachtet.
Die Beschleunigung sei laut Keplers Schrift damit vergleichbar, als würde man mit Pulver über alle Lande hinweg gesprengt.
Aus diesem Grunde, müssten alle Mondfahrer vor dieser Tortur mit Opiaten betäubt werden.
Während des Aufstieges müsste man sich an eine unbeschreibliche Kälte gewöhnen, und hätte mit Atemnot zu kämpfen. Später wird die Reise unbeschwerlicher, da die Schwerkraft der Erde ab- und die des Mondes zu nimmt.
Diese Anschauung ist doch schon sehr modern. Vor allem vor dem Hintergrund, dass die Newtonsche Mechanik mit der dazugehörigen mathematischen Beschreibung der Schwerkraft noch nicht bekannt waren.
Problematisch könnte die Landung werden. Hier eilen Laut Kepler schützend Dämonen voraus, um eine weiche Landung zu ermöglichen. In Keplers Text heißt der Mond plötzlich Levania und die Erde nennt er Volva.
Als Astronom stellt Kepler gleich nach der Ankunft klar, dass der Fixsternhimmel auf Levania dem der Erde sehr ähnlich ist. Es gäbe jedoch gravierende Unterschiede. So geht auf dem Mond die Sonne nur zwölf Mal pro Jahr auf und wieder unter. Somit gingen die Uhren dort sehr viel langsamer.
Tag und Nacht wären gemeinsam einen synodischen Monat lang.
In dieser langen Nacht versinkt der Mond in Kältestarre und seine Bewohner hätten mit wütenden Winden zu kämpfen. Während des darauffolgenden nicht minder langen Tages glüht eine unbarmherzige Sonne nieder und lässt alle Kreatur schmachten. Kepplers Höhepunkt seines Traumes ist der Blick zurück.  Er beschreibt, wie man die Erde riesig vom Mond aus sehen können sollte. Heute wissen wir es von den Apollo-Raumfahrern, die um den Mond kreisen mussten, genauer. Viele Aufgänge und Untergänge der Erde am Horizont des Mondes wurden beschrieben und es gibt atemberaubend schöne Fotos davon. Sie zeigen, wie fragil unser Raumschiff Erde, die Blase, in der wir leben, ist. Gerade Gestern hat @Dlr_next die Kinderfrage vertwittert, was ein Astronaut auf dem Mond wohl sähe, wenn wir Vollmond haben. Na, findet ihr es heraus? Genau, der Astronaut hätte gerade Mittag. Die Sonne stünde für ihn hell am Zenit. Ich bin mir da jetzt nicht ganz sicher, aber ich denke, er würde die Erde vor lauter Sonnenlicht nicht sehen, ähnlich, wie wir den Mond bei Neumond aus dem selben Grund nicht sehen können.
Kepler weiß, dass Erde und Mond ein einfach gekoppeltes System sind. Das weiß er deshalb, weil er erkennt, dass der Mond uns stets dieselbe Seite zeigt. Will sagen, dass wir immer die gleiche Landschaft betrachten und diese sich nicht verschiebt, wie sie es täte, wenn der Mond sich irgendwie anders um sich selbst drehte. Deshalb sieht man den Globus ganz unterschiedlich, je nach dem, wo man sich auf dem Mondball befindet. Diejenigen, die sich auf der sog. “Dark Side” aufhalten, sehen die Erde niemals.

Für Erdbetrachter auf dem Mond hat die Erde natürlich auch dem Mond ähnliche Phasen, die Mondbetrachter von der Erde aus sehen.

Für Mondbewohner geht die Erde innerhalb eines Monats auf, und wieder unter.

 

Ein weiterer interessanter Effekt, den Kepler nennt, ist die Tatsache, dass sich die Erde einmal Täglich unter dem Mond weg dreht. Dies sieht man an Strukturen des Erdballs die von Ost nach West vorüber ziehen. Das sollte für Mondbewohner besonders schön bei einer totalen Mondfinsternis betrachten lassen. Nächtlich erhellte Städte ziehen langsam vorüber.

