Kometengeschichten 6 – Kometenschweife und Sternschnuppen


Liebe Leserinnen und Leser,

lange ist es her, aber jetzt meldet sich der Blindnerd nach seinem Erholungsurlaub wieder zurück.
Dieses Frühjahr und Sommer waren astronomisch vom Erscheinen des Kometen Neowise und dann natürlich auch durch die jährlich wiederkehrenden Sternschnuppen der Perseiden im August geprägt. In meinem hinter mir liegenden Sommerurlaub in Österreich war ich nicht untätig. So durfte ich beispielsweise drei Astronomie-Abende gestalten. In einem brachte ich die Kometen und die Sternschnuppen zusammen. Es wäre doch schade, würde aus dieser Verschmelzung meiner diversen Artikel kein neuer Artikel entstehen. Außerdem schließt er den Kreis, indem wir uns nochmal Kometen und Sternschnuppen zuwenden. Viel gäbe es noch über Kometen zu erzählen. Sicher findet sich dazu zu gegebener Zeit wieder eine Gelegenheit. Ich wünsche euch viel Spaß beim Lesen dieses ersten Artikels nach meinem schönen Sommerurlaubs.

In “Kometenbahnen” beschrieb ich, dass die erste entdeckte Gemeinsamkeit aller Kometen, unabhängig aus welcher Richtung sie kamen war, dass ihre Schweife stets von der Sonne weg zeigen. Änderten sie ihre Richtung, schwang auch der Schweif herum, so dass dieses wieder gegeben war. Lapidar erwähnte ich in diesem Zusammenhang den Sonnenwind und ging nicht weiter darauf ein. Deshalb hier noch einige Worte dazu.

Wenn eine Dampflock an windstillen Tagen fährt, dann wird ihre Rauch- und Dampfwolke stets hinter ihr her gezogen, weil der Luftwiderstand des Fahrtwindes sie nach hinten bläst. Im Vakuum des Weltalls gibt es keinen Wind der Widerstand gegen die Fahrtrichtung und den Schweif des Kometen, der aus Gas, Staub und Teilchen besteht, leisten könnte. Oder doch? Somit sollte sich überhaupt kein Schweif, in welche Richtung auch immer, ausbilden, sondern aller “Kometendampf” sollte sich wolkenartig um ihn herum bewegen. Der Sonnenwind ist es, der Kometenschweife von der Sonne weg bläst. Das klingt so einfach, gab aber lange viele Rätsel auf.

Eine Vermutung der Herkunft des Sonnenwindes war, dass eventuell ihr starkes Licht und ihre sonstige Strahlung eine Art Druck, also Wind, auf die Ausgasungen der Kometen ausüben könnte. Der schottische Physiker James Clerk Maxwell
(13. Juni 1831 – 5. November 1879) wies in seinen theoretischen Arbeiten darauf hin, das Licht eventuell im Vakuum wie ein schwacher Wind wirken könne. Ein Russischer Wissenschaftler, dessen Name ich nicht schreiben kann, weil ich ihn nur aus einem Audio habe, er lebte 1866 – 1911, bestrahlte 1901 in einer Vakuumkammer ultraleichte Spiegel, die ganz leicht aufgehängt waren. Damit konnte er generell den Lichtdruck nachweisen und messen. Von da an nahm man fast ein halbes Jahrhundert nun an, dass der Druck des Sonnenlichtes für die Auslenkung der Kometenschweife von der Sonne weg, verantwortlich sei. Dann zeigte sich aber, dass dieser Lichtdruck unmöglich stark genug sein konnte, die Schweife auszubilden. In den 20er Jahren des letzten Jahrhunderts untersuchte der englische Wissenschaftler Edward Arthur Milne (1896 – 1950) auf theoretischem Wege die Zusammenhänge in der Sonnenatmosphäre. Er berechnete die Anziehungskraft der Sonne auf Teilchen der Atmosphäre und verglich sie mit der nach außen treibenden Kraft des Strahlungsdrucks. Er kam zum Schluss, dass an der Oberfläche der Sonne es durchaus möglich sein sollte, dass Teilchenströme von ihr ausgingen, die zusätzlich zum Strahlungsdruck z. B. auf die Kometenschweife wirken könnten. Er sagte einen Teilchenstrom aus geladenen Protonen, der von der Sonne weg strömt voraus. Als man nun in den 50ern des letzten Jahrhunderts begann, die Sonne mit Raketen, Satelliten und Raumsonden zu erkunden, (Siehe Der Sonne entgegen – Der Aufbruch), stieß der italienische Physiker Bruno Rossi tatsächlich auf eine sehr schnelle Strömung von geladenen Teilchen, den Sonnenwind. Es besteht kein Zweifel mehr, dass dieser Sonnenwind die Gaswolke, die einen Kometen bei Annäherumg an die Sonne umgibt, zu einem von der Sonne weg zeigenden Schweif streckt.

Nun stellt sich aber die Frage, was mit der Materie geschieht, die der Komet längs des Schweifes verlässt. Er sammelt sie doch bestimmt nicht wieder ein, und kann sie einfach verschwinden? Verschwinden kann natürlich nichts. Die gasförmigen Moleküle oder Atome, wie z. B. Wasserdampf, verlieren sich einfach im Vakuum des interplanetaren Raumes. Was geschieht aber mit dem Rest, dem Staub, den Felsbröckchen etc, die stets den zweiten Schweif eines Kometen ausbilden?
Sie verteilen sich nach und nach auf der gesamten Kometenbahn. Ganz besonders dann, wenn ein Komet sich auflöst, wie beispielsweise der Komet Lovejoy, oder der Komet Biela.
Und an dieser Stelle schließt sich der Kreis dieses Sommers zu den Sternschnuppen. Sie sind sehr oft Teilchen aus Kometenschweifen, die in der Atmosphäre der Erde verglühen, wenn die Erde die Bahn, also die Hinterlassenschaften eines Kometen kreuzt. Ich schrieb schon darüber, dass Aristoteles Sternschnuppen für atmosphärische Erscheinungen hielt. In gewisser Weise hatte er damit sogar Recht, denn zu leuchten beginnen die Kometenteilchen tatsächlich erst in der Atmosphäre. Aus diesem Grunde werden sie auch Meteore (Griechisch für hoch in der Luft) genannt. Das ist aber noch nicht alles.
Schon aus alter Zeit existieren Berichte, dass es Metallklumpen oder Steine vom Himmel regnete. Das hielten Astronomen und andere Wissenschaftler zunächst für Unsinn. Der Schweizer Naturforscher Johann Jakob Scheuchzer (1672 – 1733) war einer der ersten, der die Möglichkeit vom Himmel fallender Steine in Betracht zog. Er äußerte 1607 den Verdacht, dass hier ein Zusammenhang zu den bekannten Meteoren und Sternschnuppen bestehen könnte. Rund hundert Jahre später nahm sich der Physiker Ernst Florens Friedrich Chladni (1756 – 1827) der Sache an. Er sammelte vom Himmel gefallene Steine und begann, sie zu untersuchen, was gar nicht so leicht war, denn so oft passiert es ja dann glücklicherweise doch nicht, dass es Steine regnet. In seinem Buch veröffentlichte er 1794 schließlich die Behauptung, dass es durchaus passiert, dass Brocken aus dem Weltall gelegentlich mit der Erde zusammen stoßen können. Er meinte auch, dass, wenn solche Klumpen in die Atmosphäre eindrängen, sie vom Widerstand der Luft gebremst würden, sich dadurch erhitzten und als Sternschnuppen verglühten. Wenn nicht alles von so einer Schnuppe verdampfe, dann schlüge der Rest als vom Himmel regnender Stein auf der Erde ein. Von da an löste sich langsam die Skepsis der anderen Wissenschaftler. Als ein französischer Physiker 1803 Proben aus einem Gebiet Frankreichs untersuchte, wo besonders viele Steine regneten, klärte sich die Sache schließlich endgültig auf. Steine und Eisenklumpen konnten tatsächlich vom Himmel fallen. Solche Objekte nannte man von nun an Meteoriten. Und hier beginnt ein interessantes Wirrwar von Worten. Ist ein Bröckchen, das unsre Erde treffen soll noch im Weltall, es muss wesentlich kleiner, als ein Asteroid sein, dann heißt das Ding Meteorid. Tritt es seine heiße Spur durch die Atmosphäre an, dann ist es ein Meteor. Das, was von der Sternschnuppe noch übrig bleibt, nennt man schließlich Meteorit, wenn man es findet. Die meisten Sternschnuppen verglühen aber vorher und es kommt nichts außer vielleicht etwas Staub unten an.

So gab es beispielsweise im November 1833 einen Meteor-Sturm unglaublichen Ausmaßes. Wie Schneeflocken fielen sie herab. Die Menschen fürchteten sich sehr. Sie glaubten, dass nun die Sterne vom Himmel fielen, wie es im letzten Buch der Bibel, der Offenbarung, voraus gesagt ist. Sie befürchteten das Ende der Welt. Das Schauspiel muss man sich vor allem mal vor dem Hintergrund vorstellen, dass der Himmel damals nachts noch wirklich dunkel war. Lichtverschmutzung gab es wenig bis keine. Nacht war damals wirklich schwarze Nacht und keine graue Dämmerung, wie heutzutage in unseren Städten. Nun ja, die Welt ging nicht unter, ansonsten gäbe es diesen Artikel und dessen Schreiber nicht… Auch stehen noch alle Sterne an ihren gewohnten Plätzen und kein gefallener Stern fehlt.

Legt man die Zeiten der Vorkommen vieler Sternschnuppen mit den Erscheinungszeiten, den Kometenbahnen und den Richtungen, aus denen sie kommen übereinander, stellt man recht bald fest, dass der Zusammenhang klar war. Viele Sternschnuppenströme stammen von dem, was Kometen zurück lassen, wenn sie uns besuchen und bei der Umrundung der Sonne ihre Schlankheitskur zu vollführen.
Nicht alle Meteore und noch weniger solche, von denen noch ein Meteorit übrig bleibt, stammen aus den “Dreckspuren” die Kometen so hinterlassen. Es gibt genügend Brocken, die von Kollisionen von Asteroiden her rühren, die uns dann und wann treffen. Und wie gefährlich es sein kann, wenn diese Brocken richtig groß sind, schrieb ich in “Droht Gefahr durch Asteroiden“.
Dieser spektakuläre Meteor-Sturm schien aus dem Sternbild Löwe zu kommen, also von den Leoniden. Hier kommt es offenbar alle 33 Jahre zu einem besonders starken Aufkommen von Sternschnuppen. Leoniden gibt es jedes Jahr, aber halt nicht so ein Maximum. Auch andere Meteor-Schauer kann man Sternbildern zuordnen, z. B. kreuzt die Erde stets im August die Kometenbahn des längst aufgelösten Kometen “109P/Swift-Tuttle”, der für die Perseiden verantwortlich zeigt. Sie scheinen aus dem Sternbild Perseus zu kommen.
Die Mai-Aquariden gehören zum Halleyschen Kometen, der seine Spur alle 76 Jahre wieder neu auffüllt.
Wie oben schon bei den Perseiden erwähnt, stammen manche Meteorströme von Kometen, die es schon längst nicht mehr gibt, z. B. der Strom der Andromediden, heute Bilieden, gehört zum verschwundenen Kometen Biela. Da hier kein Nachschub mehr vom Kometen kommt, regnet es aus so einer Spur stets weniger und weniger Sternschnuppen, bis man sie letztlich nicht mehr vom sonstigen Sternschnuppen-Hintergrund, den es immer gibt, unterscheiden kann.

Man kann sich nun ängstlich die berechtigte Frage stellen, ob es nicht sein könne, dass die Erde und ein Komet mal kollidieren. Man kann nie nie sagen, aber das ist äußerst unwahrscheinlich, weil der Komet selbst nur einen kleinen Punkt auf seiner breit von Teilchen übersähten Bahn darstellt. Die Teilchendichte ist so dünn, dass nicht mal dann etwas passiert, wenn die Erde direkt durch den Schweif eines Kometen fliegt, wie es beispielsweise 1910 geschah, als die Erde durch den Schweif des Halleyschen Kometen flog. Ich schrieb in “Kometengeschichten 4” über die Furcht und die Befürchtungen, die die Menschen damals hatten.

Und mit dieser beruhigenden Tatsache enden wir für heute.
Es grüßt euch herzlich

Euer Blindnerd.

Kometengeschichten 5 – Kometenbahnen

Liebe Leserinnen und Leser,

Nachdem ich im letzten Artikel über die weit verbreitete Kometenangst berichtete, geht es heute darum, dass nicht alle vor Angst gelähmt in Erwartung des Bösen an den Himmel und die Kometen starrten, sondern diese mit Nüchternheit und Gelassenheit als besondere Himmelsobjekte betrachteten und verstanden.

Aus dem Jahre 1472 ist beispielsweise überliefert, dass kein geringerer Astronom als Johann Müller, eher unter dem Namen Regio Montanus bekannt, mutig und entspannt Kometen beobachtete. Dieser Müller war derjenige, dessen hervorragende Sternenkarten für die Seefahrt (ephimeriden) Kolumbus sein Leben verdankte. Ich schrieb darüber in Eine Mondfinsternis als Lebensretterin.

Jener vermaß gemeinsam mit einem seiner Studenten die Bahn eines Kometen. Sie versuchten seine Bahn Stück für Stück zu konstruieren. Es ist schon eigenartig, dass vorher niemand derartiges versuchte. Selbst aus alten asiatischen oder arabischen Quellen ist mir zumindest nichts bekannt.

Die erste Gemeinsamkeit

Gleich sechs Kometen erschienen zwischen 1531 und 1539. Sie wurden von mehreren Astronomen vorurteilsfrei beobachtet, z. B. von dem italienischen Astronomen Girolamo Fracastoro. Jener veröffentlichte 1538 ein Buch in welchem er festhielt, dass Kometenschweife stets von der Sonne weg zeigen. Sein deutscher Kollege, Peter Apian, verfolgte diese Kometen ebenfalls, wusste allerdings nichts von Fracastoros Arbeit. Auch er erwähnte diese Eigenart der Kometenschweife in seinem Buch 1540. Er ergänzte seine Schrift sogar noch mit einer Zeichnung,auf welcher ein Komet mit seinen Schweifen relativ zur Sonne dargestellt war. Wenn Kometen auch unberechenbar erscheinen und verschwinden konnten, so schien es doch zumindest so zu sein, dass alle der Regel gehorchen mussten, dass die Schweife stets von der Sonne weg zeigten. Immerhin. Dann waren Kometen vielleicht doch auch gewissen anderen Regeln unterworfen, die man nur bisher noch nicht sah…
Heute weiß man, dass die Schweife aller Kometen stets vom Sonnenwind weg von ihr geblasen werden.

