Saturn und seine Mission


Seid herzlich gegrüßt,

Und wer sich jetzt wundert, wieso der Blindnerd mit dieser alten längst beendeten Cassini-Huygens-Mission daher kommt, der oder sie hat natürlich Recht.
Beim Stöbern in alten Mails habe ich den Text aus der Zeit vor dem Blog gefunden.
Die Mission und mein Text dazu ist mir zu wertvoll, als dass er eventuell verloren geht, und außerdem möchte ich ihn gerne auch hier auf dem Blog teilen.

Viele können sich noch erinnern, dass am 15.09.2017 die Mission Cassini-Huygens final beendet wurde, indem diese kontrolliert in den Saturn stürzte und in dessen Atmosphäre dann verglühte.
Da kommt mir so ne Frage. Hat ein Gasplanet überhaupt ne Atmosphäre in dem sinne, wenn er doch, bis auf einen kleinen Kern selbst aus Gas besteht?
Ja, und diese Frage hat mir damals mein Freund, der @modellansatz, beantwortet, der schon in der Vorgänger-Mailingliste vor dem Blog mit gelesen hatte.
Er schrieb:
die angegebene „Größe“ von Gasplaneten bzw. die Bezeichnung der Höhe 0 bezieht sich auf die Höhe, wo das Gas einen Druck von etwa 1bar hat.
Wiki sagt dazu: „Das Fehlen einer sichtbaren, festen Oberfläche macht es zunächst schwierig, die Radien bzw. Durchmesser von Gasplaneten anzugeben. Wegen der nach innen kontinuierlich zunehmenden Dichte kann man aber jene Höhe berechnen, in der der Gasdruck gerade so hoch ist wie der Luftdruck, der an der Erdoberfläche herrscht (auf Meeresniveau 1 atm oder 1013 mbar).“
Ob Gasplaneten einen festen bzw. flüssigen Kern haben ist unklar, da ab sehr hohen Drücken die Aggregatzustände wegen Superkritikalität nicht mehr unterscheidbar sind.
Sind Druck und Temperatur hoch genug, wird irgendwann der sogenannte kritische Punkt überschritten. Der Unterschied zwischen “flüssig” und “gasförmig” hört dann auf zu existieren und man nennt diesen Zustand dann “superkritisch”. Bei Jupiter (und anderen Gasplaneten) ist genau das der Fall: Weiter außen, wo Temperatur und Druck noch niedrig sind, ist der Wasserstoff noch gasförmig. Da aber weiter innen der kritische Punkt überschritten wird, gehen auch die gasförmige und die flüssige Phase kontinuierlich ineinander über und es gibt keine klar definierte Grenzfläche“

Wie auch immer.
Diese Mission war so erfolgreich, dass man sie würdigen sollte. Von der Planung, zum Start, über die Ankunft am Saturn, der Durchführung der Mission bis zum Ende sind um 30 Jahre vergangen. Somit hängen Lebenswerke vieler Wissenschaftlergenerationen und Experten dran.

Noch nie konnte ich an einer Mission derart partizipieren, wie bei Cassini-Huygens. Grund dafür ist einfach, dass es Podcasts dazu gab. Damit kann man derlei erleben, mitfiebern und naja, auch etwas mit traurig sein, wenn es dann zuende geht. Es ist nicht zu ermessen, wie wertvoll das Medium Podcast für mich als Zugang zu Bildung und Wissenschaft, mit den Jahren geworden ist.

Ich werde die Mission kurz einführen und dann habe ich einiges Audio- Video- und Textmaterial zusammengestellt. Das kann dann jeder nach bedarf lesen, hören und vertiefen.

Und es geht los:

Einführung

Cassini-Huygens ist der Name einer Mission zweier Raumsonden zur Erforschung des Planeten Saturn und seiner Monde. Bei Cassini handelt es sich um einen Orbiter, der im Auftrag der NASA vom Jet Propulsion Laboratory gebaut wurde, um den Saturn, seine Ringe und Monde von einer Umlaufbahn um den Planeten aus zu untersuchen. Huygens (konstruiert von Aérospatiale im Auftrag der ESA) wurde als Lander konzipiert, um von Cassini abgekoppelt auf dem Mond Titan zu landen und diesen mittels direkter Messungen in der Atmosphäre und auf der Oberfläche zu erforschen, was aufgrund der dichten und schwer zu durchdringenden Atmosphäre des Mondes nicht von einer Umlaufbahn aus möglich ist. An der Mission ist auch die italienische Raumfahrtagentur ASI beteiligt.
Die beiden aneinander gekoppelten Sonden wurden am 15. Oktober 1997 vom Launch Complex 40 auf Cape Canaveral mit einer Titan-IVB-Rakete gestartet. Am 1. Juli 2004 schwenkte Cassini in die Umlaufbahn um den Saturn ein, und am 14. Januar 2005 landete Huygens drei Wochen nach der Trennung von Cassini auf Titan und sandte 72 Minuten lang Daten, die das Verständnis über den Mond deutlich verbesserten.
Auch der Cassini-Orbiter hat mit seiner umfangreichen Ausstattung an wissenschaftlichen Instrumenten viele neue, teils revolutionäre Erkenntnisse in Bezug auf Saturn und seine Monde geliefert. Die Mission wurde daher mehrfach verlängert,
Nun ist das Ende aber unausweichlich. Der Treibstofftank ist nahezu leer, so dass der Treibstoff nur noch für das letzte finale Manöver reicht…

Namensgebung

Zur Namensgebung sagt Wiki:
Giovanni Domenico Cassini (* 8. Juni 1625 in Perinaldo, Grafschaft Nizza, Herzogtum Savoyen; † 14. September 1712 in Paris) war ein italienischer Astronom und Mathematiker, der in Bologna Ansehen erwarb, 1669 an an die Académie Royale des Sciences in Paris berufen wurde, 1673 die französische Staatsbürgerschaft annahm und seitdem meist Jean-Dominique Cassini genannt wurde. Er wurde zum Begründer einer Dynastie von Astronomen, die bis zur Französischen Revolution die Direktoren des Pariser Observatoriums stellten, weshalb er auch mit Cassini I bezeichnet wird.
Er ermittelte u. A. die Neigung der Erdbahn, bestimmte die Eigendrehung des Jupiter anhand des sog. Roten Flecks und bestimmte den Durchmesser der Sonne.
Ruhm erlangte er auch durch die erstellung sehr genauer Ephemeriden, die für die Geodäsie und die Seefahrt unverzichtbar waren.
Es ist aufregend über ihn zu lesen, denn er forschte im widersprüchlichen Spannungsfeld zwischen dem heliozentrischen – und dem geozentrischen Weltbild.
Christian Huygens, auch Christianus Hugenius, war ein niederländischer Astronom, Mathematiker und Physiker. Huygens gilt, obwohl er sich niemals der noch zu seinen Lebzeiten entwickelten Infinitesimalrechnung bediente, als einer der führenden Mathematiker und Physiker des 17. Jahrhunderts. Er ist der Begründer der Wellentheorie des Lichts, formulierte in seinen Untersuchungen zum elastischen Stoß ein Relativitätsprinzip und konstruierte die ersten Pendeluhren. Mit von ihm verbesserten Teleskopen gelangen ihm wichtige astronomische Entdeckungen.

Das soll es als Einführung auch von mir gewesen sein. In der kleinen Linksammlung kommen u. A. Experten zu Wort, die die Mission, ihren Verlauf und die Hintergründe viel besser erklären können, als ich. Ich führe jeden Link kurz ein, damit man weiß, worum es geht und, was vor allem Screenreader-Nutzer erwartet, wenn man darauf klickt.

Macht euch darauf gefasst, dass die Audio-Podcasts etwas länglich sein können. Erfahrene Podcasthörer wissen, dass es vor allem bei Wissenschaft-Podcasts noch länger gehen kann. Ich höre die Dinger meist mit doppelter Geschwindigkeit.
Haltet durch. Es lohnt sich und öffnet für diejenigen, die das noch nie gemacht haben, eine ganz neue Welt.