Mit einigen geographischen Kenntnissen sollten die Mond-Bewohner ihre Uhren an vorüberziehenden markanten Punkten mit der Erdenzeit synchronisieren können.

Für die Vorstellung, wie man die Erde sieht, nutzt Kepler das geographische Wissen seiner Zeit.
Er teilt den Erdball in zwei Hemisphären ein, aber nicht in eine Nord- und eine Südhalbkugel, sondern in eine West- und Osthalbkugel, wobei Europa, Afrika  und Asien, die alte Welt, auf der Osthälfte und Nord- und Südamerika auf der Westkugel zu finden sind. Dazwischen ist ein großer Ozean.

In der “alten Welt” erkennt er einen menschlichen Kopf, Afrika, dem sich ein Mädchen in langem Gewande zum Kusse hinneigt. Europa mit Spanien stellen den Frauenkopf dar und Asien ihr Gewand Ihr nach hinten ausgestreckter Arm, der laut Kepler eine Katze anlockt, der Arm als Großbritannien und die Katze als Skandinavien, verfeinern und ergänzen sein Bild. Südamerika vergleicht er mit einer Glocke und dem südlichen Zipfel als Klöppel. Über einen schmalen Strick, ist sie an Nordamerika angehängt.
Als Kepler seinen Traum schreibt, ist die Entdeckung der Welt durch die Seefahrt in vollem Gange. Von Berichten von Weltumsegelungen lässt Kepler sich anstecken und inspirieren. Außerdem verfestigt sich dadurch seine Gewissheit, das kopernikanische Weltbild sei richtig.

Vom Mond aus, kann Kepler seine neue Astronomie aus anderer Perspektive betrachten. Der Globus lässt sich als ganzes begreifen und das kopernikanische Weltgebäude wird offenbar.
Spektakel der besonderen Art sollten Finsternisse sein, die sich vom Mond aus ganz anders präsentieren sollten. Auch diese zieht Kepler in Betracht. Er dreht den Globus, verändert die Positionen von Erde, Sonne und Mond und erschaft sich so einen theoretischen neuen Beobachtungsplatz.

Neu an Keplers Traum ist, die Veränderung der Sichtweise und des Standpunktes. Eine neue hinterfragende, sich selbst misstrauende Denkweise probiert Kepler hier aus. Der Wechsel des Bezugssystems und die Gewinnung von Abstand und einer dadurch veränderten wissenschaftlichen Sicht, öffnen Türen, neues zu wagen und das geozentrische Weltbild zu hinterfragen.

Relativ am Ende seines Traumes, geht Kepler auf den Mond an sich ein. Es gibt Berge und Täler, Winde und Meere und auch Leben.
Er geht auf die Tatsache ein, dass durch die verminderte Schwerkraft die Lebewesen deutlich größer würden mit langen Elefantenbeinen und riesigen Körpern, wobei die Schlangenform vorherrsche. ja, das hat schon viel mit Schwerkraft zu tun, wie groß sich Körper entwickeln können. Wale verenden am Strand, weil ihr Skelett ihr Gewicht unter der Schwerkraft auf dem Land nicht tragen kann. Im Wasser sind sie durch die Auftriebskraft deutlich leichter.

Spoc aus Enterprise hat so große Ohren, weil auf Vulkan, seinem Heimatplaneten, die Luft dünner ist. Dadurch werden alle Geräusche leiser. Das hat dort die Evolution mit größeren Ohren kompensiert.

Nach diesen Überlegungen bricht sein Traum plötzlich ab. Er beendet ihn mit einem starken Regen, der ihn erwachen ließ.

 

Dennoch. Ich finde diesen Traum äußerst spannend. Vor allem, wie sich nüchterne Naturwissenschaft mit der Anwesenheit von Dämonen widerspruchslos fügt, finde ich höchst beeindruckend.

Das findet man allerdings bis heute noch. Ich kenne promovierte Physiker, die in ihrer funtamentalistischen Freikirche leben, dass die Erde in sieben Tagen erschaffen wurde, dass Eva ein Rippchen Adams sei und vielen anderen Unsinn mehr.
Danach gehen sie wieder an ihren Arbeitsplatz und zählen vielleicht Neutrinos…

Ich freue mich, wenn Keplers Traum vom Mond auch euch etwas ergreift.

