Was ist der Supermond?

Seid herzlich gegrüßt,

da ist es wieder, das Medienereignis des “Supermondes”.

Was soll das überhaupt sein? Darum geht es in diesem Artikel.

Heute, 19.02.2019 um 16:54 ist Vollmond.
Sieben Stunden vorher, um 10:09, passiert der Mond seinen erdnahesten Punkt auf seiner Bahn.

Ja, Vollmond ist astronomisch gesehen nur ein Augenblick, weil der Mond auf seiner Bahn nicht stehen bleibt, um sich von uns feiern zu lassen, sondern weil er für uns unsichtbar sogleich wieder mit dem Abnehmen beginnt.
Wenn er heute also bei uns aufgeht, ist er genau gesehen, schon nicht mehr voll, und auch nicht mehr genau im Perigäum.
Das bedeutet “Supermond”, aber alles der Reihe nach:

Es dürfte niemandem entgangen sein, dass der Supermond immer nur bei Vollmond auftritt. Aber längst nicht jeder Vollmond ist ein Supermond. Der Mond bewegt sich ein mal pro Monat auf seiner elliptischen Bahn um die Erde. Das bedeutet, dass der Mond der Erde einmal pro Monat seinen erdnächsten – und einmal seinen erdfernsten Punkt durchläuft. Die Erde steht in einem der beiden Brennpunkte der Ellipse.

Die Zeitspanne zwischen zweier Durchläufe des Perigäums, nennt man den anomalistischen Monat.
Er spielt in unserem Jahreslauf keine Rolle und wird von Astronomen benötigt, um in Finsternisberechnungen einzufließen.

Die Zeitspanne zwischen zweier Neumonden, nennen wir den synodischen Monat.
Dieser bestimmt sich von Neumond zu Neumond und dauert im Mittel 29,53… Tage.
Er spielt für uns lediglich im Kirchenjahr eine Rolle, indem man mit ihm den Ostertag berechnet, aus welchem sich einige weitere Feiertage ableiten, siehe
Osterbeitrag 2018
Wenn wir Monat sagen, so meinen wir meist unsere kalendarische Einteilung des Erdumlaufes in zwölf Teile um die Sonne. Diese Zeitspanne hat mit dem Mond nichts zu tun, und mit den zwölf Sternzeichen übrigens längst auch nicht mehr.

Nun kann man sich fragen, wieso denn dann nicht jeder Vollmond ein Supermond ist. Kurz gesagt, weil der Mond sich nicht bei jedem Vollmond auf seinem erdnahsten Punkt (Perigäum) befindet. Das liegt daran, dass der synodische Monat nicht gleich lang ist, wie der anomalistische Monat.

Multipliziert man beide Umlaufzeiten und rechnet man sie auf das Datum eines Supermond-Ereignisses, dann sollte man wieder einen Supermond-Tag erwischen, aber es gibt dazwischen noch weitere. So selten sind die gar nicht und kommen quasi jährlich, manchmal sogar mehrfach vor.

Ganz nebenbei; anomalistische Monate gibt es bei allen Planeten, die Monde besitzen, weil auch diese sich auf elliptischen Umlaufbahnen um ihre Planeten bewegen.

Also ist Die Tatsache, dass die Zeitspannen zwischen Neumond und Neumond und Perigäum-Durchgang zu Perigäum-Durchgang nicht gleich lang sind, dafür hauptverantwortlich, dass nicht jeder Vollmond ein Supermond sein kann.
Außerdem bewegt sich das Erd-Mond-System im Jahreslauf um die Sonne, so dass sich der Winkel des Sonnenlichtes täglich um etwa ein Grad nach links verschiebt. Das verlängert den astronomischen Tageslauf etwas über die Zeitdauer einer Erdumdrehung, hinaus.

Wie “super” so ein Supermond sein kann, hängt auch stark davon ab, wo sich der Beobachter auf der Erde befindet.
Der Mond läuft nämlich nicht um den Äquator herum. Seine Bahn läuft fünf Grad gegen die Ekliptik geneigt. Die Ekliptik ist die Ebene, in welcher alle Planeten umlaufen.
Somit befindet er sich die Hälfte des Monats etwas oberhalb und in der anderen Hälfte, etwas unterhalb der Ekliptik.
Die Schnittpunkte zwischen der Mondbahn und der Ekliptik, nennt man Knotenpunkte.
Die daraus sich ergebende Periode nennt man dann den dragonistischen Monat.
Und dieser dragonistische Monat ist zeitlich auch wieder etwas unterschiedlich zu den beiden anderen Monats-Definitionen.