Podcasts und mehr

Das DLR gab gemeinsam mit der ESA einen deutschsprachigen Podcast zu Astronomie und Raumfahrt heraus. In Folge 30 dieses Podcasts („Raumzeit“ von Tim Pritloge) wird über diese Mission ausführlich gesprochen. Im Rahmen dieser Folge wird auch das Geräusch abgespielt, das der Lander Huygens erzeugt, als er durch die dicke Atmosphäre des Saturnmondes Titan absteigt. Er hatte ein Mikrofon an Bord, weil man sich erhoffte, eventuell Gewittertätigkeit zu hören. Dieser Fahrtwind ist definitiv ein Wind, der nicht von der Erde kommt. Es klingt so unwirklich und verblüffend. Dieses Geräusch ist eines der wertvollsten Weltraumgeräusche in meiner Sammlung. Oft wird der Saturnmond Titan mit der Erde verglichen. Die Rolle des Wassers übernimmt dort flüssiges Methan. Es gibt Flüsse, Seen und auch sonst so einiges, das auf der Erde durch fließendes Wasser entstand. Für Leben ist es aber leider zu kalt auf Titan.
Der Podcast wird gemeinsam mit dem Planetarium Zeiss Jena fortgeführt.Hier nun der Sound dieses ganz erstaunlichen Fahrtwindes. Er wird mit einer Engl. Erklärung eingeführt. Am Anfang ist eine relativ lange Pause, also nicht wundern, wenn es nicht gleich startet.

Fahrtwid Titan

Und hier folgt Folge 30 von Raumzeit.
RZ30 Cassini-Huygens

Folge 32 dieses Podcasts beschäftigt sich dann allgemein mit dem Saturnsystem.
Rz32 Das Saturnsystem

Mehrfach musste Cassini durch das Ringsystem des Saturn fliegen. Die Ringe des Saturn sind nicht geschlossen. Es gibt Lücken in die man fliegen kann, wenn man sie trifft. Eine ist nach Cassini benannt.
Außerdem gibt es zwischen den Ringen zonen, in denen fast keine Ringteilchen zu finden sind. Man dachte, es wären mehr Teilchen dort anzutreffen. Ein Glück, dass nicht, denn ansonsten hätten die Cassini zerstören können.
Um die Sonde zu schützen, flog man mit der Antenne voran durch die Ringe. die Teilchen, die auf die Antenne, die auch als Schutzschild ausgelegt war, treffen, kann man hier hören. Man hört hauptsächlich das Rauschen des Instruments. Die wenigen Teilchen, machen sich durch ein Knack-Geräusch im Sound bemerkbar. Man muss sich schon etwas rein hören.
Ein Geräusch, das von so weit her kommt, darf sich auch erlauben, schwer hörbar zu sein.
Und so klingt es.

Und

Hier
noch eine lesenswerte Erklärung des Sounds in Englischer Sprache.

Die Zeitschrift „Abenteuer Astronomie“ verteilte auf Twitter einen Link zu einem Fahrplan der letzten Stunden.
Zum Fahrplan

Ach, dafällt mir noch was zu Cassini und der Lichtgeschwindigkeit ein
Wir erleben Licht, als benötigte es keine Zeit zu seiner Ausbreitung.
Im Jahr 1676 stellte Ole Rømer, ein Astronom und Mitarbeiter bei Cassini , fest, dass die Zeiten zu welchen der Mond IO seinen Planeten, Jupiter, verdeckt werden sollte, je nach der Position der Erde zum Jupiter bis zu mehreren Minuten variiert.
Daraus schloss er, dass das Licht eine endliche Geschwindigkeit haben muss,
wenn die Verzögerungen vom Abstand zwischen Jupiter und der Erde abhängig sind.,
Der von Roemer ermittelte Wert für die Geschwindigkeit des Lichtes wich nur um 30 % vom tatsächlichen Wert ab. Die Messmethoden zur Bestimmung der Lichtgeschwindigkeit wurden in der Folgezeit immer genauer.
Cassini stimmte zunächst mit Roemer überein, verfiel dann aber doch wieder der Aristotelischen Vorstellung der zeitlosen Lichtausbreitung und des vorhandenseins eines raumfüllenden Äthers.
Ich schrieb darüber im Artikel „Nichts ist auch was – die Lehre von der Leere“.

Abschiedsvideo:
Das ist ein Deutsches Video von dem ich auch vorhin nur mal kurz das Intro angeschaut hab.

Hier ein kostenloses Ebook der Nasa mit vielen Saturn-Bildern: Keine Ahnung, wie zugänglich das ist, aber für unsere Sehlinge sicher spannend.

Beschreibung des Aussehens der Sonden:
Was jetzt hier noch fehlt, ist eine textuelle Beschreibung der Sonden. In RZ30 ist zwar eine, aber dann muss man tief in die Folge reinhören.
Vielleicht hat jemand sehendes, der hier mitliest Lust, uns das Ding zu beschreiben?