Es grüßt euch bis zum nächsten mal

Euer Gerhard.

 

So interessant ist unser Pluto, auch als Zwergplanet

Meine lieben Leserinnen und Leser,

und hier kommt er, der angekündigte Artikel über unseren super interessanten Pluto.

Das Pluto nun seit Juli 2006 der Planetenstatus aberkannt wurde, soll uns nicht stören, wie es auch die Forscher nicht zu stören scheint. Wie das Preisschild letztlich auch die Kunst nicht macht, so fasziniert uns dieser Himmelskörper mit seinen fünf Monden nicht minder, wenn er auch nur noch ein Zwergplanet ist.
Noch nie erhielten wir so detaillierte und hoch aufgelöste Bilder von ihm, wie die Sonde New Horizons uns lieferte.
So weit draußen sollte er uns einige unserer brennenden Fragen beantworten, die mit der Entstehung unseres Sonnensystems zusammen hängen.
Hier nun einige von mir gesammelten Daten und Fakten über ihn.

Namensgebung:

Die Planeten haben Namen aus der römischen Götterwelt. Zum Teil haben ihre Entdecker sie benannt. Dabei hat man sich immer Götternamen ausgesucht, die etwas mit dem Aussehen, der Lage zur Sonne und den Merkmalen des Planeten zu tun haben.

In der römischen Mythologie ist Pluto der Gott der Unterwelt. Der Planet erhielt seinen Namen wahrscheinlich, weil er so weit von der Sonne entfernt ist, dass er nie ins Licht gelangt und ständig in der Dunkelheit liegt. Außerdem sind PL die Initialen von Percival Lowell, der 1894 das Lowell Observatory in Arizona gründete. Seine Bemühungen galten der Erforschung des Mars. Seit 2006 zählt Pluto allerdings nicht mehr zu den Planeten, sondern gilt als Zwergplanet.

Entdeckung

Pluto wurde erst 1930 entdeckt. Er hat etwa die Größe Merkurs und
besitzt fünf Monde.
Neptun und Pluto wurden nicht mit optischen Instrumenten entdeckt. Sie verrieten sich durch ihre Schwerkraft, wodurch sie die Bahnen der anderen Planeten störten.

Aufbau:

Über Plutos Beschaffenheit ist noch wenig bekannt. Mit einem Durchmesser von lediglich 2370 km ist er deutlich kleiner als die sieben größten Monde im Sonnensystem. Seine mittlere Dichte von 1,869 g/cm³ spricht für eine Zusammensetzung aus zirka 65 % Gestein und 35 % Wassereis.
Temperatur
Im Juli 2005 konnte erstmals die thermische Emission von Pluto und seinem großen und nahen Mond getrennt gemessen werden. Dabei hat sich gezeigt, dass die Oberfläche von Pluto mit −230 °C um 10 °C kälter ist, als es einem reinen Strahlungsgleichgewicht entsprechen würde. Der Grund dafür ist die Ausbildung der Atmosphäre, durch deren Sublimation Verdunstungskälte entsteht.
Wir kennen dieses Phänomen vom Alltag her. Wenn wir leichtflüchtige Substanzen, wie Alkohol, auf unsere Haut aufbringen, verdunstet er rasch, nimmt Wärme mit und das empfinden wir als Kühlung.

Oberfläche

Durch New Horizons wurde eine näherungsweise herzförmige, auffällig helle, homogen erscheinende Region sichtbar. Sie liegt zum flächenmäßig größeren Anteil nördlich des Plutoäquators und hat bis auf weiteres nach dem Entdecker des Plutos, Clyde Tombaugh, den Namen Tombaugh Region erhalten. Innerhalb der Tombaugh Region befindet sich wiederum ein Sputnik-Ebene getaufter Bereich. Man geht davon aus, dass diese kraterlose Ebene weniger als 100 Millionen Jahre alt und möglicherweise noch in einem Zustand aktiver geologischer Formung begriffen ist. Sichtbare Schlieren in diesem Bereich könnten durch Winde verursacht sein.
Wassereis ist bei einer Temperatur von -230 Grad hart wie Granit.
Stickstoff hingegen ist noch zähflüssig oder schneeartig.