Man kann den Monat auch noch über andere Umläufe definieren. Startet man die Umlaufbahn des Mondes bei einem Stern, und wartet, bis er wieder dort ist, so erhält man z. B. den siderischen Monat.

Kommen wir zurück zu unserem Drachenmonat, der sich über die Knotenpunkte definiert.
Dieser ist dafür verantwortlich, dass nicht jeder Vollmond eine Mondfinsternis und nicht jeder Neumond eine Sonnenfinsternis ist.

Und was hat das nun mit unserem Supermond zu tun? Kommt sofort.

Apropos Sonnenfinsternis. Es gibt auch Super-Neumonde. Davon spricht nur niemand, weil man eben außer bei Sonnenfinsternissen den Neumond nicht sehen kann.

Und hier schließt sich der Kreis zum Supermond:
Nicht immer gelingt es der Mondscheibe, die komplette Sonne bei einer Finsternis abzudecken. Und ich meine jetzt keine partielle Abdeckung, wo der Mond nur die Sonne anbeißt. Diese Erscheinung hat mit dem Beobachtungspunkt des Betrachters im Bezug zum Verlauf der Finsternis zu tun und nichts mit Perigäum oder Aphogäum.
Ich meine eine ringförmige Sonnenfinsternis.
Bei einem derartigen Ereignis ist der Mond auf seiner Bahn erdfern, so dass der Mond aus Sicht der Erde etwas kleiner wirkt.
Ist nun die Erde in ihrem Jahreslauf gerade sonnennah (Perihel), z. B. im Januar, so erscheint die Sonne etwas größer.

Diese Größenunterschiede sind mit bloßem Auge und ohne Messhilfe nicht wahrnehmbar, aber wenn bei einer derartigen Konstellation, Erde im Perihel und Mond im Aphogäum, zufällig eine Sonnenfinsternis stattfindet, vermag der Mondschatten lediglich ein Loch in der Sonnenscheibe zu erzeugen und ein gleißend heller Rand bleibt unverdeckt.

Bei Mondfinsternissen sind diese Dinge nicht von Belang, weil hier der Erdschatten alles dominiert. Im Gegensatz zum Mond ist die Erde so groß, dass sie bei einer Mondfinsternis den Mond immer locker abdecken kann. Höchstens auf die Dauer der Mofi könnte sich Aphogäum oder Perigäum vielleicht auswirken. Das weiß ich aber momentan nicht genau. Bei Erde und Sonne wirkt sich zumindest Sonnennähe im Winter auf der Nordhalbkugel dahingehend positiv aus, dass der Sommer wenige Tage länger ist, weil sich die Erde sonnenfern langsamer auf ihrer Bahn bewegt.

Also. Totale Sonnenfinsternisse können Superneumonde sein…
Bei allen Arten von Vollmonden ist die Distanz Erde-Mond nicht von Bedeutung.
Will sagen, mit dem bloßen Auge ist ein sog. “Supermond” nicht von einem normalen Vollmond zu unterscheiden, denn dieser Unterschied beträgt nur ungefähr 13 %. Das sieht bei so einem kleinen Mondscheibchen und ohne Vergleichsobjekt, niemand.

Steigt der Vollmond am Horizont auf, wird er oft als übergroß empfunden. Das ist ein Phänomen, dass an dieser Stelle irgendwie unser Gehirn ausgetrickst wird. Ganz erforscht ist das Phänomen noch nicht, aber dass es in den Medien den Supermond noch superlativer macht, ist klar.

Und nein. Die Schwankung der Distanz Erde-Mond, zeigt auch keine erkennbare Wirkung auf Ebbe und Flut. Das kann man mit einfachster newtonschen Mechanik und dem Abstand-Quadrat-Gesetz, Schulphysik also, ausrechnen, dass hier keine plötzlichen Superkräfte auftreten, die uns ob positiv oder negativ, beeinflussen könnten.

Ich möchte an dieser Stelle mondfühligen Menschen diese Schlafstörung nicht absprechen. Ich kenne genügend sehr seriöse Menschen, die unter diesem Phänomen, leiden, bzw. davon sprechen.
Die Himmelsmechanik ist daran aber erwiesener maßen nicht schuld.