Der alte Glaube

Der gute alte Aristoteles vertrat die Ansicht, dass alle Himmelskörper die Erde auf festen ihnen eindeutig zugewiesenen Bahnen umrundeten. Weil Kometen kamen und gingen, rechnete er sie nicht zu den Himmelskörpern, sondern hielt sie für langsam brennende Feuer in den oberen Luftschichten. Wenn Kometen atmosphärischer Natur waren, mussten sie näher als die anderen Himmelskörper bei der Erde sein. Somit sollten sie sogar näher sein als der Mond. Das war nämlich schon den alten Griechen klar, dass er der nächste Himmelskörper ist. Wie auch immer. Die Autorität Aristoteles war so groß, dass seine Lehren über 2000 Jahre gültig blieben.

Erschütterungen

Dieser Glaube und Grundfeste wurde im Jahre 1577 erschüttert. In diesem Jahr tauchten gleich zwei Kometen auf, von deren zweiten der dänische Astronom Tycho Brahe von seiner dänischen Insel aus, wo er sich ein riesiges Observatorium baute, beobachtete. Tycho hatte die Idee, die Entfernung dieses Kometen zu vermessen. Dann sollte man erfahren, ob sie wirklich atmosphärisch nahe objekte darstellen, oder nicht. Hierfür bediente er sich der Paralaxen-Methode. Hier macht man sich die Tatsache zu nutze, dass Winkel zu beobachteten Objekten aus der Sicht unterschiedlicher Positionen verschieden sein sollten. Hält man sich einen Daumen vor die Nase, so erscheint er vor dem Hintergrund nach links oder rechts verschoben, wenn man ihn abwechselnd mit nur einem unverdeckten Auge betrachtet. Akustisch geht das z. B. mittels eines Küchenradios vor welches man sich eher mal links oder rechts positioniert auch. Somit können auch diejenigen Leser*innen, die nicht sehen können, diese verschiedenen Betrachtungswinkel auch akustisch erleben.

Die Verschiebung der Winkel wird immer kleiner, desto entfernter die betrachteten Objekte sind. Das ist der Grund, weshalb man nicht einfach unter einem Stern hindurch spazieren kann, wie unter einer Straßenlaterne. Somit ist die Parallaxe ein Maß für die Entfernung. Kennt man die Distanz zweier Beobachtungsorte, so lässt sich der Abstand berechnen. So bestimmten schon die alten Griechen die ungefähre Entfernung zum Mond.

Also vermaß Tycho die Winkel zu seinem Kometen. Diese verglich er dann mit den Daten, die ein befreundeter Astronom in Prag ermittelte. Sie unterschieden sich nicht von Tychos winkeln. Da die Entfernung beider Standorte bekannt war, konnte das nur bedeuten, dass der Komet weit entfernt sein musste, da die Winkelunterschiede deutlich kleiner waren als das, was man mit damaligen Messinstrumenten auflösen konnte.

Tychos Komet musste somit ungefähr vier mal so weit weg sein als der Mond. Wäre er kleiner gewesen, hätte er eine Parallaxe messen sollen.
Man kann an dieser Stelle gar nicht hoch genug einschätzen, was für ein exzelenter Beobachter Tycho war, denn es standen ihm keine Teleskope zur Verfügung. Kometen waren also scheinbar keine atmosphärischen Objekte, sondern kamen von weit her. Ich möchte hier noch erwähnen, dass es bei Tychos Komet sich nicht um den Halleyschen Kometen handelte, wie immer wieder mal angenommen wird und der nachher noch wichtig ist.

Ein U für ein I

Zu dieser Zeit hatte Nikolaus Kopernikus gerade sein Buch veröffentlicht, in welchem er die Sonne als Mittelpunkt des Sonnensystems postulierte, um welche sich alle Planeten drehen sollten. Johannes Kepler , Assistent von Tycho Brahe zeigte schließlich, dass die Planeten auf elliptischen Bahnen die Sonne umlaufen. Nun stellte man sich die Frage, ob vielleicht nicht auch Kometen sich auf sehr stark exzentrischen Bahnen um die Sonne bewegen könnten, so stark, dass sogar Kepler, der einen Kometen beobachtete glaubte, dass er sich auf einer geraden Bahn bewegen würde. In dem Fall käme er dann nur ein einziges mal vorbei, um dann für immer im All zu verschwinden. Als schließlich das Fernrohr erfunden war, fand ein italienischer Astronom, dass die Bahn eines Kometen, den er beobachtete durchaus in Sonnennähe wohl stark gekrümmt sei, und erst mit zunehmender Entfernung eher wie eine Gerade erschien. Die Bahn glich somit einem U, in dessen Bogen die Sonne stand. Eine solche Bahn wird Parabel genannt. Auch in dem Fall konnte ein Komet, ob U- Parabel oder I-förmige Bahn nur ein Mal vorbei kommen, bevor er dann für immer verschwand. Das war unbefriedigend. Somit zogen manche Astronomen in Betracht, es könnte sich bei den Kometenbahnen um sehr lang gestreckte elliptische Bahnen handeln,so dass sich die Kometen für viele Jahre nicht mehr beobachten ließen, weil sie zu weit weg waren, um dann irgendwann wieder zurück zu kehren. Otto von Guericke äußerte diese Vermutung. So faszinierend diese Vorstellung auch war, so fehlten damals die mathematischen Möglichkeiten, solch eine Bahn zu berechnen. Erst wenn dies berechenbar wurde, konnte man Kometen als Objekte des Sonnensystems komplett akzeptieren. Ein Jahr nach Guerickes Tot, 1687 veröffentlichte Isaac Newton seine universalen Schwerkraftgesetze. Damit hatten Astronomen erstmals ein Werkzeug zur Hand, womit sich derlei Bahnen berechnen ließen. Dieses Schwerkraftgesetz ließ es durchaus zu, dass sich ein Komet auf einer sehr gestreckten Ellipse um die Sonne bewegen konnte. Mittels Entfernung und Bahngeschwindigkeit eines Kometen um die Sonne, sollte sich die Bahn Stück für Stück berechnen lassen. Der Astronom Halley, ein guter Freund Newtons und später Namensgeber eines periodischen Kometen, versuchte solch eine Berechnung. Das kostete ihn Jahre. Er sammelte alle Kometenpositionen, die er auch aus älteren Daten finden konnte und setzte Kometenbahnen zusammen. Hierfür untersuchte er zweidutzend Kometen, in der Hoffnung, Regelmäßigkeiten ihrer Wiederkehr zu finden. Dabei stieß er u. A. auf den Kometen, den Johannes Kepler 1607 verfolgt hatte, und der durch die gleiche Himmelsgegend gezogen war, wie der Komet von 1682. Auch ein Komet des Jahres 1531 von Apian und fracastoro beobachtet, siehe oben, war durch diese Region gezogen. Ebenso jener aus dem Jahre 1456 von welchem Regio Montanus, siehe oben, berichtet hatte.

Halley fiel auf, dass hier Regelmäßigkeiten erkennbar waren. Sie erschienen stets um ungefähr 76 Jahre mit gewissen geringen Abweichungen. Das legte die Vermutung nahe, dass es sich bei allen vier Objekten um ein und dasselbe gehandelt haben könnte. Es würde sich auf einer sehr lang gestreckten elliptischen Bahn bewegen, auf der der Komet eben nur alle 75 – 76 Jahre zurück kommen konnte.
Das “entweder, oder” bei der Rückkehr-Zeit rührt daher, dass Kometen auf ihren langen Bahnen von den großen Planeten, wie Jupiter gravitativ beeinflusst werden. Dadurch ändern sich ihre Bahnen leicht, und sie könnten sich verspäten. Außerdem erfahren Kometen leichte Bahnänderungen, wenn sie in Sonnennähe aktiv werden. Ihre ausgestoßenen Schweife und Koma funktionieren dann wie Antriebsdüsen, die leichten Einfluss auf die Bahn nehmen können, indem sie den Kometen verblasen.
Nach langem Zögern veröffentlichte Halley schließlich seine Berechnungen und sagte die Wiederkehr seines Kometen aus dem Jahre 1682 für das Jahr 1758 voraus. Diese Voraussage musste für Halley ziemlich enttäuschend gewesen sein, da er ihre Erfüllung kaum erleben konnte.
So ist das in Raumfahrt und Astronomie oft, dass Missionen etc. eine generationsübergreifende Sache sind.

Halleys Bestätigung

Lasst mich zum Schluss noch einige Sätze darauf verwenden, ob Halleys Voraussage sich bestätigte.
Die aufmerksame Leserschafft dürfte zwischen den Zeilen schon bemerkt haben, dass sie sich tatsächlich erfüllte. Ansonsten hätte man seinen Kometen vermutlich nicht den Halleyschen Kometen, also nach ihm benannt. Es bedarf schon einiger Geduld, wenn man über ein halbes Jahrhundert darauf warten muss, um zu sehen, ob Halleys Prophezeihung stimmt, oder eben nicht. Daher geriet seine Voraussage fast schon in Vergessenheit, da die Astronomen sich bis da hin längst anderen Dingen zugewendet hatten. Außerdem konnten die meisten Zeitgenossen von Halley nicht davon ausgehen, die Wiederkehr seines Kometen noch erleben zu können. Als dann das Jahr 1758 kam, verstrich einer nach dem anderen Monaten, ohne, dass sich der Komet zeigte. Er schien sich entweder zu verspäten, oder Halley hatte nicht recht gehabt. Französische Astronomen gingen zwar Halleys Berechnungen nochmal durch, um das Datum der Wiederkehr genauer zu bestimmen, aber der Komet glänzte auch zu diesem verbesserten Datum durch Abwesenheit, weshalb das Interesse der Profi-Astronomen an der Sache vermutlich auch rasch geschwunden sein dürfte. Nun ist aber gerade die Astronomie auch eine Wissenschaft für Amateure. Der Himmel gehört eben allen Menschen. Solch ein Liebhaber-Astronom, der wohlhabende Bauer Johann Georg Palitzsch aus der Gegend von Dresden wartete ab November 1758 geduldig auf Halleys Komet. Es ist wichtig, sich mit den Sternen vertraut zu machen, in welcher Gegend man den Kometen erwartet, ansonsten übersieht man ihn sicher.
Am 25.12. fand er ihn schließlich. Was für ein Weihnachtsgeschenk. Das rüttelte die Berufs-Astronomen wach und kam einer Sensation gleich.
Mich freut es immer, wenn ein Amateur mit seinen bescheidenen Mitteln derlei finden. Zeigt uns das doch auch, wie inklusiv die Astronomie tatsächlich ist.
Halleys Vorraussage stimmte, und der Komet trägt seinen Namen zurecht.
Und damit schließt sich der Kreis zu unserer zweiten Kometengeschichte, in welcher ich die Mission Giotto beschrieb, die den Halleyschen Kometen aus der Nähe betrachtete.
Das war 1986. Da war ich gerade 17 Jahre alt. Wenn alles gut läuft, komme ich nochmal in diesen Kometen-Genuss. Meine Großeltern hätten es beide geschafft, wenn er in ihrem 18. Lebensjahr erschienen wäre. Ich hoffe auf meinen guten Gen-Pool…
So, das war jetzt mal wieder etwas länger. Ich hoffe, es hat euch etwas gefallen. Wenn ja, dürft ihr das gerne teilen, liken und kommentieren.
Es grüßt euch aus dem Sommerurlaub
Euer Blindnerd.

Kometengeschichten 3 – Kometensuche Inklusiv


Liebe Leserinnen und Leser,

Derzeit wird auf allen Kanälen der Astronomie im Grunde fast nur darüber gesprochen, dass der Komet Neowise momentan gut über Deutschland zu sehen ist. Es kommt durchaus nicht oft vor, dass man Kometen mit bloßen Augen sehen kann. Die meisten lassen sich nur in Fotos erkennen. Aber diesmal ist es eben so, dass man ihn einschließlich seiner Koma und seinen zwei Schweifen mit den Augen sehen und sogar mit dem Smartphone brauchbare Bilder schießen kann, was man so hört.

“Quengel, Ich will auch mitmachen…” denke ich mir da oft. Und ja, was soll ich sagen. Dank einer “Wunderapp” kann ich auf meine Art tatsächlich mitmachen. Darum geht es heute.

Auch ich habe meinen Kometen am Himmel. Ich kann ihn nicht sehen, kann ihn nicht hören, aber ich kann zu ihm finden und in seine Richtung schauen. Wie er aussieht etc. erklären mir die anderen und wie so ein Eiswürfel funktioniert, weiß ich eh ungefähr.
Mit bissel assistiver Technologie wird der Sternenhimmel auch für blinde Augen und Ohren transparent und super inklusiv.
Der Schlüssel zu diesem Erlebnis trägt den Namen Universe to Go.
Mein Erlebnis ist ein Beispiel dafür, wie moderne Kommunikations- und assistive Technologie uns ganz neue Türen öffnen.

Was ist U2G?

Das System besteht aus zwei Komponenten, einer App für IOS und einer Art Brille, in die man das Smartphone mit dem Bildschirm nach unten einlegt. Über Spiegel bekommen Sehende zusätzliche Informationen in ihre Welt der Sternenbeobachtung eingespielt. Unten im Artikel noch etwas mehr dazu.
Hier nun, wie ich Neowise fand:

Auf inklusiver Kometensuche

Im ersten Schritt ging ich die Einstellungen von U2G durch und überprüfte, ob z. B. Audioguide eingeschaltet ist. Den braucht man nämlich, damit der Sternenhimmel spricht. OK, alle Checklisten waren erledigt “We are ready for lounch.”

Als nächstes öffnete ich U2G und wählte den Astrobrillen-Modus. Nun forderte mich mein Smartphone auf, dass ich es oben mit der Kamera nach links kopfüber in die Brille einlegen solle. OK, Iphone rein und Klappe zu.
Da ich die App aus verschiedenen Gründen mal neu installieren musste, wurde meine Geduld nun etwas auf die Probe gestellt, denn ich erhielt die Einführung, obwohl ich schon weiß, wie man dieses “Raumschiff fliegt”. Naja, hatte ich bei den Einstellungen übersehen.

Jetzt ist U2G im Erkundungsmodus. Das bedeutet, dass ich mich drehen und meinen Kopf anheben oder senken kann. Dabei werden mir auch am Tage ungefähr die Sterne oder Deepsky-Objekte angesagt, in deren Richtung ich schaue. Was man angesagt bekommt, ist mit reichlichen Parametern einstellbar. Das führt jetzt aber hier zu tief in U2G.

Und jetzt wirds bissel difizil. Es geht nun darum, U2G in den Suchmodus zu bringen. Dazu senkte ich meinen Kopf ganz tief und hob ihn dann wieder wagerecht. Diese Geste öffnet und entsichert das Menü. Sehende haben nun eine Hand als Cursor und die Menüeinträge. Gesteuert wird nun mit dem Kopf.
Ganz vorsichtige kleine Nickerchen nach unten bringen mich zum Such-Menü. Ein entschlossenes Nickerchen nach rechts öffnet das Untermenü. Nun suchte ich nach dem Unterpunkt “Kometen”, denn man kann auch nach Sternen, Planeten, der ISS oder sonst was suchen.
Ich gebe zu, die Bedienung dieses Menüs muss mit viel Übung erlernt werden.
Und nun öffnete sich eine Liste mit seeeeehr vielen Kometen, die gerade mit Instrumenten oder im Fall Neowise auch ohne, am Himmel zu sehen sind.
Das strapazierte zugegeben die Geduld sehr stark, da das N ungefähr in der Mitte der Liste liegt. Bisher ist es leider so, dass man sich die ganze Liste vorlesen lassen muss. Ich setzte die Brille ab, unterlegte sie mit etwas, das auf dem Schreibtisch herum lag, damit U2G die Liste weiter durchgeht, und holte mir erst mal einen Kaffee. Als ich zurück kam, war die Liste schon beim H. Gefühlt Stunden später, kam er dann endlich, ich hörte den Namen “Neowise”. In wahrheit war es nur eine viertel Stunde…
Vorsichtig kippte ich die Brille nach rechts, um die Auswahl von Neowise zu bestätigen, denn verlieren wollte ich ihn jetzt nicht mehr. U2G akzeptierte meine Geste und begann mich zu Neowise zu führen.

