Die Sonne tönt – Klingel oder Orgelpfeife

Liebe Leserinnen und Leser,

Viele von uns haben es noch in der Schule gelernt:
“Die Sonne tönt nach alter Weise,
in Bruder Sphären Wettgesang.
Und ihre vorgeschrieb’ne Reise,
vollendet sie mit Donnergang…”
Goethes Prolog im Himmel aus Faust I.

Mit der eher esoterischen Idee von Sonnenton, Erdenton und klingender Himmelsmechanik, haben wir uns in “Das Ohr am Teleskop” und “klingende Planetenbahnen” beschäftigt.
Schon klar, niemand kann die Sonne hören. Schon alleine deshalb nicht, weil 149 Mio Kilometer Vakuum zwischen ihr und uns liegen.

Es gibt aber in der Tat Gründe, sich damit zu beschäftigen, ob die Sonne klingt und schwingt, wie Schallwellen sich im Stern fortpflanzen, ob sie eher Glocke oder Orgelpfeife ist und vieles mehr.
Der Hauptgrund ist das Problem, dass wir nicht in die Sonne hinein sehen können. Was wir von ihr sehen, ist ihre Photosphäre, die alles überstrahlt und keinen Blick nach innen zulässt. Ich habe schon im vorigen Artikel erwähnt, dass uns ein Neutrino-Teleskop den Blick nach innen gewähren würde. Dieses wird es aber aufgrund der Eigenschaft, dass Neutrinos quasi mit nichts wechselwirken, nie geben. Mit Radio-Teleskopen kann man je nach dem, welche Wellenlänge man betrachtet, ein bisschen unter die Oberfläche schauen, aber auch nicht wirklich in den Stern hinein.

Vieles, was wir über das Innere von Sternen, und was dort passiert wissen, kommt aus Simulationen am Computer. Man spielt beispielsweise mit den Verhältnissen von Wasserstoff, Helium Metallen und Massen herum, und passt die Modelle an, bis sie das tun, was wir auch beobachten.
Mit “Metallen” meinen Astronomen alle Elemente, die schwerer als Wasserstoff und Helium sind, weil die Hauptsache, die in einem Stern passiert, die Fusion von Wasserstoff zu Helium ist. Somit reduzieren Astronomen häufig den Rest der Chemie auf “Metalle”.

Und an dieser Stelle wird die Sache etwas absurd. Wir beobachten, dass die Sonne brodelt. Wir sehen, dass die Sonne schwingt. Wir hören leider nicht, wie sie klingt, obwohl der Schall im Stern enorm sein muss und neben der Konvektion für das Wallen, Brodeln, pulsieren und Schwingen des Sterns verantwortlich ist.
Die Sonne ist ein einziger riesiger Resonator.
Die Schwingungsmuster an ihrer Oberfläche verraten den Sonnenforschern viel über das Innere der Sonne, z. B. was sich in ihren Schichten tut, wie innere Schichten rotieren, man kann überprüfen, ob die Modelle des inneren der Sonne, z. B. Temperatur etc. ungefähr passen, und vieles mehr.
Heute greifen wir nur ein Klang-Phänomen heraus. Es ist gut möglich, dass hier noch weitere Artikel über die Astroseismologie folgen werden.

Schwingende Saiten

Im eindimensionalen, ist eine gespannte Saite das einfachste, was man sich schwingend und klingend vorstellen kann. Sie ist gespannt an zwei festen Punkten aufgehängt und schwingt, wenn man sie anspielt. An den Aufhängungen nicht, aber in der Mitte schwingt sie am meisten. Bei tiefen Instrumenten, z. B. bei einem E-Bass kann man das sogar sehen. Die Saite wird durch ihre relativ große Amplitude verwaschen im Bild. Teilt man nun die Saite in der Mitte, so erhält man die doppelte Frequenz. Bei Flageolett-Tönen, wo man die Mitte der Saite nicht ganz drückt, sondern nur leicht abdempft, schwingt dann die linke Hälfte stets gegenläufig zur rechten. Der Flageolett-Punkt schwingt, wie die beiden äußeren Aufhängungen der Saite nicht. Man nennt das auch Knoten.
Wir haben also die Aufhängungen der Saite und dazwischen in der Mitte einen Knoten. Links und Rechts davon jeweils einen Bauch. Musikalisch erklingt die Oktave. Diese schwingt doppelt so schnell, wie der Grundton der Seite.
Teilt man die Saite in Drittel,
bekommt man die Quinte, dann die nächste Oktave, die Quarte usw.
Die hier entstehenden übereinander geschichteten Töne nennt man in der Physik die Harmonischen.
Spielt man ein Instrument, so erklingen immer einige dieser Harmonischen gleichzeitig. Dieser Zusammenklang macht die Charakteristik, macht den Klang, macht den Sound des Instruments aus.
Im Grunde ist die Saite durch ihre Schwingung und ihre Obertöne in der Zeitlupe dann auch wellig, bzw. gekräuselt.