Und zum Schluss noch.
Ich liebe unseren Supermond, denn der Mond ist immer super.
Hätten wir den Mond nicht, so würde unsere Erdachse unkontrolliert ihre Stellung verändern. Das bedeutet, dass wir längst nicht so regelmäßige Jahreszeiten hätten. “Danke Mond, dass Du unsere Erdachse irgendwie gerade hältst.”

Ebbe und Flut sind ganz wichtig für unsere Meere und unser Klima. “Danke Mond, dass Du jeden Tag Kraftsport mit unserem Wasser treibst”.

und “Danke, Mond, dass Du, indem Du manchmal die Sonne abdeckst, uns die Schönheiten der Korona zeigst, und dass wir dadurch wissen, dass die Masse der Sterne Licht ablenken kann.”
“Danke auch, dass wir in Dir ein Licht in der Nacht haben” Hätte ich als Blinder und durch unsere lichtverschmutzten Städte fast vergessen.

Fazit: “Supermond ist super, Mond.”
Und weil ihr bis hier hin ausgehalten habt, obwohl der Artikel etwas länglich war, bekommt ihr hier noch ein Video mit Mondbildern für die Sehlinge und schöner Klaviermusik, bei der man auch über das gelesene nachdenken kann, wenn man die Mondbilder nicht sieht.
Zum Mondvideo
Jetzt wünsche ich uns heute Abend einen schönen Blick auf den Supermond.

Klingende Planetenbahnen

Seid herzlichst gegrüßt,
Vor einigen Artikeln startete ich die Serie “Mit dem Ohr am Teleskop”.
Mit dem Ohr am Teleskop

Im ersten Teil befassten wir uns mit der Weltharmonik. Die alten Pythagoräer glaubten, dass sich die Planetenbewegungen in harmonische Gesetze erklären lassen. Ähnlich der Intervalle, aus denen unsere Musik besteht. Noch Johannes Kepler versuchte, diese Weltharmonik zu finden und musste dann feststellen, dass sich die Planetenbahnen nicht ganz so harmonisch verhielten, wie er gerne gehabt hätte.

Trotz allem, lebt die Idee der Planetenmusik weiter und fasziniert bis heute.

Nun greife ich ganz tief in meine Kiste, und ziehe einen meiner ersten Texte, den ich jemals zu Astronomie schrieb, heraus.

Wer mal auf einem meiner Workshops oder Vorträge war, wird sich daran erinnern, dass wir uns die verklanglichten Planetenbahnen anhörten. Ich lernte diese Klänge in den Sendungen von Joachim Ernst Behrendt, “Nada Brama” und “Das Ohr ist der Weg”, vor fast dreißig Jahren, kennen.

Glücklicherweise sind diese Klänge auch öffentlich im Internet zu finden, so dass ich sie hier präsentieren kann, ohne Urheberrechte zu verletzen.

Bevor es los geht, werde ich einige allgemeine Dinge zur Verklanglichung, auch sonifizierung, von Daten erleutern, damit die Idee klar wird, die hinter all dem steckt.

Jeder, der nach Noten musiziert, verklanglicht Daten. Die Notenschrift ist im Grunde eine graphische Darstellung von Intervallen und Tonlängen und eventuell noch Lautstärke und Tempo.
Was auf dem Notenblatt steht, wird Musik, indem der Inhalt interprätiert und in ein Musikinstrument gegeben wird.
Die Noten selbst sind nicht die Musik, sondern höchstens die Idee oder die Spielanweisung.
Es gibt auch nicht nur eine graphische Notation für Musik. Nun kann man sich überlegen, auch andere Daten zu verklanglichen.

Hier ein einfaches Beispielvon Sonifizierung:
Kein Fernsehfilm, in welchem eine Szene auf einer Intensivstation vorkommt, wäre denkbar, ohne das rhythmische Pipsen des Herz-Sensors zu hören. Das ist die Verklanglichung des Herzschlages, oder Pulses des Patienten.
In diesem Fall dient der Klang dazu, auch ohne Sichtkontakt zu wissen, wie es um den Patienten steht. Das Tempo der Tonfolge zeigt den Pulsschlag an, der dann vom Arzt verstanden werden muss.
Der Pipston könnte ebenso ein Trommelschlag oder Knacken sein.

Viele Sonifizierungen beziehen noch die Tonhöhe mit ein.
Das Variometer eines Segelflugzeuges zeigt via ansteigender oder fallender Töne an, ob sich das Flugzeug im Steig- oder Sinkflug befindet.
Segelflieger mögen mir hier verzeihen, dass ich etwas ungenau bin, aber für den Moment reicht es so.