Ich wusste von sehenden Astronom*innen auf twitter, dass ich ihn ungefähr beim großen Wagen oder dem Bären suchen sollte. Ich weiß natürlich, wo Norden in meinem Büro ist. U2G dirigierte mich mit Sprachkommandos wie Links, Rechts, Hoch und Runter zum Neowise. Kurz bevor man ihn hat, wirds ganz schön frickelig
Durch viel Übung mit U2G weiß ich ungefähr, wo ich hin muss, wenn ich ein Sternbild als Start habe. Das verkürzt die Suche natürlich sehr. Vielleicht das noch am Rande. Wenn ich mit U2G auf die Sternenreise gehe, dann gehen über mir die Lichter an. Allerdings reduziere ich im Kopf jedes Sternbild auf einen einzigen Lichtpunkt, weil das für mich keine große Rolle spielt, wie ein Sternbild aussieht. Das erschließe ich mir mit taktilen Abbildungen, wenn ich das genauer wissen möchte.

Fazit

  • Wie gesagt, konnte ich lediglich zum Kometen finden, aber sich erklären zu lassen, wo er ungefähr ist, ist eine Sache. Es selbst zu tun, ihn selbst zu suchen und dann auch zu finden ist etwas viel größeres. Selbst machen und erleben ist ein deutlich stärkerer Eindruck, als wenn einem das verbal beschrieben wird.
  • Die totale Mofi von 2015 konnte ich mit U2G ebenfals nachvollziehen.
  • Den Merkurtransit habe ich mit U2G hautnah selbst erlebt. Darüber durfte ich für Universe2Go einen Artikel über mein ersten Merkurtransit schreiben.
  • der Weihnachtsvollmond 2015 war auch ein Erlebnis, das ich mit U2G nachvollziehen konnte.
  • Verfolge ich die ISS, dann merke ich genau, wie schnell sie sich durchs Bild bewegt, indem ich einfach die Suche nach ihr wiederhole. Ich merke dann, wie sich meine Position im Raum rasch ändert.
  • Die Überraschung, wieviele Kometen immer irgendwo fliegen, ist der Hammer.
  • Grundsätzlich kann ich sagen, das U2G mein räumliches Himmelsverständnis erheblich verbessert hat.
    Natürlich muss ich auch erst mal suchen und mich zurecht finden, denn ich weiß auch nicht zu jeder Urzeit und Jahreszeit den passenden Himmel und was genau über oder unter dem Horizont ist. Aber nach kurzer Orientierung, Finden des Polarsterns und des großen Bären, weiß ich schon ungefähr, wie ich von einem zum anderen Sternbild gelange.
    Vor allem erlebt man über das Jahr wirklich sehr gut die Neigung der Erdachse zur Ekliptik und zum Zodiak.
  • Nun ja, bei all den wunderbaren Möglichkeiten darf man nicht verschweigen, dass die Benutzung von U2G nicht ganz trivial ist. Wie das bei einem sich entwickelnden System so ist, läuft noch nicht alles ganz rund, oder ist noch nicht fertig entwickelt. Es war ein steiniger Weg, den Martin und ich gegangen sind, bis alles so lief, wie es zumindest derzeit möglich ist. Früher gab es beispielsweise nach jedem IOS-Update Probleme. Dieser erhebliche Frustfaktor scheint seit einigen IOS-Versionen behoben zu sein.
  • Also ich würde schon sagen, dass man gute Chancen hat, U2G kennen und lieben zu lernen, wenn man es mag, mit Technik und Software zu spielen, und wenn man etwas ein Nerd ist.
    Ohne etwas Biss und Durchhaltevermögen, kann es leicht zäh werden, oder man muss sich halt etwas mehr helfen lassen.
    Hilfreich könnte zumindest am Anfang sehende Unterstützung sein, oder, dass man es in einem Workshop mit Mehreren kennenlernt.
  • Die Funktionsweise von U2G zeigt, dass diese Technologie der augmented reality durchaus Potential hat, auch für uns blinde Menschen sehr hilfreich zu sein. U2G spannt einen virtuellen sphärischen Sternenhimmel auf. Es wäre denkbar, auch andere Dinge in so einen Raum zu packen, um uns die Welt zu erschließen.

Nun folgt noch zum Schluss ein kleiner historischer Abriss darüber, wie es dazu kam, dass U2G sprechen lernte.

Wie alles begann:

Wie einige von euch wissen, durfte ich im Februar 2015 im Rahmen eines Vortrages mein Buch auf dem Literatursalon des BVN in Hannover vorstellen, das im Oktober 2015 erschien.
Zur Veranschaulichung der astronomischen Inhalte bestand im Anschluss an meinen Vortrag die
Möglichkeit, taktile Modelle und Grafiken abzutasten und anzusehen. An dieser kleinen Ausstellung beteiligte sich auch Utz Schmidtko, der damalige Leiter der barrierearmen Sternwarte St. Andreasberg der indem er einige wunderbare taktile Modelle der Mondscheibe und verschiedener Sternbilder beisteuerte.
Utz brachte mich mit dem Entwickler, Martin Neumann, von Universe2Go in Kontakt.
Auch Martin war anwesend und zeigte mir sein Projekt.
Wir fragten uns, ob es möglich sei, U2G für Menschen mit Blindheit zugänglich zu machen, was ich mir ehrlich gesagt erst mal nicht vorstellen konnte, denn Astronomie-Apps sind in der Regel höchst grafisch und nicht zugänglich.
Nun ja, wir brainstormten das ganze und es war sofort klar, dass wir uns hervorragend ergänzen und beflügeln würden.
Universe2Go besteht aus einer Art Brille, einem Iphone und einer App. Das Iphone wird in die Brille eingelegt und ermöglicht es so, den Sternenhimmel zu erkunden, indem man die auf dem Handy dargestellten Sternkonstelationen mit dem sichtbaren Sternenhimmel abgleichen kann. Interessanter weise bietet diese App auch sehr viel akustische Erlebnisse, die das Projekt extrem attraktiv auch für unseren Personenkreis macht.
Zu vielen Himmelsobjekten sind gesprochene Texte zur Erläuterung hinterlegt. So kann man sich über Entfernung, Helligkeit, Größe und viele weitere Parameter informieren. Außerdem sind schöne Geschichten, z. B. aus der Griechischen Mythologie hinterlegt.

Bis heute stehe ich mit Martin in gutem Kontakt und trage beratend zur Barrierefreiheit der weiteren Versionen bei und wir sind mittlerweile sehr gute Freunde geworden.

Universe2Go ist aber nicht mehr der einzige akustische Sternenhimmel, der Menschen mit Blindheit oder Restsehvermögen, Astronomie zugänglich macht.
Es gibt seit einigen Jahren auch noch die wunderbare Sprechende Himmelsscheibe das Projekt eines blinden Physikers, der auch hier mitliest. Realisiert wurde dieses Unikat über den Verein Andersicht e. V.

Nun soll aber zum Schluss der Entwickler von U2G selbst zu Wort kommen. Er wird uns nun berichten, wer er ist, was das Projekt will, wie er dazu kam und er wird damit den Artikel abrunden.
Bühne frei für Martin:

Die Astronomie hat mich schon als kleine Junge fasziniert. Daher regte sie meinen Erfindungsreichtum schon oft an und ich überlegte mir, wie man Menschen wieder häufiger dazu bringen kann, sich mit dem Sternenhimmel zu befassen. Seit der Einführung des iPhone sind viele Astronomie-Anwendungen für Smartphones entwickelt worden, die quasi wie eine interaktive (Kosmos-)Sternenkarte immer jeweils den Himmelsausschnitt auf dem Bildschirm anzeigen, der auf einer gedachten Linie dahinter liegt. Doch diese Anwendungen verleiten oft dazu, nur auf den Bildschirm zu starren und vom eigentlichen Erleben des Sternenhimmels abzulenken. Daher habe ich universe2go entwickelt. Dies funktioniert im Prinzip ähnlich, aber statt auf einen Bildschirm schaut man durch eine transparente Scheibe an den Sternenhimmel und bekommt zusätzlich Informationen zu den beobachteten Sternen, Sternbildern, Planeten und Deep-Sky-Objekten wie Galaxien, Sternhaufen und Nebel angezeigt. Das Projekt habe ich übrigens auf meinem 3D-Drucker entwickelt und eine Anschubfinanzierung über Crowd Funding (StartNext) und Crowd Financing (Zencap) eingeholt.

Utz Schmidtko von der Sternwarte Sankt Andreasberg hat mich kontaktiert und dadurch wurde ich überhaupt erst einmal darauf aufmerksam gemacht, dass sich auch blinde und sehbehinderte Menschen für Astronomie interessieren. Dann habe ich einen ganz tollen Vortrag von Gerhard im Februar 2015 in Hannover gehört, bei dem er aus seinem autobiografischen Buch vorgelesen hat. Das hat mich sehr beeindruckt und ich habe sofort beschlossen, universe2go auch für sehbehinderte Menschen nutzbar zu machen. Zum Glück machte meine Erfindung auch Gerhard neugierig und war schnell begeistert von den Möglichkeiten, die darin stecken auch wenn der bisherige Weg zur Nutzung des Programms für ihn noch sehr steinig war. Ich bin daher sehr froh, dass mich Gerhard nun mit seinem Enthusiasmus und mit Vorschlägen und Kritik dabei unterstützt universe2go für blinde Menschen leicht nutzbar zu machen.“

Hier kommen jetzt noch einige Links zu Universe2Go. Ich hoffe, die funktionieren noch alle, denn ich habe sie aus einem alten Text recycelt.

  • Käuflich erwerben kann man universe2go bei Astroshop.
  • Hier lang geht es zu häufig gestellten Fragen.
  • Herunterladen kann man sich universe2go hier:
    Für Android
    Für IOS
  • Zur Homepage von U2G geht es hier lang.
  • universe2go wurde teilweise über Crowd Funding finanziert:
    Die Crowd-Funding Kampagne bei StartNext: gibt es hier.
  • Mehr über den Hintergrund und die Entstehungsgeschichte von universe2go:
    Zeitungsartikel im Kölner Stadtanzeiger Blog-Artikel
    ZauberDerSterne-Blog schrieb hier.
    Clear Sky Blog verewigte U2G hier.

Kometengeschichten 2 – Mein erster Kontakt


Liebe Leserinnen und Leser,

Um 7000 Jahre müssen wir warten, bis der momentan sichtbare Komet Neowise wieder erscheint. So lange braucht der Komet, mit dem ich quasi meinen ersten Kontakt zu Kometen hatte, nicht.
In den ersten siebzehn Jahren meines lebens habe ich wohl mal das Wort Komet gehört, wusste aber wenig bis gar nichts über sie. Meine Flamme und Liebe zu ihnen entzündete sich 1986 an folgender Geschichte:
Zitat aus Blind zu den Sternen:

Glücklicherweise war am nächsten Tag schulfrei, sonst hätte ich im Fernsehen nicht erleben dürfen, wie die Raumsonde Giotto durch den Kometenschweif des Halleyschen Kometen flog. Hier waren sogar die auftreffenden Partikel zu hören, denn die Sonde hatte einen Sensor dafür hinter ihrem Schutzschild. Bedauerlicherweise erblindete die Kamera leider recht früh, weil ein Partikel den Schutzschild durchschlug. Nichtsdestotrotz gibt es Bilder des Kometenkerns, der Koma und seines Schweifes. Diese Mission war eine Glanzleistung der Europäischen Weltraumorganisation (ESA). Hätte sie nicht funktioniert, böte sich erst wieder das Jahr 2061 an, da der Komet nur alle 76 Jahre erscheint. Sein Auftauchen war durchaus nicht immer willkommen. Im Jahre 1910 fand man mittels Spektralanalyse des Schweifes Blausäure darin. Panikmacher dachten, jetzt würden alle eines Todes durch Blausäure sterben, wenn die Erde durch den Schweif fliegt.
Ein Englischer König wurde gekrönt, als der Komet gut sichtbar am Himmel stand. Es war kein gutes Omen für ihn, denn er verstarb noch im selben Jahr.
Der Fernsehsprecher erklärte sehr ausführlich, wie ein Komet aussieht, in welche Richtung sein Schweif zeigt und dass der Sonnenwind den Kometenschweif stets von der Sonne weg wehen lässt. Bis dahin wusste ich gar nicht, dass es einen Sonnenwind aus geladenen Teilchen gibt. Dieses Wissen hat mich damals sehr bereichert: der Schweif, der einer Fahne gleich im Sonnenwind weht.
Für jemanden, der einen Kometen zeichnet, ist das selbstverständlich, weil man ihn immer so sieht. Für einen Menschen mit Blindheit ist das keinesfalls selbstverständlich: Beschreibt oder zeigt man ihm das nicht, wird er es nie erfahren. Es ist ein schönes Gefühl, an den Sonnenwind zu denken. Die Vorstellung passt gut zur Wärme, die wir von ihr empfangen.
Aber auch hier wieder das schon bekannte Bild, dass wir Blinden keinerlei Zugang zu Astronomie hatten.
Da war ich quasi ein Einser-Schüler und wusste dennoch mit meinen 17 Jahren nicht, wie ein Komet aussieht.

Ich wusste nicht, dass sie aus Eis und Staub bestehen. Ich wusste nicht, dass sie einen Gas-Schweif und einen Teilchen-Schweif besitzen und wusste auch nichts über ihre Bahnen.
Spannend war für mich natürlich auch, dass bis heute Kometen nicht nur als Unheilsbringer dienen, sondern eventuell Kandidaten dafür sind, wie das Wasser auf die Erde gekommen sein könnte. Es wäre sogar möglich, dass sie die chemischen Formeln auf die Erde brachten, welche letztlich Leben ermöglichten.
Zu dieser Weltraum-Chemie hat Tim Pritlove noch nicht lange her, eine Raumzeit-Folge veröffentlicht, die ich wärmstens empfehle.
In Folge 79 interviewte Tim eine Professorin, die maßgeblich an den Missionen Giotto und der Nachfolgemission Rosetta beteiligt war und viel zum Thema Kosmische Chemie erzählt. Im gleichen Podcast werden in Folge 20 die beiden Missionen Giotto und Rosetta genauer behandelt. Der DLF brachte eine wunderbare Folge in Wissenschaft im Brennpunkt zu Rosetta heraus, die ich aber leider wegen Urheberrechten nicht hier teilen darf.
die @Riffreporter haben in ihren @Astrogeo-Podcast vor einigen Jahren auch maleine Folge mit der Dame aufgenommen. Zu dieser sehr hörenswerten Folge geht es hier lang.