Schwingende Flächen

Wir gehen nun einen Schritt weiter in unserer akustisch-visuellen Beobachtung.
Es gibt aus dem 17. Jahrhundert einen interessanten Versuch des Physikers Chladni
Ernst Florens Friedrich Chladni, der 1787 die Schrift Entdeckungen über die Theorie des Klanges veröffentlichte, tat folgendes:
Er nahm eine Glasscheibe und spannte diese wagerecht an einer Ecke in eine Klemme. Dann bestreute er sie mit Sägespänen. Nun strich er den Rand der Scheibe mit einem Geigenbogen an, um sie in Schwingung zu versetzen. Die Vibration brachten nun die Sägespäne zum Hüpfen. Nun ist es aber so, dass es nun auch auf der Fläche Knoten gibt, die nicht schwingen. Andere Orte schwingen so stark, dass die Späne quasi abgeschüttelt werden. Es entstehen nun Muster aus Orten, wo sich die Späne sammeln, und Orten, wo nachher keine mehr sind, weil sie vertrieben wurden.
Je nach dem, wo und wie Kladny die Scheibe mit seinem Bogen anstrich, änderten sich diese Muster. In manchen Erlebnisparks, z. in Schloss Freudenberg, ist dieser Versuch zum selbst ausprobieren, aufgebaut.
Im Gegensatz zur Welle einer Saite, hat man nun schon eine gekräuselte Oberfläche auf der zweidimensionalen Scheibe.
Auf ein Musikinstrument übertragen, entspricht diese Situation z. B. auch einer Trommel, wo das Trommelfell über den Körper der Trommel gespannt ist.

Und nun überlegen wir uns im nächsten Schritt, wie sich das ganze mit unserer Sonne verhält, die ein Gasball ist.

Die schwingende Sonne

Ich sagte schon, dass die Sonne brodelt. Gasblasen steigen auf und vergehen, wegen des Wärmeaustausches. Selbiges geschieht in der Küche im Kochtopf. Da die Ränder der blasen, auch Granulen genannt, kühler sind, leuchtet die Sonne dort stets etwas dunkler. Auch durch den Dopplereffekt kann man sehen, wenn sich eine Granule auf uns zu bewegt. Dann ist das Licht etwas ins blaue hinein gestaucht. Ins rote, wenn sich eine von uns entfernt, z. B. auflöst.
Die Frage ist nun, ob dieses Geblubber analog zum Weinglas auch den ganzen Stern zum Schwingen bringt.
Der Kochtopf wird ja auch vom kochenden Wasser in Schwingung versetzt und mit ihm meist auch der ganze Herd samt Arbeitsplatte.
Wie das ganze System schwingt, hängt beispielsweise davon ab, woraus die Küche gemacht ist, wie alles miteinander verbaut ist etc.
Der Schall pflanzt sich in unterschiedlichen Materialien und unterschiedlichen Aggregatzuständen (gasförmig, flüssig, fest) unterschiedlich schnell fort. Das machen Seismologen sich zu Nutze, um das innere der Erde zu erforschen. Plattentektonik, Vulkane erzeugen Schall. Das kann für Frühwarnsysteme unverzichtbar sein. Manchmal erzeugt man auch künstlich Schall, um ihn an anderer Stelle zu empfangen, um Rückschlüsse darüber zu erlangen, ob er beispielsweise durch eine Gasblase oder eine Flüssigkeit gegangen ist.

Das geht so natürlich bei der Vermessung unserer Sonne nicht. Dennoch lohnt es sich, das ganze Geblubbere und Gewabere auf ihrer Oberfläche zu beobachten. Genau das tut die Astroseismologie. So fand man beispielsweise eine Schwingung des ganzen Sterns, die sich alle fünf Minuten wiederholt. Das bedeutet, dass die Sonne sich alle fünf Minuten mal etwas aufbläht, um anschließend wieder zu schrumpfen. Man hat auch noch andere Schwingungsmuster gefunden. In diesem Sinne verhält sich unsere Sonne, als wäre sie eine Art Gong. Angeschlagen wird er von den sich stets verändernden Granulen, die wie Regen auf einem Blechdach den ganzen Stern quasi zum “klingen” bringen.
Die Nasa hat das mal sonifiziert, wobei ich jetzt nicht weiß, ob sie den Fünf-Minuten-Rhythmus oder eine andere Eigenschwingung verwendet hat.

So klingt unsere Sonne

Die Materie an der Oberfläche der Sonne wird in erster Linie durch
die Granulation bewegt. Die in ihr aufsteigenden und absinkenden
Materieballen haben Durchmesser von etwa 1500 Kilometern. Das ist
ein Zehntel Prozent des Sonnendurchmessers. Der Doppler-Effekt
verrät uns ihre Geschwindigkeiten: diese liegen etwa bei einem Kilometer in der Sekunde. Innerhalb von Minuten lösen sie sich auf, um neuen Granulen Platz zu machen. Zu den Granulen kommen noch die Supergranulen, langsamer in ihrer Bewegung, doch größer und beständiger.

Lange schon weiß man, dass es Sterne gibt, die sich innerhalb von Tagen aufblähen und wieder zusammen ziehen. Man weiß auch, dass Sterne verschiedener Masse, alters und Lebensstadium unterschiedlich schwingen und sich deutlich in ihrer Bildung von Granulen unterscheiden.

Man könnte noch sehr viel mehr über die Astroseismologie schreiben.
Ich habe hier alles natürlich nur sehr vereinfacht darstellen können, ansonsten wäre der Artikel ein Buch geworden.

Jetzt hoffe ich, dass ihr die Faszination mit mir teilt, dass die Sonne in einem gewissen Sinne quasi ein Gong ist.

Und damit verabschiede ich mich für heute.
Es grüßt euch
euer Gerhard.