Apropos Beschreibung. Das ist es eben auch, was Podcasts für blinde Menschen so unglaublich interessant machen. Für die Sehenden gibt es vielleicht in den Shownotes Links und Bilder, aber beim Hören eben auch nicht. Deshalb muss alles beschrieben und erklärt werden. Wie im Radio.

Und ganz zum Schluss kommt doch tatsächlich noch ein Abschiedslied auf Cassini-Huygens.
Zuerst eine kleine Geschichte dazu, die mich sehr gefreut hat.
Zunächst teilte Spektrum der Wissenschaft, @spektrum einen Link über twitter, der mich zu einer Seite schickte, die nicht ganz barrierefrei war. Ich fand den Play-Button einfach nicht.
Flash-Kram halt.
Ich schrieb zurück, dass ich das Abschiedslied leider nicht anhören könne, weil ich die Barriere mit dem Abspielknopf nicht überwinde.
Kurz drauf kam dann ein Link zu Youtube, den ich hier mit euch teile. Damit gings dann.
Danke @Spektrum, dass ihr eine barrierefreie oder barrierearme Lösung gefunden habt. Jetzt kann ich auch bei dem Song mitmachen und mithören und mitfeiern und mittrauern…
Es war mir doch gleich klar, dass irgendwer etwas musikalisches zu diesem Anlass bringen wird.
Und bei so viel Italien in der Mission ist es auch nicht verwunderlich, dass das Stück in Italienischer Opern-Tradition erklingt, aber hört selbst.

A farewell to @CassiniSaturn, in the style @RobertPicardo sings best: opera!
Start the Song here.

Jetzt wünsche ich euch viel Freude und Anteilnahme am Ende dieser unglaublichen Mission.

Die Sonne tönt – Klingel oder Orgelpfeife


Liebe Leserinnen und Leser,

Viele von uns haben es noch in der Schule gelernt:
„Die Sonne tönt nach alter Weise,
in Bruder Sphären Wettgesang.
Und ihre vorgeschrieb’ne Reise,
vollendet sie mit Donnergang…“
Goethes Prolog im Himmel aus Faust I.

Mit der eher esoterischen Idee von Sonnenton, Erdenton und klingender Himmelsmechanik, haben wir uns in „Das Ohr am Teleskop“ und „klingende Planetenbahnen“ beschäftigt.
Schon klar, niemand kann die Sonne hören. Schon alleine deshalb nicht, weil 149 Mio Kilometer Vakuum zwischen ihr und uns liegen.

Es gibt aber in der Tat Gründe, sich damit zu beschäftigen, ob die Sonne klingt und schwingt, wie Schallwellen sich im Stern fortpflanzen, ob sie eher Glocke oder Orgelpfeife ist und vieles mehr.
Der Hauptgrund ist das Problem, dass wir nicht in die Sonne hinein sehen können. Was wir von ihr sehen, ist ihre Photosphäre, die alles überstrahlt und keinen Blick nach innen zulässt. Ich habe schon im vorigen Artikel erwähnt, dass uns ein Neutrino-Teleskop den Blick nach innen gewähren würde. Dieses wird es aber aufgrund der Eigenschaft, dass Neutrinos quasi mit nichts wechselwirken, nie geben. Mit Radio-Teleskopen kann man je nach dem, welche Wellenlänge man betrachtet, ein bisschen unter die Oberfläche schauen, aber auch nicht wirklich in den Stern hinein.

Vieles, was wir über das Innere von Sternen, und was dort passiert wissen, kommt aus Simulationen am Computer. Man spielt beispielsweise mit den Verhältnissen von Wasserstoff, Helium Metallen und Massen herum, und passt die Modelle an, bis sie das tun, was wir auch beobachten.
Mit „Metallen“ meinen Astronomen alle Elemente, die schwerer als Wasserstoff und Helium sind, weil die Hauptsache, die in einem Stern passiert, die Fusion von Wasserstoff zu Helium ist. Somit reduzieren Astronomen häufig den Rest der Chemie auf „Metalle“.