So, meine lieben, das war meine zweite Kometengeschichte, mein erster Kontakt. Wenn sie gefallen hat, dann lasst es mich gerne in den Kommentaren wissen. Und wer durch meinen Auszug aus meinem Buch vielleicht jetzt darauf aufmerksam und neugierig wurde, der oder demjenigen sei gesagt: “Ja, das Buch gibt es noch.” In der Menüleiste des Blogs oder gleich hier findet ihr alle wichtigen Informationen zu meinem Buch.
Bis zum nächsten Mal grüßt euch ganz herzlich
euer Blindnerd.

Kometengeschichten 1 – Der Jupitercrash


Seid herzlich gegrüßt,
Momentan haben wir einen Star am Himmel. Seit mehreren Jahren ist endlich mal wieder ein Komet am Morgen- und am Abendhimmel zu sehen. Sein Name ist @neowise. Über den werde ich aber heute nicht schreiben, weil hierfür noch ein Experiment aussteht, aus welchem ich eine weitere Kometengeschichte verfassen werde, wenn es denn gelingt. Nichts desto Trotz nehme ich den Kometen zum Anlass, hier mal einige Kometengeschichten zu bringen, in welchem ich Erlebnisse mit Kometen schildern werde. Hier kommt eine dieser Erinnerungen:

im Juli vor 26 Jahren stürzte der Komet Shoemaker-Levy 9 in den Gasplaneten Jupiter. Ich erinnere mich daran, dass dieses Ereignis große Aufmerksamkeit und Präsenz in den Medien hatte.
Lasst uns kurz dieses Spektakels gedenken und uns daran erfreuen:

Shoemaker-Levy 9 (kurz auch SL9) war ein 1993 entdeckter Komet. Seine offizielle Bezeichnung ist D/1993 F2 (Shoemaker-Levy). Das „D“ in seiner Bezeichnung steht für das englische „disappeared“ („verschwunden“) und zeigt an, dass der Komet nicht mehr existiert. Seine Bruchstücke schlugen im Juli 1994 auf dem Planeten Jupiter ein. Er erhielt seinen Namen, weil er der neunte kurzperiodische Komet war, der von Carolyn und Eugene Shoemaker zusammen mit David H. Levy entdeckt wurde.

Kometen, die eine Umlaufzeit von unter 200 Jahren haben, nennt man kurzperiodische Kometen. Es sind solche, die von den großen Gasplaneten durch gravitative Einflüsse ins Innere des Sonnensystems gezogen wurden.
Es gibt Kometen, deren Bahnen so exzentrisch sind und so weit über den Rand des Sonnensystems hinaus ragen, dass ihre Wiederkehr Jahrtausende dauert. Sicherlich gibt es sogar Kometen, die die Menschheit seit Bestehen, noch nie gesehen hat, weil ihre Periode zu lang ist.
Kometen können aus allen Richtungen kommen, z. B. von oben die Ekliptik durchstoßen oder von unten.
Der Komet wurde erstmals auf einem Foto nachgewiesen, das am 24. März 1993 mit einem 46-cm-Schmidt-Teleskop am Mount-Palomar-Observatorium in Kalifornien aufgenommen wurde.

Ein Schmidt-Teleskop ist ein Beobachtungsinstrument, das ausschließlich für die Astrofotografie geeignet ist. Man kann damit nicht selbst beobachten. Ich erspare uns jetzt die Einzelheiten.

Der Japanische Astronom Shuichi Nakano sagte den erwarteten Zusammenstoß als Erster voraus. Die Beobachtung wurde in der Folge von anderen Astronomen bestätigt. Rasch wurde klar, dass es sich um einen ungewöhnlichen Kometen handelte. Er befand sich nahe am Planeten Jupiter und war in mehrere Fragmente zerbrochen.

Der Komet geriet vermutlich schon während der 1960er Jahre unter die starken Gravitationskräfte des Jupiter und wurde so in eine stark elliptische Bahn um den Planeten Jupiter gezwungen.
Aufgrund der Gezeitenkräfte zerbrach der Komet, der ursprünglich einen Durchmesser von rund 4 km gehabt haben dürfte, in 21 Fragmente zwischen 50 und 1000 m Größe, die sich auf einer mehrere Millionen Kilometer langen Kette aufreihten.
Man gab jedem Fragment einen Buchstaben (A – W), wobei das I und das O wegen der Verwechslung mit den Ziffern 1 und 0, nicht verwendet wurden.

Nur zwei Monate nach der Entdeckung zeigte die Bahnbestimmung der Astronomen, dass die Kometenstücke im Juli 1994 mit dem Planeten Jupiter kollidieren würden.
Zwischen dem 16. Juli und dem 22. Juli 1994 schlugen die Bruchstücke des Kometen Shoemaker-Levy 9 in Jupiters südlicher Hemisphäre mit einer Geschwindigkeit von 60 km/s ein und setzten dabei die Energie von 50 Millionen Hiroshima-Bomben / 650 Gigatonnen TNT frei.

Wann kommen wir sprachlich endlich von diesen Hiroshima-Bomben und dem TNT weg, um Energiemengen zu beschreiben…

Dies war das erste Mal, dass die Kollision zweier Körper des Sonnensystems und die Auswirkungen eines solchen Impakts direkt beobachtet werden konnten.
Obwohl die Einschlagstelle aus Sicht der Erde knapp hinter dem “Rand” Jupiters lag und somit nicht direkt einsehbar war, konnten die Astronomen sogenannte “Plumes” (heiße Gasblasen, ähnlich einem “Atompilz”) über den Rand Jupiters aufsteigen sehen. Aufgrund der raschen Rotation von Jupiter wurden die Einschlagstellen nur wenige Minuten nach den Impakten von der Erde aus sichtbar. Es zeigte sich, dass sie dunkle Flecken mit Durchmessern bis zu 12.000 km in der Atmosphäre Jupiters hinterlassen hatten, die über Monate hinweg sichtbar blieben.

Das erstaunt mich sehr, denn man sollte doch meinen, dass ein Loch in der Gashülle Jupiters gleich wieder “zugeweht” werden sollte.
Aber es waren ja nicht nur Löcher, sondern aeben riesige Blasen aufgeheizten Gases. Das kann dann schon mal bissel dauern, bis die wieder abkühlen.
Ich habe hier einen taktilen Ausdruck der gestreiften Jupiteroberfläche an meiner Bürotüre hängen. Darauf sind diese Einschlagsstellen auch zu sehen und zu tasten.

Einzig die Raumsonde Galileo konnte aus einer Entfernung von 1,6 AE die Impakte direkt beobachten.

Eine AE, Astronomische Einheit, oder auch AU, Astronomic Unit, ist der mittlere Abstand Erde-Sonne, etwa 150 Mio Kilometer, oder 8 Lichtminuten.

Aufgrund einer defekten Parabolantenne waren die Kapazitäten der Raumsonde für die Datenübertragung allerdings beschränkt, und es konnten nicht alle Messwerte zur Erde übermittelt werden. Hinzu kam, dass Galileo infolge der Challenger-Katastrophe erst mit drei Jahren Verspätung zum Jupiter geschickt wurde. Hätte der Starttermin 1986 stattgefunden, hätte die Raumsonde die Einschläge aus nächster Nähe im Jupiterorbit verfolgen können.

In den Spektren der Plumes wurden große Mengen molekularen Schwefels (S2) und Kohlenstoffdisulfids (CS2) gefunden, mehr als durch die Explosion eines vergleichsweise kleinen Kometenkerns hätte freigesetzt werden können. Man vermutet den Ursprung daher in tieferen Atmosphärenschichten des Jupiter. Weitere nachgewiesene Moleküle sind Kohlenstoffmonoxid (CO), Ammoniak (NH3) und Schwefelwasserstoff (H2S). Auch Emissionslinien von Eisen, Magnesium und Silizium wurden beobachtet: Die Hitze der Explosionen muss also ausgereicht haben, diese Metalle zu verdampfen. Wasser wurde in geringeren Mengen beobachtet, als das zunächst erwartet worden war. Vermutlich wurden die Wassermoleküle durch die Hitze aufgespalten.
Das ist spannend, dass man gleich noch etwas messen konnte, was offensichtlich vom Jupiter stammte. Klar, wenn etwas wo einschlägt, sieht man auch bissel was von dem, was das Innere des getroffenen Körpers enthält.

Muss alles in allem ganz schön gestunken haben. SH2 riecht beispielsweise nach faulen Eiern. Ammoniak riecht nach Schweinestall. Wir werden noch in meinen weiteren Kometen-Geschichten davon hören, dass Kometen scheinbar gern mal vor sich hin stinken, wenn die Sonne sie antaut.

So, das war mal eine Kometengeschichte, die für den Kometen leider nicht gut ausging.
Bis zum nächsten mal grüßt euch
Euer Blindnerd.

Gedanken zu Freitag, 13


Liebe Leserinnen und Leser,

neulich ist die Rätselfrage durch Twitter gezischt, wie viele Freitage 13. es in einem Jahr mindestens oder höchstens geben kann. “Keine Ahnung.” dachte ich, “Wäre aber vielleicht mal interessant, sich damit zu beschäftigen”. Dabei ist das Nachschlagen der aktuellen Situation das wenigste.

Von 2020 – 2030 tritt Freitag, 13. 18 mal auf.
18 mal zittern und bangen für jene, die damit ein Problem haben.
In den Jahren 21, 22, 25, 27, und 28 jweils ein mal.
Dreimal nur im Jahr 2026
und in den restlichen Jahren dann jeweils zwei mal.

Schlimmer noch. Unter den sieben Wochentagen fällt der 13. innerhalb von 400 Jahren am häufigsten auf einen Freitag. 400 Jahre sind die Basis des Gregorianischen Kalenders, auf der alles berechnet wird. Das liegt an der Schaltregel dieses Kalenders, die innerhalb von 400 Jahren drei Schalttage weg lässt. Somit sind die Jahre 2100, 2200 und 2300 keine Schaltjahre, obwohl diese Zahlen durch vier teilbar sind. Diese Schaltjahre sind daran schuld, dass es so viele Freitage gibt, die auf einen 13. fallen. Jeder dieser 400-Jahre-Blöcke enthält 146097 Tage, verteilt auf 4800 Monate oder 20871 volle Wochen. Deshalb wiederholen sich nach vierhundert Jahren alle Datums- und Wochenkombinationen in gleicher Folge wieder. Bei einer Gleichverteilung des dreizehnten auf alle sieben Wochentage sollte es innerhalb von 400 Jahre nur 4800 zu sieben =685,71 mal auftreten. In Wirklichkeit müssen wir aber in 400 Jahren 688 mal mit dieser Unglück bringenden Kombination leben. Am seltensten fällt ein 13. auf einen Donnerstag oder Samstag, nämlich nur 684 mal.
Soweit die Mathematik dazu, aber was hat das mit Astronomie zu tun?
Offensichtlich ist, dass der Jahreslauf durch die Erdbewegung um die Sonne stattfindet. Die Jahreszeiten ergeben sich ⠀durch die Schieflage der Erdachse. Die Mondphasen werden z. B. zur Berechnung des Osterfestes heran gezogen. Früher bestimmten sie den kompletten Kalender.
In alter Zeit wurde ein Jahr anhand von zwölf Zyklen des Mondes definiert.
Das bewirkte aber, dass das Jahr ungefähr 11 Tage zu kurz war. Die Erdbahn um die Sonne tickt halt nicht so, dass sie mit dem Mond zusammen passt. Schön wär’s zwar, aber…
Somit musste alle drei Jahre ein dreizehnter Monat eingefügt werden, um den Jahreslauf wenigstens wieder einigermaßen mit den Jahreszeiten in Einklang zu bringen. Diese Regel musste man sieben mal innerhalb von 19. Jahren anwenden. Diese Jahre dürften nicht besonders beliebt beim Volk gewesen sein, da z. B. für dreizehn Monate Steuern gezahlt werden musste. So etwas gräbt sich in den Volksglauben ein. Der Schritt zur dreizehn als Unglückszahl ist dann nicht mehr groß.
Das Unglück der Heutzeit mag sein, dass mehr und mehr die dreizehnten Monatsgehälter wegrationalisiert werden. Hier “schließt sich der Kreis”.
“Es ist so, und es bleibt so”. Die Dreizehn bringt Unglück.
Da ändert offensichtlich auch die schöne Tatsache nichts daran, dass sie eine Primzahl ist. Primzahlen sind nur durch sich selbst und durch eins ohne Rest teilbar.

Hier findest Du die Übersicht für den Zeitraum 2020 – 2030.
13.03.2020
13.11.2020

13.08.2021

13.05.2022

13.01.2023
13.10.2023

13.09.2024
13.12.2024

13.06.2025

13.02.2026
13.03.2026
13.11.2026

13.08.2027

13.10.2028

13.04.2029
13.07.2029

13.09.2030
13.12.2030

Und damit wünsche ich euch für die Freitage, 13. trotzdem viel Glück.
Es grüßt euch
Euer Blindnerd.

Das Raumschiff in der Pizza-Schachtel


Liebe Leserinnen und Leser,

dass ich heute über Pizza schreibe, liegt eigentlich nahe. Ich kann mich nicht erinnern, in meinem Leben mehr italienische Küche verzehrt zu haben, als während des Lockdowns. Es lässt sich halt so einfach kontaktlos liefern und schmeckt natürlich auch gut, wenn man weiß, wo man sich mit Pizza versorgt… Nach Pizza-Schachtel darf sie auf keinen Fall schmecken. Das tut die Pizza, um die es heute geht, auch nicht.
Ich weiß gar nicht mehr, woher ich das habe, was heute Thema ist. Ich glaube, vor einigen Jahren mal aus dem Radio. Könnte mir vorstellen, dass es mal Gegenstand einer @Sternzeit-Folge beim DLF war. Also nun genug des Vorgeplänkels und auf zum Thema:

am 30.06. eines jeden Jahres jährt sich das Tunguska-Ereignis in Russland. Da ist etwas vom Himmel gefallen und hat viel Wald zerstört. Leider gibt es keinen Krater und auch keinen Asteroiden-Rest, so dass man noch immer beim Begriff des Ereignisses und nicht des Einschlages ist.
Ich schrieb über die Gefahren, die von Asteoriden ausgehen können hier.