Geologie:

Auf Pluto gibt es keinen Vulkanismus und auch keine Plattentektonik.
Zumindest vom größten Mond Charon her dürften auch keine Gezeitenkräfte mehr auftreten, da dieses system doppelt gekoppelt in einem Gleichgewichtszustand ist. Die anderen vier Monde hingegen wirken noch auf Jupiter.
Grundsätzlich gibt es auf Jupiter wegen seiner Atmosphäre ein Wetter. Geologische Veränderungen durch fließende Substanzen, wie Wasser auf der Erde oder Methan auf dem Saturnmond Titan, sind durchaus denkbar.

Atmosphäre

Plutos sehr dünne Atmosphäre besteht zum größten Teil aus Stickstoff, zum zweitgrößten Teil aus etwas Kohlenmonoxid und zirka 0,5 % Methan.Nach Messungen am James Clerk Maxwell Telescope ist die Atmosphäre im Jahr 2011 3000 km hoch und das in ihr enthaltene Kohlenstoffmonoxid −220 °C kalt. Zuvor nahm man an, die Atmosphäre sei 100 km hoch. Ihr Druck an Plutos Oberfläche beträgt laut der US-Weltraumbehörde NASA etwa 0,3 Pascal und laut der Europäischen Südsternwarte (ESO) um 1,5 Pascal.
New Horizons entdeckte in der Plutoatmosphäre Aerosole bis in 130 km Höhe. Diese konzentrieren sich hauptsächlich auf zwei Nebelschichten, die erste etwa 50 km über Boden und die zweite in ca. 80 km Höhe.

Leben:

bei -230 Grad ist definitiv kein Leben möglich.
Durch den Sonnenwind können mit dem Stickstoff der Atmosphäre einfachere chemische Verbindungen entstehen. Leben wird daraus allerdings nie werden.

Magnetfeld:

Pluto besitzt kein Magnetfeld.
Deshalb ist seine Atmosphäre ungeschützt den geladenen Teilchen des Sonnenwindes ausgesetzt und wird fortgetragen.
Aus diesem Grund geht dem Mars seine Atmosphäre langsam verloren.

Monde:

Von Pluto sind fünf Monde bekannt. Ihre Umlaufbahnen sind annähernd kreisförmig und zueinander komplanar. Sie liegen in Plutos Äquatorebene, aber nicht in seiner Bahnebene. Mit New Horizons wurde – aus Sicherheitsgründen – vor dem Vorbeiflug nochmals intensiv nach Monden und Staubringen gesucht; es konnten keine weiteren Plutomonde entdeckt werden.

Bei unserem Trabanten ist es genau umgekehrt. Die Mondbahn liegt nahezu in der Ekliptik, nicht aber in der Äquatorebene.

Ihre Namen sind
Charon, Nix, Hydra, Kerberos und Styx.
Ich möchte euch hier nicht mit Daten zu den Umlaufbahnen langweilen. Das merkt man sich eh nicht.
Interessant ist aber doch, dass ein Zwergplanet, kleiner als unser Mond, fünf Monde haben kann.

Laut einem etwas älteren Astronomiebuch aus meiner Sammlung, hat Pluto nur einen Mond und die Atmosphäre besteht aus Methan und ettliche andere Details unterscheiden sich völlig, bzw. werden vermutet.
Es ist einfach so, dass wenn man, was auch immer, genau wissen möchte, dann muss man sich irgendwann auf den Weg machen und hin gehen.

UmlaufBahn:

Pluto benötigt für eine Sonnenumrundung 247,68 Jahre. Im Vergleich zu den Planeten ist die Umlaufbahn Plutos deutlich exzentrischer, mit einer numerischen Exzentrizität von 0,2488. Das heißt, der Abstand zur Sonne ist bis zu 24,88 % kleiner oder größer als die große Halbachse.