Somit haben wir also als ersten Parameter die Zeit und als zweiten Parameter die Tonhöhe.
Damit kann man alle zweidimensionalen Daten verklanglichen, wenn man die Tonintervalle entsprechend klug wählt.

Zu jedem Zeitpunkt X, lässt sich ein Wert Y ablesen, der mittels eines Tones ausgegeben wird.
Ändert sich die Tonhöhe nicht, bedeutet das, dass y immer gleich bleibt. Wir haben eine Parallele zur X-Achse.

Steigt der Ton gleichmäßig an, könnte es sich um eine steigende Gerade handeln.

Hören wir eine auf- und absteigende Tonfolge, ist es vielleicht ein Sinus.

Eine Parabel Ax^2 +bx +c, mit a>0,

wäre dann ein zunächst sehr schnell abfallender Ton, dessen Fallen immer langsamer wird. Nach dem Durchgang durch ihr Minimum, würde der Ton zunächst langsam, dann aber immer schneller ansteigen, bis er vermutlich den Hörbereich verlässt.
Mein Farberkennungsgerät zeigt Lichtintensitäten mittels Tonhöhen an.

Ein derartig zweidimensionales Klangsystem reicht schon aus, um die Bahnen unserer Planeten zu verklanglichen.
Johannes Kepler schrieb ein Buch darüber, wie man die Bahnen der Planeten sich musikalisch vorstellen kann. Er legte die Umlaufbahn des Saturn auf das tiefe G, etwas jenseits des linken Endes einer Piano-Tastatur und verteilte dann die Intervalle der anderen Umlaufbahnen auf die Tastatur.

Trägt man die Geschwindigkeiten der Planeten auf der Y-Achse ab und den zeitlichen Verlauf auf X, dann erhält man eine regelmäßige Welle für jeden Planeten. Befindet sich der Planet nahe der Sonne auf seinem Perihel, so bewegt er sich etwas rascher. An seinem sonnenfernsten Punkt, dem Aphel, ist er am langsamsten. Dazwischen sind dann alle anderen Werte. Inhaltlich beschreibt das Kepler in seinem zweiten Gesetz.

Es besagt, dass wenn man einen Fahrstrahl vom Stern zum Planeten zieht, dieser in gleicher Zeit stets gleich große Flächen überstreicht.

Daraus folgt, dass der Planet in Sonnennähe etwas schneller sein muss, als bei seinem Aphel. Wie stark diese Geschwindigkeit variiert, hängt von der Exzentrizität der Umlaufbahn ab.

Das erste Keplersche Gesetz besagt, dass sich Planeten auf elliptischen und nicht auf Kreisbahnen bewegen. Der Kreis ist ein Sonderfall einer Ellipse, bei dem beide Brennpunkte auf den selben Punkt fallen.

Ordnet man nun den Umlaufgeschwindigkeiten Töne nach der Idee Keplers zu, passiert folgendes.
Der Ton variiert um so mehr, desto elliptischer die Bahn des Planeten ist.
Merkurs Tonkurve variiert sehr stark, weil er eine sehr exzentrische Bahn hat.
Venus und Erde dagegen variieren nur wenig, da ihre Bahnen fast kreisförmig sind. Dieses Intervall, das zwischen der kleinen und der großen sechsten variiert, schwankt zwischen Dur und Moll.
Kepler nannte es daher das ewige Lied des Elends der Erde.

Mars variiert wegen seiner exzentrischen Bahn wieder sehr stark. Man muss hier aber dann schon etwas länger zuhören, weil er durch seine größere Entfernung zur Sonne dann schon langsamer ist.

Zwischen Mars und Jupiter ist eine große Lücke, in welcher der Asteroidengürtel Platz findet.
Das macht sich im Sprung eines großen Intervalles bemerkbar.

Saturn klingt dann schon sehr tief. Uranus und Neptun sind überhaupt nicht mehr als Töne wahrnehmbar. Ihre Frequenzen sind so tief, dass man sie nur noch als Rhythmen wahrnimmt.