Mikro-Meteoride Steinchen und Staub sind für die Erde nicht gefährlich. Diese Teilchen werden bekanntlich zu Sternschnuppen. Im Vakuum ist alles schutzlos diesen Mikro-Meteoriten ausgesetzt. Und damit längst nicht genug. Wir Menschen produzieren Unmengen von Weltraumschrott. Da gingen in der Vergangenheit beispielsweise ein Satellit von der Größe eines Busses verloren, ein Astronaut verlor mal eine Wergzeugtasche, da stoßen Satelliten zusammen und zerbrechen, Manchmal explodiert auch einer, Da schießt Elon Musk gefühlt vierzehntägig um 60 Satelliten ins all… Das alles erzeugt Weltraum-Müll. Und wenn man jetzt auch noch anfängt, Krieg im All zu spielen, dann werden alle Bemühungen, die hoffentlich weltweit gemacht werden, um Weltraum-Müll zu vermeiden, um sonst sein. Es wird dann mit der Zeit immer gefährlicher, etwas wichtiges unbeschadet ins All zu bringen. Ganz viel von diesem Müll befindet sich auf ähnlichen Umlaufbahnen, wie die internationale Raumstation, 400 km über der Erde. Manche dieser Teilchen sind mit der Geschwindigkeit einer Gewehrkugel unterwegs und können Sonnenkollektoren oder auch die Wand der ISS beschädigen. Man kennt etwa 20.000, in Worten, zwanzigtausend Teilchen, die der ISS potentiell gefährlich werden können. Mit Sicherheit sind es noch mehr. Stets wird überwacht, ob Gefahren für die ISS durch Weltraum-Müll besteht. Und bei dieser Beobachtung kommt unsere Pizza-Schachtel ins Spiel. Die Iss ist eine fußbalfeld große nur wenige Meter hohe Struktur, also sehr flach. Da ändern auch aufgestellte Sonnen-Paddel nicht viel daran. Man denkt sich nun die ISS in eine Pizza-Box die 50 km lang, 50 km breit, aber lediglich 1,5 km hoch ist. Diese Größenverhältnisse treffen den Maßstab einer Pizza-Schachtel recht gut, weshalb man diese gedachte Box auch so bezeichnet. Die ISS denkt man sich dann mitten in dieser Box schwebend.

Die höhe eines potentiell gefährlichen Objektes kann man viel besser messen, als seine horizontale oder vertikale Bewegung, weshalb man die ISS nicht in einen Würfel einsperren muss. Betritt nun ein Stück Weltraummüll diese Box, dann bedeutet das für die Astronauten auf der ISS höchste Alarmstufe. Sie ziehen sich dann in ihre Kapseln zurück, zum einen, um eventuell fliehen zu können und zum anderen, um die Raumstation eventuell aus der Gefahrenzone zu bringen. Dafür werden dann die Triebwerke der Raumkapseln benutzt. Ich weiß jetzt gar nicht, ob die ISS auch eigene Triebwerke besitzt. Vermutlich schon, aber wenn es schnell gehen muss, dann können die Triebwerke der Raumkapseln unterstützen.
Das Problem ist halt, dass man die ISS nicht einfach so mal kurz umparken kann, wie ein störendes Auto. So ein Manöver dauert ungefähr einen Tag Vorbereitungszeit. Wie schon gesagt, können die Astronauten im Falle einer bevorstehenden Kollision die Raumstation dann schnell verlassen. Glücklicherweise stellen sich viele Teilchen bei näherer Beobachtung dann doch als eher ungefährlich heraus. Das ist bei der Asteroiden-Beobachtung ebenso. Desto länger und ausführlicher man sie beobachtet, desto klarer wird meist, dass sie die Erde dann doch nicht bedrohen. Man kann aber bei alternden Sonnen-Paddeln sehen, dass sie von kleinsten Teilchen langsam durchlöchert werden. An sich ist die Anhebung der ISS ein geübtes Manöver, denn die ISS wird auf ihrer Bahn um die Erde langsam durch die Restatmosphäre gebremst und verliert an Höhe. So ein Manöver wird alle paar Wochen notwendig.
Interessant wäre an dieser Stelle auch, ob es manchmal auch Pizza auf der ISS gibt. Könnte ich mir u. U. schon vorstellen.

Nicht zuletzt muss ich zu meiner Schande gestehen, mit meinem Pizza-Konsum eine Menge Erdenmüll erzeugt zu haben. Tut mir Leid, liebe Umwelt.
So, das war mal meine Weltraum-Pizza. Lasst sie euch schmecken.
Es grüßt euch herzlich
euer Blindnerd.

Sonnenfinsternisse in der Literatur


Liebe Leserinnen und Leser,
Heute,21.06.2020 ist Neumond und es findet Vom Kongo bis in den Pazifischen Ozean eine ringförmige Sonnenfinsternis statt. Außerdem ist Sommeranfang. Wie Finsternisse ungefähr funktionieren, beschrieb ich u. A. in Eine Kinderfrage.
Somit betrachten wir heute Sonnenfinsternisse mal aus literarischer Sicht:

Drei Autoren sollen hier zur Sprache kommen, an zumindest derer zweien wohl niemand von uns in der Kindheit vorbei gekommen sein dürfte:
Zum Glück nicht, denn Tom Sawyer von Marc Twain, 20000 Meilen unter dem Meer, in 80 Tagen um die Welt, Reise zum Mittelpunkt der Erde und Der Flug zum Mond von Jules Verne wollte ich nicht missen.

Sonnenfinsternis bei Marc Twain

In einer Erzählung ließ Marc Twain einen Amerikaner durch einen Blitzschlag einen Zeitsprung vollführen. Dieser Mensch taucht nun am 19.06. des Jahres 528 in der Zeit des sagenhaften König Artus wieder auf. Durch zahlreiche Verwicklungen gerät dieser Mann schließlich in das Gefängnis und wurde zum Tode verurteilt.
Er verfügt jedoch über ein Wissen der besonderen Art.
Er sagt für den 21.06.528 eine totale Sonnenfinsternis voraus. Hierdurch erlangte er die Gunst des Königs und letztlich dann auch seine Befreiung. Er wird zum astronomischen Berater des Königs ernannt.

So weit, so gut, aber fand an diesem Tage überhaupt eine Sonnenfinsternis statt, die Atus und seine Mannen hätten sehen können?

Um dieses herauszufinden, müssen wir ein Verzeichnis oder einen Katalog bemühen, in welchem alle Finsternisse der letzten 2000 Jahre verzeichnet sind. Am besten eignen sich hier die Kataloge von Opolzer oder der von Mucke. Selbstverständlich kann man heutzutage auch kostenlose Software, wie Stellarium verwenden, obwohl die je früher man in der Zeit zurückgeht, ihre Grenzen hat.
Im Jahre 528 gab es vier Sonnenfinsternisse, am 06.02, 06.03, am 01.08. und am 30.08. Alle waren partieller Natur.
Da am 01.08. neumond geherrscht haben muss, denn ohne Neumond keine Sf war dies auch einen synodischen Monat vorher, also Anfang Juli der Fall. Der 21.06. war somit kurz nach Vollmond. Ein unmöglicher Zeitpunkt für eine Sf. Vermutlich erfand Twain das Datum einfach.
Schön und spannend bleibt diese Erzählung dennoch.

Jules Vernes Sonnenfinsternis

In dem zweibändigen Roman “Im Land der Pelze” beschreibt Jules Vern, der Vater der Science Fiction Literatur, die Abenteuer einer Reisegruppe, die nach Alaska kommt.
Unter den Mitreisenden befindet sich ein Astronom. Verne beschreibt ihn als Menschen, der außer seine Sternbeobachtungen nichts zuwege bringt. Dieses jedoch macht ihm keiner gleich. Dieser Astronom, Namens Black, schließt sich der Reisegruppe an, um eine totale Sonnenfinsternis zu beobachten. Diese soll am 18.06.1860 stattfinden. Gegen 09:30 beginnt die totale Phase der Finsternis. Black und seine Reisegefährten sehen die Sichel des Mondes immer dünner werden. Jeden Moment muss die totale Bedeckung anbrechen. Doch dann geschieht etwas ganz anderes. Black sieht, dass die Mondsichel plötzlich wieder breiter wird und somit die Phase der totalen Bedeckung überhaupt nicht stattfand. Was war hier geschehen? Waren die Kataloge und Voraussagen der Astronomen falsch? Keines Wegs. Die Lösung des Problems war entsätzlich.
Die Gruppe befand sich gar nicht an dem Orte, an welchem sie sich wähnte.
Die Reisegruppe hatte nicht bemerkt, dass die Eisscholle, auf welcher sie sich befand, sich vom Festland gelöst hatte und in südlicher Richtung in wärmere Gewässer durch die Beringsee trieb. Diese Drift brachte die Scholle außerhalb des Streifens der Totalität.
Der Rest des Romans handelt dann davon, wie die Gruppe auf dem Eis um ihr Überleben kämpfte.

Was hat es nun tatsächlich mit der Sonnenfinsternis von Verne auf sich?
Tatsächlich gab es an besagtem Tage eine Sonnenfinsternis, deren Streifen der Totalität sich, wie bei Jules Verne beschrieben, von Alaska, über Kanada und den Atlantik ins Mittelmeer erstreckte.Es ist aber nicht verwunderlich, dass Verne im Gegensatz zu Twain eine tatsächlich stattgefundene Finsternis beschrieb. Der Roman erschien 1873, also 13 Jahre nach der Finsternis. Verne musste sich somit nicht auf Vorausberechnungen stützen, sondern konnte sich auf sicher fundamentiertes gewesenes verlassen.

Sonnenfinsternis bei Adalbert Stifter

Wenn man Sonnenfinsternisse literarisch betrachtet, dann kommt man an Adalbert Stifters Beschreibung einer von ihm selbst beobachteten Sonnenfinsternis nicht vorbei. Für mich stellt sie die schönste deutschsprachige Beschreibung einer Sonnenfinsternis dar, die ich kenne. Sie zu lesen ist etwas viel Text, aber ich garantiere für ein absolutes literarisches und lyrisches Erlebnis.

Der Aufsatz erschien zuerst in der “Wiener-Moden-Zeitung und Zeitschrift für Kunst, schöne Literatur und Theater” 1842 III. Quartal in drei Folgen.
Ihr findet seinen Text direkt hier unter der Grußformel.

Beste Grüße und viel Lesefreude mit Stifters Beschreibung wünscht euch
euer Blindnerd.