Der sonnenfernste Punkt der Plutobahn, das Aphel, liegt bei 49,305 AE, während der sonnennächste Punkt, das Perihel, mit 29,658 AE näher an der Sonne liegt als die sehr wenig exzentrische Bahn Neptuns. Zum letzten Mal durchlief Pluto diesen Bereich, in dem er der Sonne näher ist als die Neptunbahn, vom 7. Februar 1979 bis zum 11. Februar 1999. Das Perihel passierte Pluto 1989. Sein Aphel wird er im Jahr 2113 erreichen. Dort beträgt die Sonnenstrahlung nur etwa 0,563 W/m². Auf der Erde ist sie 2430-mal so hoch. Für einen Beobachter auf Pluto wäre der scheinbare Durchmesser der Sonne nur etwa 1/50 des scheinbaren Sonnendurchmessers, den wir auf der Erde gewohnt sind. Die Sonne sähe für diesen Beobachter wie ein extrem heller Stern aus, der Pluto 164-mal so hell wie der Vollmond die Erde beleuchtet.
Seine Bahn ist um 17 Grad gegen die Ekliptik geneigt.
Wir sprachen im Zusammenhang mit Finsternissen darüber, dass die Bahn des Mondes auch gegen die Ekliptik geneigt ist.
(Stichwort Knotenpunkte und Trakonistischer Monat)

Auffällig ist, dass Pluto in der Zeit, in der sich Neptun dreimal um die Sonne bewegt, genau zweimal um die Sonne läuft. Man spricht daher von einer 3:2-Bahnresonanz.
In der Musik nennt man das eine Synkope.
Schön, nicht wahr?

Rotation:

Pluto rotiert in 6,387 Tagen einmal um die eigene Achse. Die Äquatorebene ist um 122,53° gegen die Bahnebene geneigt, somit rotiert Pluto rückläufig. Seine Drehachse ist damit noch stärker geneigt als die des Uranus, aber im Unterschied zum Uranus und zur Venus ist der Grund dafür allgemein ersichtlich, ebenso die Ursache für Plutos ziemlich große Rotationsperiode, denn die Eigendrehung des Zwergplaneten ist durch die Gezeitenkräfte an die Umlaufbewegung seines sehr großen Mondes Charon gebunden. Damit sind Pluto und Charon die einzigen bisher bekannten Körper im Sonnensystem mit einer doppelt gebundenen Rotation.

Erde und Mond sind einfach gekoppelt. Das bedeutet, dass der Mond uns stets die gleiche Seite zuwendet. Er dreht sich innerhalb eines Monats einmal um sich selbst, wobei die Erde sich unter ihm durchdreht, so dass der Mond aus unserer Sicht auf- und untergeht.
Pluto und Charon sind doppelt gekoppelt. Das bedeutet, dass Charon ihm immer dieselbe Seite zuwendet und gleichzeitig, dass Charon sich mit der selben Geschwindigkeit um Pluto bewegt, wie dieser sich dreht.
Charon und Pluto sind so miteinander gekoppelt, als wären beide fest mit einer Stange verbunden.
Dem Erde-Mond-System wird dieses Schicksal auch einst beschieden sein, denn Ebbe und Flut bremsen das System mit der Zeit ab. Ist dieses Gleichgewicht erreicht, wird der Erdentag deutlich länger sein, der Abstand zum Mond auch, der Mond wird sich in der Äquatorebene der Erde befinden und der Mond wird lediglich noch von einer Stelle der Erde aus zu sehen sein. Ebbe und Flut gibt es dann nicht mehr, und auch keine Mondphasen.

Diese Mail soll aber nicht mit einem Horrorszenario enden. Bis dieses eintritt vergeht noch seeeeeehr viel Zeit.

Liebe Grüße

Gerhard.

Inklusion Hautnah erleben

Liebe Leserinnen und Leser,

Heute geht es mal um Inklusion. Wer mich kennt weiß, dass ich die Astronomie für eine der inklusivsten Wissenschaften halte, die es gibt.
Aber heute geht es nicht um Astronomie, sondern um ein Sportereignis, an dem ich teilnehmen durfte.