Und an dieser Stelle wird die Sache etwas absurd. Wir beobachten, dass die Sonne brodelt. Wir sehen, dass die Sonne schwingt. Wir hören leider nicht, wie sie klingt, obwohl der Schall im Stern enorm sein muss und neben der Konvektion für das Wallen, Brodeln, pulsieren und Schwingen des Sterns verantwortlich ist.
Die Sonne ist ein einziger riesiger Resonator.
Die Schwingungsmuster an ihrer Oberfläche verraten den Sonnenforschern viel über das Innere der Sonne, z. B. was sich in ihren Schichten tut, wie innere Schichten rotieren, man kann überprüfen, ob die Modelle des inneren der Sonne, z. B. Temperatur etc. ungefähr passen, und vieles mehr.
Heute greifen wir nur ein Klang-Phänomen heraus. Es ist gut möglich, dass hier noch weitere Artikel über die Astroseismologie folgen werden.

Schwingende Saiten

Im eindimensionalen, ist eine gespannte Saite das einfachste, was man sich schwingend und klingend vorstellen kann. Sie ist gespannt an zwei festen Punkten aufgehängt und schwingt, wenn man sie anspielt. An den Aufhängungen nicht, aber in der Mitte schwingt sie am meisten. Bei tiefen Instrumenten, z. B. bei einem E-Bass kann man das sogar sehen. Die Saite wird durch ihre relativ große Amplitude verwaschen im Bild. Teilt man nun die Saite in der Mitte, so erhält man die doppelte Frequenz. Bei Flageolett-Tönen, wo man die Mitte der Saite nicht ganz drückt, sondern nur leicht abdempft, schwingt dann die linke Hälfte stets gegenläufig zur rechten. Der Flageolett-Punkt schwingt, wie die beiden äußeren Aufhängungen der Saite nicht. Man nennt das auch Knoten.
Wir haben also die Aufhängungen der Saite und dazwischen in der Mitte einen Knoten. Links und Rechts davon jeweils einen Bauch. Musikalisch erklingt die Oktave. Diese schwingt doppelt so schnell, wie der Grundton der Seite.
Teilt man die Saite in Drittel,
bekommt man die Quinte, dann die nächste Oktave, die Quarte usw.
Die hier entstehenden übereinander geschichteten Töne nennt man in der Physik die Harmonischen.
Spielt man ein Instrument, so erklingen immer einige dieser Harmonischen gleichzeitig. Dieser Zusammenklang macht die Charakteristik, macht den Klang, macht den Sound des Instruments aus.
Im Grunde ist die Saite durch ihre Schwingung und ihre Obertöne in der Zeitlupe dann auch wellig, bzw. gekräuselt.

Schwingende Flächen

Wir gehen nun einen Schritt weiter in unserer akustisch-visuellen Beobachtung.
Es gibt aus dem 17. Jahrhundert einen interessanten Versuch des Physikers Chladni
Ernst Florens Friedrich Chladni, der 1787 die Schrift Entdeckungen über die Theorie des Klanges veröffentlichte, tat folgendes:
Er nahm eine Glasscheibe und spannte diese wagerecht an einer Ecke in eine Klemme. Dann bestreute er sie mit Sägespänen. Nun strich er den Rand der Scheibe mit einem Geigenbogen an, um sie in Schwingung zu versetzen. Die Vibration brachten nun die Sägespäne zum Hüpfen. Nun ist es aber so, dass es nun auch auf der Fläche Knoten gibt, die nicht schwingen. Andere Orte schwingen so stark, dass die Späne quasi abgeschüttelt werden. Es entstehen nun Muster aus Orten, wo sich die Späne sammeln, und Orten, wo nachher keine mehr sind, weil sie vertrieben wurden.
Je nach dem, wo und wie Kladny die Scheibe mit seinem Bogen anstrich, änderten sich diese Muster. In manchen Erlebnisparks, z. in Schloss Freudenberg, ist dieser Versuch zum selbst ausprobieren, aufgebaut.
Im Gegensatz zur Welle einer Saite, hat man nun schon eine gekräuselte Oberfläche auf der zweidimensionalen Scheibe.
Auf ein Musikinstrument übertragen, entspricht diese Situation z. B. auch einer Trommel, wo das Trommelfell über den Körper der Trommel gespannt ist.

Und nun überlegen wir uns im nächsten Schritt, wie sich das ganze mit unserer Sonne verhält, die ein Gasball ist.