Adalbert Stifters Sonnenfinsternis:
Die Sonnenfinsternis am 8. Juli 1842

Es gibt Dinge, die man fünfzig Jahre weiß, und im einundfünfzigsten erstaunt man über die Schwere und Furchtbarkeit ihres Inhaltes. So ist es mir mit der totalen Sonnenfinsternis ergangen, welche wir in Wien am 8. Juli 1842 in den frühesten Morgenstunden bei dem günstigsten Himmel erlebten. Da ich die Sache recht schön auf dem Papiere durch eine Zeichnung und Rechnung darstellen kann, und da ich wußte, um soundso viel Uhr trete der Mond unter der Sonne weg und die Erde schneide ein Stück seines kegelförmigen Schattens ab, welches dann wegen des Fortschreitens des Mondes in seiner Bahn und wegen der Achsendrehung der Erde einen schwarzen Streifen über ihre Kugel ziehe, was man dann an verschiedenen Orten zu verschiedenen Zeiten in der Art sieht, daß eine schwarze Scheibe in die Sonne zu rücken scheint, von ihr immer mehr und mehr wegnimmt, bis nur eine schmale Sichel übrigbleibt, und endlich auch die verschwindet – auf Erden wird es da immer finsterer und finsterer, bis wieder am andern Ende die Sonnensichel erscheint und wächst, und das Licht auf Erden nach und nach wieder zum vollen Tag anschwillt – dies alles wußte ich voraus, und zwar so gut, daß ich eine totale Sonnenfinsternis im voraus so treu beschreiben zu können vermeinte, als hätte ich sie bereits gesehen.
Aber, da sie nun wirklich eintraf, da ich auf einer Warte hoch über der ganzen Stadt stand und die Erscheinung mit eigenen Augen anblickte, da geschahen freilich ganz andere Dinge, an die ich weder wachend noch träumend gedacht hatte, an die keiner denkt, der das Wunder nicht gesehen.
Nie und nie in meinem ganzen Leben war ich so erschüttert, von Schauer und Erhabenheit so erschüttert, wie in diesen zwei Minuten, es war nicht anders, als hätte Gott auf einmal ein deutliches Wort gesprochen und ich hätte es verstanden. Ich stieg von der Warte herab, wie vor tausend und tausend Jahren etwa Moses von dem brennenden Berge herabgestiegen sein mochte, verwirrten und betäubten Herzens.
Es war ein so einfach Ding. Ein Körper leuchtet einen andern an, und dieser wirft seinen Schatten auf einen dritten: aber die Körper stehen in solchen Abständen, daß wir in unserer Vorstellung kein Maß mehr dafür haben, sie sind so riesengroß, daß sie über alles, was wir groß heißen, hinausschwellen – ein solcher Komplex von Erscheinungen ist mit diesem einfachen Dinge verbunden, eine solche moralische Gewalt ist in diesen physischen Hergang gelegt, daß er sich unserem Herzen zum unbegreiflichen Wunder auftürmt.
Vor tausendmal tausend Jahren hat Gott es so gemacht, daß es heute zu dieser Sekunde sein wird; in unsere Herzen aber hat er die Fibern gelegt, es zu empfinden. Durch die Schrift seiner Sterne hat er versprochen, daß es kommen werde nach tausend und tausend Jahren, unsere Väter haben diese Schrift entziffern gelernt und die Sekunde angesagt, in der es eintreffen müsse; wir, die späten Enkel, richten unsere Augen und Sehrohre zu gedachter Sekunde gegen die Sonne, und siehe: es kommt – der Verstand triumphiert schon, daß er ihm die Pracht und Einrichtung seiner Himmel nachgerechnet und abgelernt hat – und in der Tat, der Triumph ist einer der gerechtesten des Menschen – es kommt, stille wächst es weiter – aber siehe, Gott gab ihm auch für das Herz etwas mit, was wir nicht vorausgewußt und was millionenmal mehr wert ist, als was der Verstand begriff und vorausrechnen konnte: das Wort gab er ihm mit: “Ich bin – nicht darum bin ich, weil diese Körper sind und diese Erscheinung, nein, sondern darum, weil es euch in diesem Momente euer Herz schauernd sagt, und weil dieses Herz sich doch trotz der Schauer als groß empfindet”. – Das Tier hat gefürchtet, der Mensch hat angebetet.
Ich will es in diesen Zeilen versuchen, für die tausend Augen, die zugleich in jenem Momente zum Himmel aufblickten, das Bild und für die tausend Herzen, die zugleich schlugen, die Empfindung nachzumalen und festzuhalten, insofern dies eine schwache menschliche Feder überhaupt zu tun imstande ist.
Ich stieg um 5 Uhr auf die Warte des Hauses Nr. 495 in der Stadt, von wo aus man die Übersicht nicht nur über die ganze Stadt hat, sondern auch über das Land um dieselbe, bis zum fernsten Horizonte, an dem die ungarischen Berge wie zarte Luftbilder dämmern. Die Sonne war bereits herauf und glänzte freundlich auf die rauchenden Donauauen nieder, auf die spiegelnden Wasser und auf die vielkantigen Formen der Stadt, vorzüglich auf die Stephanskirche, die fast greifbar nahe an uns aus der Stadt, wie ein dunkles, ruhiges Gebirge, emporstand.
Mit einem seltsamen Gefühl schaute man die Sonne an, da an ihr nach wenigen Minuten so Merkwürdiges vorgehen sollte. Weit draußen, wo der große Strom geht, lag ein dicke, langgestreckte Nebellinie, auch im südöstlichen Horizonte krochen Nebel und Wolkenballen herum, die wir sehr fürchteten, und ganze Teile der Stadt schwammen in Dunst hinaus. An der Stelle der Sonne waren nur ganz schwache Schleier, und auch diese ließen große blaue Inseln durchblicken.
Die Instrumente wurden gestellt, die Sonnengläser in Bereitschaft gehalten, aber es war noch nicht an der Zeit. Unten ging das Gerassel der Wägen, das Laufen und Treiben an – oben sammelten sich betrachtende Menschen; unsere Warte füllte sich, aus den Dachfenstern der umstehenden Häuser blickten Köpfe, auf Dachfirsten standen Gestalten, alle nach derselben Stelle des Himmels blickend, selbst auf der äußersten Spitze des Stephansturmes, auf der letzten Platte des Baugerüstes stand eine schwarze Gruppe, wie auf Felsen oft ein Schöpfchen Waldanflug – und wie viele tausend Augen mochten in diesem Augenblicke von den umliegenden Bergen nach der Sonne schauen, nach derselben Sonne, die Jahrtausende den Segen herabschüttet, ohne daß einer dankt – heute ist sie das Ziel von Millionen Augen, aber immer noch, wie man sie mit dämpfenden Gläsern anschaut, schwebt sie als rote oder grüne Kugel rein und schön umzirkelt in dem Raume.
Endlich zur vorausgesagten Minute – gleichsam wie von einem unsichtbaren Engel – empfing sie den sanften Todeskuß, ein feiner Streifen ihres Lichtes wich vor dem Hauche dieses Kusses zurück, der andere Rand wallte in dem Glase des Sternenrohres zart und golden fort – “es kommt”, riefen nun auch die, welche bloß mit dämpfenden Gläsern, aber sonst mit freien Augen hinaufschauten – “es kommt”, und mit Spannung blickte nun alles auf den Fortgang.
Die erste, seltsame, fremde Empfindung rieselte nun durch die Herzen, es war die, daß draußen in der Entfernung von Tausenden und Millionen Meilen, wohin nie ein Mensch gedrungen, an Körpern, deren Wesen nie ein Mensch erkannte, nun auf einmal etwas zur selben Sekunde geschehe, auf die es schon längst der Mensch auf Erden festgesetzt.
Man wende nicht ein, die Sache sei ja natürlich und aus den Bewegungsgesetzen der Körper leicht zu berechnen; die wunderbare Magie des Schönen, die Gott den Dingen mitgab, frägt nichts nach solchen Rechungen, sie ist da, weil sie da ist, ja sie ist trotz der Rechnungen da, und selig das Herz, welches sie empfinden kann; denn nur dies ist Reichtum, und einen andern gibt es nicht – schon in dem ungeheuern Raume des Himmels wohnt das Erhabene, das unsere Seele überwältigt, und doch ist dieser Raum in der Mathematik sonst nichts als groß.
Indes nun alle schauten und man bald dieses, bald jenes Rohr rückte und stellte und sich auf dies und jenes aufmerksam machte, wuchs das unsichtbare Dunkel immer mehr und mehr in das schöne Licht der Sonne ein – alle harrten, die Spannung stieg; aber so gewaltig ist die Fülle dieses Lichtmeeres, das von dem Sonnenkörper niederregnet, daß man auf Erden keinen Mangel fühlte, die Wolken glänzten fort, das Band des Wassers schimmerte, die Vögel flogen und kreuzten lustig über den Dächern, die Stephanstürme warfen ruhig ihre Schatten gegen das funkelnde Dach, über die Brücke wimmelte das Fahren und Reiten wie sonst, sie ahneten nicht, daß indessen oben der Balsam des Lebens, Licht, heimlich versiege, dennoch draußen an dem Kahlengebirge und jenseits des Schlosses Belvedere war es schon, als schliche eine Finsternis oder vielmehr ein bleigraues Licht, wie ein wildes Tier heran – aber es konnte auch Täuschung sein, auf unserer Warte war es lieb und hell, und Wangen und Angesichter der Nahestehenden waren klar und freundlich wie immer.
Seltsam war es, daß dies unheimliche, klumpenhafte, tief schwarze, vorrückende Ding, das langsam die Sonne wegfraß, unser Mond sein sollte, der schöne sanfte Mond, der sonst die Nächte so florig silbern beglänzte; aber doch war er es, und im Sternenrohr erschienen auch seine Ränder mit Zacken und Wulsten besetzt, den furchtbaren Bergen, die sich auf dem uns so freundlich lächelnden Runde türmen.
Endlich wurden auch auf Erden die Wirkungen sichtbar und immer mehr, je schmäler die am Himmel glühend Sichel wurde; der Fluß schimmerte nicht mehr, sondern war ein taftgraues Band, matte Schatten lagen umher, die Schwalben wurden unruhig, der schöne sanfte Glanz des Himmel erlosch, als liefe er von einem Hauche matt an, ein kühles Lüftchen hob sich und stieß gegen uns, über die Auen starrte ein unbeschreiblich seltsames, aber bleischweres Licht, über den Wäldern war mit dem Lichterspiele die Beweglichkeit verschwunden, und Ruhe lag auf ihnen, aber nicht die des Schlummers, sondern die der Ohnmacht – und immer fahler goß sich’s über die Landschaft, und diese wurde immer starrer – die Schatten unserer Gestalten legten sich leer und inhaltslos gegen das Gemäuer, die Gesichter wurden aschgrau – – erschütternd war dieses allmähliche Sterben mitten in der noch vor wenigen Minuten herrschenden Frische des Morgens.
Wir hatten uns das Eindämmern wie etwa ein Abendwerden vorgestellt, nur ohne Abendröte; wie geisterhaft ein Abendwerden ohne Abendröte sei, hatten wir uns nicht vorgestellt, aber auch außerdem war dies Dämmern ein ganz anderes, es war ein lastend unheimliches Entfremden unserer Natur; gegen Südost lag eine fremde, gelbrote Finsternis, und die Berge und selbst das Belvedere wurden von ihr eingetrunken – die Stadt sank zu unsern Füßen immer tiefer, wie ein wesenloses Schattenspiel hinab, das Fahren und Gehen und Reiten über die Brücke geschah, als sähe man es in einem schwarzen Spiegel – die Spannung stieg aufs höchste – einen Blick tat ich noch in das Sternrohr, er war der letzte; so schmal wie mit der Schneide eines Federmessers in das Dunkel geritzt, stand nur mehr die glühende Sichel da, jeden Augenblick zum Erlöschen, und wie ich das freie Auge hob, sah ich auch, daß bereits alle andern die Sonnengläser weggetan und bloßen Auges hinaufschauten – sie hatten auch keines mehr nötig; denn nicht anders als wie der letzte Funke eines erlöschenden Dochtes schmolz eben auch der letzte Sonnenfunken weg, wahrscheinlich durch die Schlucht zwischen zwei Mondbergen zurück – es war ein überaus trauriger Augenblick – deckend stand nun Scheibe auf Scheibe – und dieser Moment war es eigentlich, der wahrhaft herzzermalmend wirkte – das hatte keiner geahnet – ein einstimmiges “Ah” aus aller Munde, und dann Totenstille, es war der Moment, da Gott redete und die Menschen horchten.
Hatte uns früher das allmähliche Erblassen und Einschwinden der Natur gedrückt und verödet, und hatten wir uns das nur fortgehend in eine Art Tod schwindend gedacht: so wurden wir nun plötzlich aufgeschreckt und emporgerissen durch die furchtbare Kraft und Gewalt der Bewegung, die da auf eimmal durch den ganzen Himmel ging: die Horizontwolken, die wir früher gefürchtet, halfen das Phänomen erst recht bauen, sie standen nun wie Riesen auf, von ihrem Scheitel rann ein fürchterliches Rot, und in tiefem, kaltem, schwerem Blau wölbten sie sich unter und drückten den Horizont – Nebelbänke, die schon lange am äußersten Erdsaume gequollen und bloß mißfärbig gewesen waren, machten sich nun geltend und schauerten in einem zarten, furchtbaren Glanze, der sie überlief – Farben, die nie ein Auge gesehen, schweiften durch den Himmel.
Der Mond stand mitten in der Sonne, aber nicht mehr als schwarze Scheibe, sondern gleichsam halb transparent wie mit einem leichten Stahlschimmer überlaufen, rings um ihn kein Sonnenrand, sondern ein wundervoller, schöner Kreis von Schimmer, bläulich, rötlich, in Strahlen auseinanderbrechend, nicht anders, als gösse die obenstehende Sonne ihre Lichtflut auf die Mondeskugel nieder, daß es rings auseinanderspritzte – das Holdeste, was ich je an Lichtwirkung sah!
Draußen weit über das Marchfeld hin lag schief eine lange, spitze Lichtpyramide gräßlich gelb, in Schwefelfarbe flammend und unnatürlich blau gesäumt; es war die jenseits des Schattens beleuchtete Atmosphäre, aber nie schien ein Licht so wenig irdisch und so furchtbar, und von ihm floß das aus, mittels dessen wir sahen. Hatte uns die frühere Eintönigkeit verödet, so waren wir jetzt erdrückt von Kraft und Glanz und Massen – unsere eigenen Gestalten hafteten darinnen wie schwarze, hohle Gespenster, die keine Tiefe haben; das Phantom der Stephanskirche hing in der Luft, die andere Stadt war ein Schatten, alles Rasseln hatte aufgehört, über die Brücke war keine Bewegung mehr; denn jeder Wagen und Reiter stand und jedes Auge schaute zum Himmel.
Nie, nie werde ich jene zwei Minuten vergessen – es war die Ohnmacht eines Riesenkörpers, unserer Erde.
Wie heilig, wie unbegreiflich und wie furchtbar ist jenes Ding, das uns stets umflutet, das wir seelenlos genießen und das unseren Erdball mit solchen Schaudern zittern macht, wenn es sich entzieht, das Licht, wenn es sich nur kurz entzieht.
Die Luft wurde kalt, empfindlich kalt, es fiel Tau, daß Kleider und Instrumente feucht waren – die Tiere entsetzten sich; was ist das schrecklichste Gewitter, es ist ein lärmender Trödel gegen diese todesstille Majestät – mir fiel Lord Byrons Gedicht ein: Die Finsternis, wo die Menschen Häuser anzünden, Wälder anzünden, um nur Licht zu sehen – aber auch eine solche Erhabenheit, ich möchte sagen Gottesnähe, war in der Erscheinung dieser zwei Minuten, daß dem Herzen nicht anders war, als müsse er irgendwo stehen.
Byron war viel zu klein – es kamen, wie auf einmal, jene Worte des heiligen Buches in meinen Sinn, die Worte bei dem Tode Christi: “Die Sonne verfinsterte sich, die Erde bebte, die Toten standen aus den Gräbern auf, und der Vorhang des Tempels zerriß von oben bis unten.”
Auch wurde die Wirkung auf alle Menschenherzen sichtbar. Nach dem ersten Verstummen des Schrecks geschahen unartikulierte Laute der Bewunderung und des Staunens: der eine hob die Hände empor, der andere rang sie leise vor Bewegung, andere ergriffen sich bei denselben und drückten sich – eine Frau begann heftig zu weinen, eine andere in dem Hause neben uns fiel in Ohnmacht, und ein Mann, ein ernster fester Mann, hat mir später gesagt, daß ihm die Tränen herabgeronnen.
Ich habe immer die alten Beschreibungen von Sonnenfinsternissen für übertrieben gehalten, so wie vielleicht in späterer Zeit diese für übertrieben wird gehalten werden; aber alle, so wie diese, sind weit hinter der Wahrheit zurück. Sie können nur das Gesehene malen, aber schlecht, das Gefühlte noch schlechter, aber gar nicht die namenlos tragische Musik von Farben und Lichtern, die durch den ganzen Himmel liegt – ein Requiem, ein Dies irae, das unser Herz spaltet, daß es Gott sieht und seine teuren Verstorbenen, daß es in ihm rufen muß: “Herr, wie groß und herrlich sind deine Werke, wie sind wir Staub vor dir, daß du uns durch das bloße Weghauchen eines Lichtteilchens vernichten kannst und unsere Welt, den holdvertrauten Wohnort, einen fremden Raum verwandelst, darin Larven starren!”
Aber wie alles in der Schöpfung sein rechtes Maß hat, auch diese Erscheinung, sie dauerte zum Glücke sehr kurz, gleichsam nur den Mantel hat er von seiner Gestalt gelüftet daß wir hineingehen, und Augenblicks wieder zugehüllt, daß alles sei wie früher.
Gerade, da die Menschen anfingen, ihren Empfindungen Worte zu geben, also da sie nachzulassen begannen, da man eben ausrief: “Wie herrlich, wie furchtbar” – gerade in diesem Momente hörte es auf: mit eins war die Jenseitswelt verschwunden und die hiesige wieder da, ein einziger Lichttropfen quoll am oberen Rande wie ein weißschmelzendes Metall hervor, und wir hatten unsere Welt wieder – er drängte sich hervor, dieser Tropfen, wie wenn die Sonne selber darüber froh wäre, daß sie überwunden habe, ein Strahl schoß gleich durch den Raum, ein zweiter machte sich Platz – aber ehe man nur Zeit hatte zu rufen: “Ach!” bei dem ersten Blitz des ersten Atomes, war die Larvenwelt verschwunden und die unsere wieder da: und das bleifarbene Lichtgrauen, das uns vor dem Erlöschen so ängstlich schien, war uns nun Erquickung, Labsal, Freund und Bekannter, die Dinge warfen wieder Schatten, das Wasser glänzte, die Bäume waren wieder grün, wir sahe uns in die Augen – siegreich kam Strahl an Strahl, und wie schmal, wie winzig schmal auch nur noch erst der leuchtend Zirkel war, es schien, als sei uns ein Ozean von Licht geschenkt worden – man kann es nicht sagen, und der es nicht erlebt, glaubt es kaum, welche freudige, welche siegende Erleichterung in die Herzen kam: wir schüttelten uns die Hände, wir sagten, daß wir uns zeitlebens daran erinnern wollen, daß wir das miteinander gesehen haben – man hörte einzelne Laute, wie sich die Menschen von den Dächern und über die Gassen zuriefen, das Fahren und Lärmen begann wieder, selbst die Tiere empfanden es; die Pferde wieherten, die Sperlinge auf den Dächern begannen ein Freudengeschrei, so grell und närrisch, wie sie es gewöhnlich tun, wenn sie sehr aufgeregt sind, und die Schwalben schossen blitzend und kreuzend hinauf, hinab, in der Luft umher.
Das Wachsen des Lichtes machte keine Wirkung mehr, fast keiner wartete den Austritt ab, die Instrumente wurden abgeschraubt, wir stiegen hinab, und auf allen Straßen und Wegen waren heimkehrende Gruppen und Züge in den heftigsten, exaltiertesten Gesprächen und Ausrufungen begriffen. Und ehe sich noch die Wellen der Bewunderung und Anbetung gelegt hatten, ehe man mit Freunden und Bekannten ausreden konnte, wie auf diesen, wie auf jenen, wie hier, wie dort die Erscheinung gewirkt habe, stand wieder das schöne, holde, wärmende, funkelnde Rund in den freundlichen Lüften, und das Werk des Tages ging fort.
Wie lange aber das Herz des Menschen fortwogte, bis es auch wieder in sein Tagewerk kam, wer kann es sagen? Gebe Gott, daß der Eindruck recht lange nachhalte, er war ein herrlicher, dessen selbst ein hundertjähriges Menschenleben wenige aufzuweisen haben wird. Ich weiß, daß ich nie, weder von Musik noch Dichtkunst, noch von irgendeiner Naturerscheinung oder Kunst so ergriffen und erschüttert worden war – freilich bin ich seit Kindheitstagen viel, ich möchte fast sagen, ausschließlich mit der Natur umgegangen und habe mein Herz an ihre Sprache gewöhnt und liebe diese Sprache, vielleicht einseitiger, als es gut ist; aber denke, es kann kein Herz geben, dem nicht diese Erscheinung einen unverlöschlichen Eindruck zurückgelassen habe.
Ihr aber, die es im höchsten Maße nachempfunden, habet Nachsicht mit diesen armen Worten, die es nachzumalen versuchten, und so weit zurückgeblieben. Wäre ich Beethoven, so würde ich es in Musik sagen; ich glaube, da könnte ich es besser.