Am 23.09.2018. fand im Rahmen des Baden-Marathons der bereits dritte Inklusionslauf statt, an dem diesmal auch das Karlsruher Institut für Technologie (KIT), das Institut für Sport und Sportwissenschaften (IfSS und das Studienzentrum für Sehgeschädigte (SZS) mit mehreren Teams vertreten waren.
“Ein Zeichen für Menschlichkeit, Frieden und Gemeinsam Verschieden sein, setzen.

Das Ziel ist der Weg.
So, oder unter ein ähnliches Motto, könnte man den Inklusionslauf stellen, der am 23.09.2018 im Rahmen des Baden-Marathon in karlsruhe stattfand.
Zur Seite des Inklusionslaufs

So trafen sich zahlreiche Einrichtungen für Menschen mit Einschränkungen, wie z. B. die Lebenshilfe, die Reha-Südwest und die Caritas um diesen sechs Kilometer langen Lauf nicht gegeneinander, sondern Miteinander und füreinander zu bewältigen.
Ob im Rollstuhl, im Liegerad, mit Prothesen, stöcken oder anderer Einschränkung, war der Weg das Ziel.

Das KIT beschäftigt sich schon länger auf unterschiedlichen Ebenen mit dem Thema Inklusion, z. B. im Rahmen seines Gesundheitsprogramms
Inklusiv Mobil

und dem Seminarangebot für Studierende der Sportwissenschaften “Kleine Spiele”, das Studierende für inklusive Sportangebote und gemeinsame Teilhabe, sensibilisiert.
Siehe hierzu:
Astrosport

Vor diesem Hintergrund wagten sich auch drei Teams des KIT an den Start.
Ein Team bildete eine Informatikstudentin mit Rollstuhl zusammen mit einer Hiwine des Sportinstitutes.
Das zweite bestand aus einem blinden wissenschaftlichen Mitarbeiter des Studienzentrum für Sehgeschädigte (SZS), dem Autor dieses Artikels,  und seiner sehenden Kollegin als Begleitung.
Zum SZS
Ein Mitarbeiter des Sportinstitutes begleitete seinen Vater, der den Lauf mit seiner schlaganfallbedingten Einschränkung im Liegefahrrad bestritt.

Als wir gemeinsam am Startplatz eintrafen, schlug uns sofort eine unglaubliche Stimmung und Fröhlichkeit entgegen.
Einige der Teams wurden über Lautsprecher vorgestellt. Da wurde sofort klar, wieviel Diversität unsere Gesellschaft zu bieten hat. Ich bin immer wieder erstaunt ob der Anzahl an Organisationen und Einrichtungen, die es alleine nur in Karlsruhe für Menschen mit unterschiedlichsten Beeinträchtigungen  gibt.
Aber nicht nur Menschen mit Einschränkungen waren zu sehen. Sowohl beim Marathon, als auch beim Inklusionslauf konnte man andere Sprachen hören und Menschen mit anderer Hautfarbe wahrnehmen. Gerade für Migranten und Flüchtlinge sind solche Veranstaltungen eine ideale Chance der Inklusion, weil derlei Sprachbarrieren und soziale und ethnische Benachteiligungen überwinden helfen.

Endlich fiel der Startschuss und es ging los.
Unser Team mit dem Rollstuhl war bald in der Ferne verschwunden. Wir, das SZS-Team hatten uns als Ziel gesetzt, unter eine Stunde zu kommen.

Die Stimmung auf der ganzen Strecke war großartig. Immer wieder gab es Schausteller und Gruppen, die mit Trommeln, Musik und Applaus einen  wieder anfeuerten, oder mit frischen Getränken willkommene Stärkungen darreichten.
Der Sports- und Kampfgeist wehte überall.