Die schwingende Sonne

Ich sagte schon, dass die Sonne brodelt. Gasblasen steigen auf und vergehen, wegen des Wärmeaustausches. Selbiges geschieht in der Küche im Kochtopf. Da die Ränder der blasen, auch Granulen genannt, kühler sind, leuchtet die Sonne dort stets etwas dunkler. Auch durch den Dopplereffekt kann man sehen, wenn sich eine Granule auf uns zu bewegt. Dann ist das Licht etwas ins blaue hinein gestaucht. Ins rote, wenn sich eine von uns entfernt, z. B. auflöst.
Die Frage ist nun, ob dieses Geblubber analog zum Weinglas auch den ganzen Stern zum Schwingen bringt.
Der Kochtopf wird ja auch vom kochenden Wasser in Schwingung versetzt und mit ihm meist auch der ganze Herd samt Arbeitsplatte.
Manche Wasserkocher beginnen regelrecht zu singen mit Obertönen etc, wenn das Wasser langsam zu kochen beginnt.
Wie das ganze System schwingt, hängt beispielsweise davon ab, woraus die Küche gemacht ist, wie alles miteinander verbaut ist etc.
Der Schall pflanzt sich in unterschiedlichen Materialien und unterschiedlichen Aggregatzuständen (gasförmig, flüssig, fest) unterschiedlich schnell fort. Das machen Seismologen sich zu Nutze, um das innere der Erde zu erforschen. Plattentektonik, Vulkane erzeugen Schall. Das kann für Frühwarnsysteme unverzichtbar sein. Manchmal erzeugt man auch künstlich Schall, um ihn an anderer Stelle zu empfangen, um Rückschlüsse darüber zu erlangen, ob er beispielsweise durch eine Gasblase oder eine Flüssigkeit gegangen ist.

Das geht so natürlich bei der Vermessung unserer Sonne nicht. Dennoch lohnt es sich, das ganze Geblubbere und Gewabere auf ihrer Oberfläche zu beobachten. Genau das tut die Astroseismologie. So fand man beispielsweise eine Schwingung des ganzen Sterns, die sich alle fünf Minuten wiederholt. Das bedeutet, dass die Sonne sich alle fünf Minuten mal etwas aufbläht, um anschließend wieder zu schrumpfen. Man hat auch noch andere Schwingungsmuster gefunden. In diesem Sinne verhält sich unsere Sonne, als wäre sie eine Art Gong. Angeschlagen wird er von den sich stets verändernden Granulen, die wie Regen auf einem Blechdach den ganzen Stern quasi zum „klingen“ bringen.
Die Nasa hat das mal sonifiziert, wobei ich jetzt nicht weiß, ob sie den Fünf-Minuten-Rhythmus oder eine andere Eigenschwingung verwendet hat.

So klingt unsere Sonne

Die Materie an der Oberfläche der Sonne wird in erster Linie durch
die Granulation bewegt. Die in ihr aufsteigenden und absinkenden
Materieballen haben Durchmesser von etwa 1500 Kilometern. Das ist
ein Zehntel Prozent des Sonnendurchmessers. Der Doppler-Effekt
verrät uns ihre Geschwindigkeiten: diese liegen etwa bei einem Kilometer in der Sekunde. Innerhalb von Minuten lösen sie sich auf, um neuen Granulen Platz zu machen. Zu den Granulen kommen noch die Supergranulen, langsamer in ihrer Bewegung, doch größer und beständiger.

Lange schon weiß man, dass es Sterne gibt, die sich innerhalb von Tagen aufblähen und wieder zusammen ziehen. Man weiß auch, dass Sterne verschiedener Masse, alters und Lebensstadium unterschiedlich schwingen und sich deutlich in ihrer Bildung von Granulen unterscheiden.

Die Schallwellen in der Sonne verraten uns, wie unterschiedlich schnell sich einzelne Schichten bewegen. Erst tief in ihrem Innern dreht sie sich, wie ein starrer Körper, z. B. die Erde. Die anderen Schichten darüber laufen z. B. dieser Drehung voraus. Als Gasball kann die Sonne das so tun. Ganz erforscht und verstanden ist das aber alles bis heute noch nicht. Die neue Raumsonde, der Solar.Orbiter, wird uns hier sicherlich noch viel neue Erkenntnis verschaffen.

Man könnte noch sehr viel mehr über die Astroseismologie schreiben.
Ich habe hier alles natürlich nur sehr vereinfacht darstellen können, ansonsten wäre der Artikel ein Buch geworden.

Jetzt hoffe ich, dass ihr die Faszination mit mir teilt, dass die Sonne in einem gewissen Sinne quasi ein Gong ist.

Und damit verabschiede ich mich für heute.
Es grüßt euch
euer Gerhard.