Zum Schlusse erlaube man mir noch zwei kurze Fragen, die mir dieses merkwürdige Naturereignis aufdrängte:

Erstens: Warum, da doch alle Naturgesetze Wunder und Geschöpfe Gottes sind, merken wir sein Dasein in ihnen weniger, als wenn einmal eine plötzliche Änderung, gleichsam eine Störung derselben geschieht, wo wir ihn dann plötzlich und mit Erschrecken dastehen sehen? Sind diese Gesetze sein glänzendes Kleid, das ihn bedeckt, und muß er es lüften, daß wir ihn selber schauen?

Zweitens: Könnte man nicht auch durch Gleichzeitigkeit und Aufeinanderfolge von Lichtern und Farben eben so gut eine Musik für das Auge wie durch Töne für das Ohr ersinnen? Bisher waren Licht und Farbe nicht selbstständig verwendet, sondern nur an Zeichnung haftend; denn Feuerwerke,Transparente, Beleuchtungen sind doch nur zu rohe Anfänge jener Lichtmusik, als dass man sie erwähnen könnte. Sollte nicht durch ein Ganzes von Lichtakkorden und Melodien eben so ein Gewaltiges, Erschütterndes angeregt werden können, wie durch Töne? Wenigstens könnte ich keine Symphonie, Oratorium oder dergleichen nennen, das eine so hehre Musik war, als jene, die während der zwei Minuten mit Licht und Farbe an dem Himmel war, und hat sie auch nicht den Eindruck ganz allein gemacht, so war sie doch ein Teil davon.

Finsterniskataloge dienen eigentlich nicht dazu, Schriftstellern auf die Finger zu schauen, was ihre Finsternisse betrifft. Aber für die Historie sind sie unverzichtbar. Viele Finsternisse oder Ereignisse wurden mit der Zeit von einem zum anderen Erzähler oder Schreiber derart verschoben, dass Katastrophen, Krisen, verlorene Kriege etc. gerne mit Finsternissen zusammen gelegt wurden.

Merkur – ein romantischer Ort


Liebe Leserinnen und leser,

in diesen Tagen, Mitte Mai 2020, soll bei guten Bedingungen der Merkur neben der Venus und der Mondsichel sogar bei uns gut zu sehen sein. Das ist nicht so einfach, weil der Merkur sehr klein ist und meistens wie der Mond bei Neumond von der Sonne überstrahlt wird. Deshalb sieht man ihn, wenn überhaupt nur am Morgen- oder Abendhimmel nahe bei der Sonne. Der große Astronom Kopernikus soll einer Legende nach auf seinem Sterbebett gesagt haben, dass es ihm zu Lebzeiten nie vergönnt gewesen wäre, den Merkur zu sehen. Aber der Merkur war schon in der Antike bekannt, weil man ihn eben manchmal mit bloßem Auge sehen kann. Merkur machte auch wegen seiner merkwürdigen elliptischen Bahn auf sich aufmerksam. Erst durch die Relativitätstheorie konnte die sog. Periheldrehung des Merkur erklärt werden. Damit ist gemeint, dass sich die ganze Merkurbahn langsam um die Sonne dreht. Somit verschiebt sich dann auch sein Perihel, sein sonnennächster Punkt. Die Newtonsche Himmelsmechanik reichte nicht aus, diese zu beschreiben.
Heute wollen wir uns mal mit einer Merkwürdigkeit befassen, die es so in unserem Sonnensystem nur auf dem Merkur zu beobachten gibt.

Der Lauf der Sonne auf Merkur

Man würde sich dort sehr über den Lauf der Sonne wundern, wenn man sich denn dort aufhalten könnte. Von einem Sonnenaufgang zum nächsten vergehen auf dem Merkur 176 Tage. Außerdem scheint die Sonne auf dem Merkur bei Sonnenauf- und Untergang aus dem Gang zu geraten. Am Äquator bleibt sie zur Mittagszeit kurz stehen, läuft dann etwas rückwärts, dann hält sie erneut an, um dann wieder ihren normalen Lauf von Ost nach West wieder aufzunehmen. Noch merkwürdiger wird alles, wenn man sich 90 Grad links oder rechts vom Mittagspunkt befindet, wo die Sonne gerade im Begriffe ist, auf- bzw. unter zu gehen. Man würde dort einen doppelten Sonnenauf- oder Untergang erleben. Also wenn die Sonne am Merkur-Morgen erscheint, verschwindet sie nochmal kurz unter dem Horizont, um dann endgültig richtig aufzugehen. Ebenso am Abendhimmel. Dort geht sie zunächst unter, erscheint dann nochmals kurz über dem Horizont, um sich dann zur Nacht zu begeben.
Dieses Kuriosum gibt es nur auf dem Merkur in unserem Sonnensystem. Was geht da vor.

Auf erden ist alles, wie es sein soll

Jeder weiß, dass sich die Erde links herum gegen den Uhrzeigersinn dreht, weshalb die Sonne von Ost nach West über den Himmel zu laufen scheint. Es ist auch bekannt, dass die Erde ungefähr 24 Stunden für eine Umdrehung benötigt. Für ihren Umlauf um die Sonne benötigt sie ein Jahr, ungefähr 365 Tage. Beim Merkur ist das alles anders.

Wie denn?

Bis in die 60er Jahre des letzten Jahrhunderts dachte man, dass der Merkur uns stets dieselbe Seite zeigt. So ist das bei unserem Mond. Dessen Drehung um sich selbst entspricht genau seiner Umlaufzeit um die Erde, einem synodischen Monat. Deshalb sehen wir seine Rückseite nie. So dachte man sich das eben auch von Merkur. Mit Teleskopen, Radar und Raumsonden, als man Struktur auf dem Merkur ausmachen konnte, fand man heraus, dass er sich doch etwas schneller um sich selbst dreht, als ein Umlauf um die Sonne dauert.
Er zeigt uns eben doch nicht immer dieselbe Seite.

Für eine Umdrehung benötigt Merkur 58,646 Tage. Für einen Umlauf um die Sonne benötigt er 87,969 Tage. Das bedeutet, dass wenn Merkur zweimal die Sonne umrundet, dreht er sich dreimal um sich selbst. Und damit nicht genug. Merkurs bahn ist extrem elliptisch. An seinem sonnenfernsten Punkt, dem Aphel, beträgt sein Abstand zur Sonne rund 70 Millionen Kilometer. In seinem sonnennächsten Punkt, dem Perihel ist er nur noch knapp 46 Millionen Kilometer von ihr entfernt. Dagegen verglichen laufen Erde und Venus fast auf Kreisbahnen.
Das bedeutet, dass Merkurs Winkelgeschwindigkeit auf seiner Bahn sehr stark variiert. Keplers zweites Planetengesetz besagt, dass der Fahrstrahl eines Planeten stehts gleiche Flächen zu gleicher Zeit überstreicht. Der Fahrstrall ist die gedachte Hilfslinie zwischen Stern und Planet. Ist nun unser Merkur an seinem entferntesten Punkt von der Sonne, ist sein Fahrstrahl länger. Wenn der zu gleicher Zeit eine gleiche Fläche überstreichen soll, bedeutet das, dass Merkur sich langsamer auf seiner Bahn bewegen muss, um diese Bedingung zu erfüllen. Das “Kuchenstück” ist dann zwar länger, aber deutlich schmaler. In Sonnennähe beschreibt der Fahrstrahl dann zur selben gegebenen Zeit ein kürzeres, aber breiteres “Kuchenstück”, ganz davon abgesehen, dass der Kuchenrand keinen Kreis beschreibt, weil es sich um eine elliptische Bahn handelt, aber als Bild geht es so.

Nun haben wir alle Fakten beieinander, um Merkurs Sonnen-Wunder zu erklären.

Von Winkeln und Verhältnissen

Zunächst ist es so, dass ein Beobachter auf dem Merkur die Sonne im Laufe eines Merkur-Jahres immer größer wahrnimmt, so lange Merkur sich auf sein Perihel zubewegt. Entfernt er sich dann wieder von ihr, erscheint die Sonne wieder kleiner. Bei dieser starken Exzentrizität der Merkurbahn würde man das deutlich sehen. Den Effekt hätten wir gern bei unserem Supermond…

Wir haben oben gefunden, dass Merkur drei Umdrehungen innerhalb zweier Merkur-Jahre (Lauf um die Sonne) vollführt.
Die Geschwindigkeit, mit welcher Merkur sich um sich selbst dreht, bleibt konstant. Bei Drehungen spricht man gerne von Winkelgeschwindigkeiten, also von der Änderung des Winkels pro Zeit. Für die Eigendrehung des Merkur ist die konstant.
Beim Lauf um die Sonne auf merkurs extrem elliptischer Bahn ist das durchaus nicht so, denn sonst wäre keplers Gesetz mit den Flächen und dem Fahrstrahl nicht erfüllbar. Man kann also sagen, dass die Winkelgeschwindigkeit der Eigenrotation des Merkur ungefähr 1,5 mal größer ist, als die durchschnittliche Winkelgeschwindigkeit seines Laufes um die Sonne. Betrachtet man aber nun die Position des Merkur auf seiner Bahn, ändert sich dieses Zahlenverhältnis sehr stark. Im sonnenfernsten Punkt ist die Winkelgeschwindigkeit um 0,68 mal kleiner als die mittlere Winkelgeschwindigkeit und im Perihel um den Faktor 1,53 größer. Somit stehen im Aphel die beiden Winkelgeschwindigkeiten 1,5 (Eigendrehung konstant) zu 0,68 und im Perihel 1,5 (Konstante Eigendrehung) zu 1,53 (Bahnumlauf).
Was fällt hier auf:
Je näher der Merkur seinem sonnennächsten Punkt kommt, desto größer wird seine Bahngeschwindigkeit. Das Verhältnis zur konstanten Winkelgeschwindigkeit der Eigendrehung steigt also vom Aphel mit 0,68 bis zum Perihel mit 1,53 an. Nun ist das Verhältnis plötzlich anders herum.

Konsequenzen

Die Winkelgeschwindigkeit der Eigendrehung ist im Verhältnis zur Umlauf-Winkelgeschwindigkeit plötzlich kleiner. Das bedeutet, dass die Sonne für den Beobachter plötzlich rückwärts läuft, denn negatives Geschwindigkeitsverhältnis bedeutet entgegengesetzte Richtung.

Und was passiert an dem Punkt, wo das Verhältnis 1,5 zu 1,5 ist? Dort steht die Sonne kurz still und kehrt ihre Richtung von einem Beobachter aus gesehen entweder wieder in die richtige Richtung um, dass sie wieder von Ost nach west läuft, oder in die falsche.

Und was bedeutet das für den Beobachter an einer der Tag-Nacht-Grenzen? Genau. Die Sonne läuft rückwärts und tut nochmal, was sie schon tun wollte, nämlich auf- oder unterzugehen.

Und wie kommen wir auf die Tageslänge von über 180 Tagen, obwohl die Sonne sich in 54 Tagen um sich selbst dreht? Das liegt am Verhältnis von Merkurtag zu Merkurjahr. Hat die Sonne von ihrer Umdrehung her den Merkurtag beendet, hat sie sich erheblich auf ihrer Bahn weiter gedreht, Wir Erinnern uns Drei Umdrehungen in zwei Umläufen. Deshalb dauert die Zeitspanne so lange.

Liebesurlaub auf dem Merkur

Puh, das war jetzt kompliziert, oder?
Aber für Verliebte wäre das doch wirklich super romantisch mit den zwei Sonnenauf- und Untergängen.
Auch für Sonnenanbeter gibt es auf dem Merkur ein Plätzchen. Sie sollten die Caloris Planitia besuchen. Es ist das Becken der Hitze auf Merkur. Dieser Einschlagskrater hat einen Durchmesser von 1,500 km. Es ist der Ort, bei dem zum Zeitpunkt jedes zweiten Perihel-Durchgangs die Sonne im Zenit steht. Und sie verlängert das Sonnenbad noch etwas, denn sie wandert ja am Perihel kurz rückwärts. Näher kommt man der Sonne so wohl nicht und bei molligen mehreren Hundert Grad und ohne schützende Atmosphäre, dürfte sich die erwünschte Bräune rasch einstellen.

Und eins noch zur Urlaubs-Saison auf Merkur:
Jahreszeiten in dem Sinne, wie wir sie durch unsere um 23 Grad geneigte Erdachse auf der Erde haben, gibt es auf Merkur nicht, da seine Achse nur um 0,01 Grad gekippt ist. Man kann sagen, er steht aufrecht. Seine sehr elliptische Bahn bewirkt aber, dass die Sonneneinstrahlung variiert. Dieser Effekt hat auf Erden wegen der fast kreisförmigen Bahn keine Auswirkung. Allerdings bewirkt die Exzentrizität der Erdbahn, dass unser Sommer ungefähr vier Tage länger als der Winter ist. Es ist noch nicht ausgemacht, ob an den Polem von Merkur Skiurlaub möglich sein könnte. Kann sein, dass es Eis in Kratern an den Polen gibt, wo nie Sonne hin kommt. Möglicherweise muss man dann selbst die Piste beleuchten.
Und auch Kunstkenner kommen auf Merkur durchaus auf ihre Kosten. Besuchen sie doch Rembrandt, den größten Krater des Merkur. Bedenken Sie, dass die Kleiderordnung hierfür durchaus einen veritablen Raumanzug verpflichtend vorsieht. Und ob Sie dort Gemälde finden werden, ist äußerst fraglich. Wie dem auch sei. Wenn einer eine Reise tut, dann kann er was erzählen.
Naja, ob aber jemals Menschen in diese heiße Wüstenwelt ohne Atmosphäre reisen möchten, sei dahin gestellt.