Bei den äußeren Planeten ist es sehr schwer, die Exzentrizität der Bahnen zu hören, weil sich diese zeitlichen Umschichtungen innerhalb vieler Minuten bis Stunden sehr langsam vollziehen.
Außerdem waren Uranus und Neptun noch nicht bekannt, als Kepler die restlichen Umlaufbahnen auf eine Piano-Tastatur verteilte. Er ging davon aus, dass es keine weiteren Himmelskörper in unserem System mehr gäbe, weil er jede Umlaufbahn in einen der fünf platonischen Körper einschrieb.
Platonische Körper sind solche, die gleiche Flächen besitzen.
Am bekanntesten sind der Würfel und das Tetraeder.

Zwei Professoren, Willie Ruff & John Rodgers, haben in den siebziger Jahren des letzten Jahrhunderts Keplers Umlaufbahnen und sein Vorschlag, diese musikalisch darzustellen, aufgegriffen und in einen Computer gespeist, der dann die Klänge synthetisch erzeugte.
Sie nutzten sogar noch das Sterio-Panorama, um das ganze noch etwas plastischer werden zu lassen.
Legt man die Sonne z. B. in den Nullpunkt eines Koordinatensystems, so gruppieren sich alle Planeten irgendwo um den Nullpunkt herum. lässt man sie nun laufen, drehen sie sich um den Nullpunkt.

Sie legten die Perihels der Planeten eher auf die rechte Seite und die Aphels auf die linke.
Somit entsteht fast der Eindruck von akustischen Kreisbahnen, wenn man sich das über einen Kopfhörer anhört.

Man ist quasi die Sonne und hört die Planeten um einen herum laufen.
Die Tonhöhe sagt etwas über den Abstand zur Sonne aus, und das Panorama gibt einem noch eine Positionsinformation.
Gernot Meiser vom AV-Atelier.de besitzt ein mobiles Planetarium. Er hat es geschafft, den Sound, den ich in meinem Vortrag abspielte, tatsächlich um das ganze Planetarium herum laufen zu lassen. Das war großartig.
Vielleicht erinnert sich ja der eine oder die andere noch daran, wie es sich in der Orgelfabrik Durlach, bzw. im Theater in Sarlouis, anhörte.

Jetzt wird es Zeit, sich mal anzuhören, worüber ich hier spreche.

Hier noch einige Hörhinweise, damit ihr euch in dieser Kackophonie zurecht findet.
1) Wir starten mit dem schnellen sausenden Merkur auf seiner stark elliptischen Bahn. Er pipst sehr hoch, weil er so nahe an der Sonne, und somit sehr schnell unterwegs ist.

2) Jetzt folgt das Moll-Dur-Duo von Venus und erde, das immer zwischen Moll und Dur variiert. Zuerst kommt die Venus und dann die Erde etwas später.

3) Nun folgt der Mars, dessen bahn stark elliptisch ist, was man im laufe des Stückes deutlich wahrnimmt. Wenn Jupiter dazu kommt, hört man sehr deutlich, wie Mars beschleunigt, weil er sich seinem Perihel nähert.

4) Der Sprung über den Asteroidengürtel hinweg zum tiefen brummenden Jupiter, ist unüberhörbar.

5) Nun setzt das ganz tiefe brummen des Saturn ein. Es kann sein, dass manche Lautsprecher oder Headsetz diesen tiefen Ton kaum noch darstellen können.

6) Die Planeten Uranus, Neptun und Pluto sind nur noch als Rhythmen wahrnehmbar. Der Uranus tickt so vor sich hin.
Dann folgt der Neptun als tiefere Trommel und ganz zum Schluss ertönt die Basstrommel des Pluto.

Im ersten Link zu meiner Aufnahme, habe ich den Pluto als Zwergplaneten weg geschnitten.
Im Interview mit Ruff, einem der Erfinder dieses Sonifizierungsprojekts der Keplerdaten, , ist Pluto noch dabei, weil er zu dieser Zeit noch Planet war.
Auch dieses Interview ist sehr hörenswert, allerdings auf Englisch.

Die sonifizierten Umlaufbahnen gab man sogar den Voyager-Sonden mit auf die Reise. Ich habe keine Ahnung, ob außerirdische Wesen, die nicht meinen Blog lesen, diese Sounds interpretieren können…

Jetzt wünsche ich erfolgreiches Hören.

Zuden klingenden Bahnen

Hier nun das erwähnte Interview eines der beiden Erfinder dieses Sonifizierungs-Projekts.

Zum Interview auf Youtube

Nun hoffe ich, dass euch diese Sounds ebenso faszinieren, wie mich schon seit Jahrzehnten.
Bis zum nächsten Mal grüßt euch

euer Gerhard.