Für viele Teilnehmende mit vor allem geistigen Beeinträchtigungen ist so ein Lauf oft eine von sehr wenigen Gelegenheiten des Jahres, mal aus der Tristesse des Alltages zwischen Wohnheim und beschützender Werkstatt, auszubrechen, sich und ihren Körper anders zu erleben und das Gefühl eines Erfolges zu verspüren.
Da wird ungefiltert vor Freude gelacht, gejauchzt, geschrien und umarmt. Da werden im Überschwang von Freudenausbrüchen Sprints hingelegt, welche die Begleitpersonen ohne Einschränkung verzweifelt mit flehendem Blick zurücklassen, er oder sie möge bald vor Erschöpfung wieder langsamer werden.

Nicht sichtbar sind im Alltag die sehr zahlreichen “unsichtbaren” Beeinträchtigungen, die Betroffene nicht minder einschränken können. So sind beispielsweise psychische Beeinträchtigungen oft nicht wahrnehmbar,  und ermangeln häufig gesellschaftlicher Toleranz und Akzeptanz. Auch diesen Grupierungen bietet so ein Lauf die Chance für den Schritt in die Öffentlichkeit.
Meine Kollegin und ich waren durch ein etwa 20 cm langes Seil verbunden, das an den Enden Holzgriffe hatte, von denen jeder von uns einen in der Hand hielt.
Das ermöglicht zum einen Armfreiheit für beide Läufer und zum anderen kann die sehende Begleitperson durch Zug am Seil Richtungsinformationen geben.
Wir hielten unser recht strammes Tempo durch und sparten Kraft, indem wir nur dort kleinere Sprints hinlegten, wo man befürchten musste, fotografiert oder gefilmt zu werden, oder, wo besonders häftig applaudiert wurde, und die Stimmung super war.
Und so kamen wir dann mit erreichtem Vorsatz, unter einer Stunde im Ziel an.
Der folgende Link zeigt, u. A., wie meine Kollegin und ich über die Ziellinie joggen.

Einlauf ins Ziel
Einlauf ins Ziel

Stummvido, Einlauf ins Ziel
Und hier noch ein schönes Foto mit meiner Lauf-Pilotin.

Dort erfuhren wir, dass das Rollstuhl-Team des KIT Platz eins gewonnen hatte. Die Fuhren eine Zeit von 30 Minuten ein. Sechs Kilometer per Hand in 30 Minuten. Das ist unglaublich!

So dachten wir, aber die Auswertung ergab, dass es ein Team von Diabetikern in ungefähr 27 Minuten geschafft hatte.
Da es keine Sieger gab, schmälert das eine Ergebnis keinesfalls die Leistung des anderen Teams.
Das Ziel war das Ziel.

Und da stießen wir auch wieder auf unser drittes Team mit dem Liegerad. Mit halbseitiger Lähmung und Aphasie durch einen Schlaganfall erreichte dieses Team fünf Minuten vor uns die Ziellinie.
Die Freude dieses Mannes, das Ziel erreicht zu haben, war so unglaublich groß, dass sie auch ohne gesprochene Worte und trotz fehlenden Blickkontakts auf mich übersprang und mich sehr stark berührte. Der Händedruck war es, der alle Emotionen und die Freude übertrug.

Fazit:
Es hat sich sehr gelohnt, bei diesem Inklusionslauf mitzumachen. Derlei Veranstaltungen sollte es öfter geben, damit vor allem diejenigen Mitmenschen, die wegen einer sozialen, gesellschaftlichen, körperlichen oder seelischen Einschränkung in Werkstätten, Kliniken, Wohnheimen oder sonst wo versteckt leben müssen, stärker ins Bewusstsein rücken. Es geht hier weniger um diejenigen Menschen mit Einschränkung, die heldenhaftes leisten, sondern um die Antihelden in dieser Gesellschaft, die hier durch so einen Lauf Gemeinsamkeit, Wertschätzung und Zugehörigkeit erleben können.
Außerdem setzt so eine Veranstaltung Zeichen gegen Faschismus, Ausländerhass etc.
Wir sind mehr und wir wollen Inklusion, Diversität und sehen Andersartikeit ob in Kultur, Gesellschaft Arbeitswelt und wo sonst auch noch, als Bereicherung.
Das SZS-Team ist im nächsten Jahr wieder dabei.”

Alles gute bis zum nächsten Mal wünscht euch

ihr und euer Gerhard Jaworek.