Jetzt warten wir erst mal, bis in einigen Jahren die Raumsonde BepiColombo am Merkur ihre Forschungsarbeit aufnimmt. Apropos Merkur und Missionen:
Folge 43 des Podcasts Raumzeit beschreibt die Mission sehr hörenswert und in Folge 44 dieses Podcast geht es um den Merkur an sich.
Inspiriert zu diesem Artikel hat mich das Buch Sternstunden des Universums von Harald Lesch, das es bei Audible auch als Hörbuch gibt.
Wie auch immer:
Bis Bepicolombo am Merkur ist, wird es aber noch viele neue Artikel auf Blindnerd geben.

Es grüßt euch herzlich
Euer Blindnerd.

Parken im All


Liebe Leserinnen und Leser,

Vor sechs Jahren hatte ich mit meinem Freund Volker, der Pfarrer ist und auch hier mitließt, eine ganz interessante Unterhaltung über Weltraum-Missionen, Satelliten für Navis und auf welche Bahnen man verschiedene Missionen oder Satelliten schicken sollte, damit sie ihre Aufgabe möglichst gut erfüllen können.
Da wir neulich wieder darauf kamen und das Thema auch durch Twitter rauschte, möchte ich meine Ausführungen gerne hier mit euch teilen.

Tanz mit der Erde

Bei Aufgaben, wo es wichtig ist, dass man von der Erde aus stehts von der gleichen Stelle aus Sicht auf den Satelliten hat, schickt man sie auf eine geosynchrone Umlaufbahn. Der Satellit umläuft die Erde synchron zur Erddrehung ein mal täglich. Die einfachste Bahn dieser Art ist die geostationäre Umlaufbahn.
Die liegt ungefähr 36.000 Kilometer über dem Äquator. Es gibt noch weitere geosynchrone Bahnen.
Diese Bahnen eignen sich gut für Satelliten zur Kommunikation, Navigation und zur Wetterbeobachtung.

Welch ein Gezerre

Für andere Aufgaben aus Erdnähe wird es dann mit den Bahnen etwas kompliziert.
Ein Hauptproblem ist die Tatsache, dass immer mehrere Körper mit ihren Gravitationskräften an unserer gedachten Raumsonde ziehen.
Da zieht die Sonne mit ihrer ungeheuren Masse, die Erde, in deren Nähe sich unsere Sonde befindet, der Mond zieht, wenn er gerade mal vorbei kommt und auch die riesigen Gasplaneten, wie unser Jupiter ziehen an der Sonde.
Als erstes dürfte den Menschen aufgefallen sein, dass Kometen, deren wiederkunft vorausberechnet war, sich verspäten können, weil sie unterwegs von anderen Körpern, wie dem Jupiter abgelenkt wurden.
Dieses Spiel der Kräfte wird dann schnell chaotisch und die Sonde muss mittels Treibstoff ihre Bahn korrigieren.
Das ist bei mehr als zwei Körpern, die sich gegenseitig beeinflussen, nicht mehr mit einer geschlossenen Formel, wie den Newtonschen Bewegungsgleichungen oder den Keplerschen Gesetzen zu lösen. Es gibt jedoch numerische Verfahren, wie man die Bahnen von derartigen Drei-Körper-Systemen, z. B. Erde-Sonne-Raumsonde, Stück für Stück berechnen kann.

Bei einigen Missionsaufgaben lässt sich aber enorm Treibstoff sparen, weil es für zwei größere Körper, z. B. Erde und Sonne die einen für ihre Verhältnisse sehr kleinen Körper, eine Raumsonde, beeinflussen Punkte gibt, bei denen man quasi kostenlos mitreisen kann. Treibstoff braucht man dann nur noch, damit man in der Nähe dieser Lagrange-Punkte, benannt nach dem Mathematiker Joseph-Louis Lagrange bleibt. Etwas korrigieren muss man schon, denn zum einen wird unser Drei-Körper-System ja auch von anderen Massen gestört, und zum anderen gibt es an den Lagrange-Punkten nichts, worum man kreisen könnte.
Es sind Punkte, bei denen sich die Zugkräfte auf unsere Sonde der im system befindlichen großen Massen, addieren, subtrahieren oder ergänzen.

Der Parkplatz an der Sonne

Nehmen wir das System bestehend aus Erde, Sonne und einer Sonde zur Sonnenbeobachtung an.
Nun ist man natürlich daran interessiert, möglichst viele Sonnenstunden zu haben, am bessten immer. Kein Tag-Nacht-Rhythmus oder ein Mondschatten soll die Beobachtung stören, und wenig Treibstoff soll die Sonde natürlich auch verbrauchen, denn wir wollen sie ja lange nutzen.
Der beste Parkplatz für so eine Sonde ist der Lagrange-Punkt eins. Er liegt zwischen Erde und Sonne.
An diesem Punkt ziehen in unserem Beispiel Erde und Sonne gleich stark von gegenüberliegenden Seiten an der Sonde, und halten sie auf diesem Punkt fest. Da die Erde deutlich weniger Masse als die Sonne besitzt, liegt dieser Punkt näher an der Erde.
Er liegt ungefähr 1,5 Mio Kilometer von der Erde aus gesehen in Richtung Sonne. Das ist gerade mal ein Prozent der ganzen Strecke Erde-Sonne.
Und was an dem Punkt noch praktisch ist, die Erde zieht unsere Sonde mit sich auf ihrer Umlaufbahn um die Sonne. Somit hat die Sonde den Stern stets im Blick und die Antenne für die Daten zeigt immer brav in Richtung Erde. Klar, die dreht sich natürlich einmal täglich unter der Sonde hindurch, das stört aber nicht, weil es Empfangsantennen für die Daten um den ganzen Erdball verteilt gibt, oder man speichert die Daten und schickt sie dann zur Erde, wenn sich die Heimat-Antenne unter der Sonde vorbei bewegt. Und wenn nicht gerade eine Sonnenfinsternis stattfindet, dürfte nicht mal der Mond mit seinem Schatten störend durch den Datenstrahl zur Erde laufen. Wir merken also: Der LagrangePunkt L1 Erde-Sonne ist ein idealer Parkplatz für Beobachtungen unseres Sterns.
Es sei denn, man möchte auch die Pole der Sonne sehen, dann ist L1 nicht geeignet.
Tatsächlich befinden sich Raumsonden zur Sonnenbeobachtung in Lagrange-Punkt eins des Erde-Sonne-Systems.

Der Punkt ohne Rückkehr

Natürlich gibt es auch im System Erde-Mond einen eigenen L1. Dieser könnte interessant sein, wenn man nicht die Erde, sondern den Mond beobachten möchte. Da der Mond uns aber stets die gleiche Seite zeigt, wäre hier vermutlich nicht viel spannendes zu sehen. Ich glaube, es gibt derzeit keine Sonde in diesem Punkt.
Der Abstand zu L1(Erde-Mond) ist für Mondfahrer interessant. Er liegt etwa 326.000 Kilometer in Richtung Mond. Der Abstand Erde-Mond beträgt im Mittel 384.400 Kilometer. Da der Mond deutlich weniger Masse als die Erde besitzt, liegt dieser L1 natürlich näher bei ihm. Befindet man sich näher als dieser Abstand beim Mond, dann wird man von ihm angezogen. Das bedeutete für die Apollo-Missionen, dass es von da ab nicht mehr möglich war, ohne Triebwerk zur Erde zurück zu fallen (Point of no return).

Im Schatten

Wer wünscht sich im Sommer keinen Parkplatz unter einem schattigen Baum.
Bei vielen Missionen ist es auch so, dass gerade die Sonne mit ihrer Wärme und ihrem Licht stört. Aus diesem Grunde parkte man die beiden WeltraumteleskopeHerschel und Planck, die u. A. Beobachtungen im Infrarot-Bereich, also Wärme, machen sollten, in L2(Erde-Sonne). Dieser liegt von der Sonne aus gesehen 1,5 Mio Kilometer hinter der Erde auf einer Linie mit Erde, L1 und der Sonne.
Aktuell befindet sich dort Das Weltraumteleskop Gaia, das im Schatten der Erde Sterne zählt und katalogisiert.
Das astronomisch teure und viel verspätete Teleskop, James Webb, soll auch im L2-Punkt des Erde-Sonne-Systems geparkt werden.

Die dunkle Seite

L2(Erde-Mond) liegt auf der Rückseite des Mondes, die uns stets abgewandt ist.
Vom Erdmittelpunkt aus gemessen, liegt der Punkt 449 km entfernt knapp hinter dem Mond auf der Verbindungslinie Erde-Mond, auf welcher sich auch L1 dieses Systems befindet. Bis vor kurzem war dieser Punkt für die Raumfahrt nicht sehr spektakulär. Das änderte sich jedoch, seit China einen Rover und eine Sonde auf der Rückseite des Mondes landete.
Der Kommunikationssatellit von Chang’e-4 ist am L2-Punkt geparkt (genauer umkreist L2). Somit stellt er Funkkontakt vom Lander und Rover zur Erde her.

Wo liegt die “Gegenerde”?

Im Fall Sonne-Erde liegt der dritte Lagrange-Punkt auf der uns gegenüberliegenden Seite der Sonne, knapp 190 km weiter weg von der Sonne als die Erde. In diesem Punkt bewirken die (gleichgerichteten) kombinierten Anziehungskräfte von Erde und Sonne wieder eine Umlaufdauer, die gleich der der Erde ist.
Schwurbler vermuten hier eine “Gegenerde” die man nie zu sehen bekommt.
Meines Wissens kann man mit diesem Punkt in der Raumfahrt nicht viel anfangen, weil kein Funkkontakt zur Erde möglich wäre. Die risige Sonne mit ihrem eigenen Radio-Programm wäre immer störend im Wege.
Leben sollte man dort aber schon können.

L3 Erde-Mond liegt auf der Verbindungslinie Erde-Mond, etwa 382,500 Kilometer hinter der Erde vom Mond aus betrachtet.

Trojaner und blinde Passagiere

L4 und L5 solcher Systeme sind für Asteroiden-Forscher interessant.
Sie bilden jeweils ein gleichseitiges Dreieck mit den beiden massereichen Körpern eines derartigen Systems. Beim System Erde-Sonne läge dann die Sonne auf einer, die Erde auf der zweiten und die Sonde auf der dritten Ecke dieses gleichseitigen Dreiecks.
Im Falle Erde-Sonne liegt in Bewegungsrichtung der Erde um die Sonne gedacht, L4 60 Grad vor und L5 60 Grad hinter der Erde.
Wer mag, kann ja mal mit dem Abstand Erde-Sonne von 150 Mio Kilometern das Dreieck aufspannen und berechnen.

Manchmal kommt es vor, dass sich ein kleiner Asteroid als blinder Passagier in L4 oder L5 eines solchen Systems parkt. Unsere Erde führt einen sog. Trojaner in einem dieser Punkte mit. Auch bei Jupitermonden hat man schon Trojaner gefunden.
Selbstverständlich sind auch Trojaner in den anderen Lagrange-Punkten (L1, L2 und L3) denkbar.

Zusammenfassung

Also, nochmal zusammengefasst:

  • Wir haben ein System von zwei massereicheren und einem im verhältnis sehr leichten und kleinen Körper.
  • Insgesamt gibt es in solchen Systemen fünf Lagrange-Punkte.
  • Die ersten drei liegen auf der Verbindungslinie der beiden massereichen Körper, in unserem Beispiel Erde-Sonne.
  • L1 befindet sich dabei zwischen Erde und Sonne an dem Punkt, wo sich deren Schwerkräfte aufheben.
  • L2 befindet sich auf der Verbindungslinie hinter dem masseärmeren Körper (Erde im Beispiel). An ihm addieren sich beide Massen der körper und gleichen sich mit der Masse der Sonde aus.
  • L3 liegt auch auf der Verbindungslinie, doch hinter dem massereicheren Körper (sonne).
    Hier subtrahiert sich die Masse des kleineren Körpers (Erde) von der des größeren (Sonne).
  • Der vierte und fünfte Lagrange-Punkt bilden mit den beiden Körpern jeweils die Eckpunkte eines gleichseitigen Dreiecks
    (also mit einem Winkel von je 60 Grad).
  • Der Vollständigkeit halber muss hier unbedingt nochmal erwähnt werden, dass die Abstände zwischen den Körpern stets von deren Mittelpunkten aus gemessen werden, da ihre Volumina nichts damit zu tun haben.
  • Also nochmal: Auf einer Linie liegen im Erde-Sonne-System von links nach rechts
    L2, Erde, L1, Sonne, L3.
    L4 und L5 spannen mit Erde und Sonne dann jeweils ein gleichseitiges Dreieck auf.
    L4 läge dann in unserem Beispiel 60 Grad oberhalb vor der Erde in Richtung Sonne und L5 60-Grad unterhalb.
  • Allen fünf Lagrange-Punkten ist gemeinsam, dass man auf ihnen mit dem kleineren Körper, der um den größeren kreist, kostenlos mitreisen kann.

Epilog

So, jetzt hoffe ich, dass ich das einigermaßen anschaulich auch ohne Bild beschreiben konnte.
Mir ist das immer ganz wichtig, dass ich auch von sehenden Menschen Rückmeldungen bekomme, ob meine Erklärungen stimmen.
Es könnte ja sein, dass ich als Blinder zu manchen Dingen eine ganz falsche Vorstellung habe.
Andererseits muss ich mir die Sachen irgendwie auch so klar machen, dass ich sie erklären kann. Ich kann nicht einfach mal etwas einfach so hin zeichnen. Allerdings tue ich das im Kopf trotzdem.
Ich stelle es mir ungefähr so vor:
Wenn ich über Gaia in L2 erzähle, dann ist es in meiner Vorstellung so, dass ich mit der Sonde fliege, fast, dass ich die Sonde bin.
Ich höre dann quasi hinter mir die Erde mit ihrem Schatten und schaue mit meinem Kopf dorthin, wo gaia hin sehen soll.
Sie beschreibt eine Lissajous-Figur um L2, wofür sie Treibstoff benötigt.
Das mit der Lissajous-Figur ist zwar etwas theoretischer, aber ich weiß, dass Gaia immer so fliegen muss, damit ihre Sonnenpaddel aus dem Erdschatten kommen, um Sonnenenergie zu tanken.
Gaja vollführt noch eine Drehung um sich selbst. Die lassen wir hier mal in der Vorstellung besser weg, um jegliche Raumkrankheit zu vermeiden.

So, meine lieben, das war jetzt wieder etwas länger. Ich hoffe, es hat etwas gefallen und war interessant.
Wenn ja, dann lesen, liken, teilen und oder kommentieren. Ach ja, das Gewinnspiel läuft noch. Wer einen Beitrag kommentiert, könnte einen Ende August einen kleinen astronomischen Preis von mir erhalten…

Gehabt euch wohl,
tragt fleißig eure Masken,
passt auf euch und andere auf und bleibt gesund.

Es grüßt euch
Euer Blindnerd.