Die Himmelskatze


Meine lieben,
und hiermit meldet sich der Blindnerd nach einer etwas längeren Sommerpause zurück.

ich weiß, dass viele in meinem Umfeld Katzen mögen oder auch besitzen. Ich habe zwar keine eigene, mag sie aber sehr. Ich kann mich noch sehr gut daran erinnern, dass ich zum Leidwesen meiner Mutter gerne eine Katze in mein Bett nahm. Unser Kinderzimmer war unbeheitzt und wir hatten im Winter Eisblumen an den Fenstern. Da war so ein kuscheliges warmes schnurrendes Kätzchen schon etwas sehr schönes.
Neulich diskutierten wir über eventuelle Inhalte eines Buches. Da kam die Idee auf, eventuell mal eine Anthologie über Katzengeschichten zu schreiben.
Sollte es tatsächlich mal dazu kommen, dann bin ich am Himmel bestens vorbereitet, denn fast hätte es die Katze tatsächlich als Sternbild an den Himmel geschafft.

Hier kommt also eine astronomische Katzengeschichte.
Die Katze (lat. felis) ist ein Sternbild des Südhimmels, das nicht zu den 88 von der Internationalen Astronomischen Union (IAU) anerkannten Sternbildern zählt.
Die Katze ist Teil des offiziellen Sternbildes Wasserschlange. Sie liegt südwestlich des Stern μ Hydrae (42 Hya) und besteht nur aus lichtschwachen Sternen bis maximal 5m Größenklasse.

Die Größenklasse ist ein sehr konservatives astronomisches Maß für die Helligkeit der Sterne. Lasst uns kurz darauf eingehen.

Aus babilonischer Tradition heraus, wo die Zahl sechs eine besondere Rolle spielte, teilte man die Helligkeit der Sterne in sechs Größenklassen ein, was Hiparch für seinen Sternenkatalog, in welchem 900 Fixsterne verzeichnet waren, übernahm.
Klasse eins umfasst die hellsten Sterne. und sechs diejenigen, welche man gerade noch so mit bloßem Auge am unverschmutzten Himmel sehen kann.

Bemerkenswert ist, dass unsere Sonne damals nicht als Stern gezählt wurde. Ansonsten hätte man doch wohl ihr die eins zugeordnet.

Spätestens, als man das Teleskop erfunden hatte, und klar war, dass auch die Sonne einen gewöhnlichen Stern darstellt, musste man die Skala nach beiden Seiten hin erweitern, denn mit diesen Instrumenten konnte man nun auch noch Objekte wahrnehmen, die jenseits dessen in der Skala lagen, was man mit bloßem Auge noch sehen konnte. Außerdem gibt es Objekte am Himmel, die deutlich heller, als die Objekte der Klasse eins sind, wie z. B. unsere Sonne eben.
Die Helligkeitsskala wurde 1850 von Norman Pogson logarithmisch so definiert, dass ein Stern erster Größe (1,0 mag) genau hundertmal so hell ist wie ein Stern sechster Größe (6,0 mag), und dieser hundertmal heller als ein Stern elfter Größe
(11,0 mag).
Die Eichung der Skala erfolgte an sogenannten Standardsternen.
Sehr große Teleskope reichen visuell bis etwa zur 22. Größe, moderne Astrofotografie zur 25. Größe. Im Hubble Extreme Deep Field sind noch Galaxien mit einer Helligkeit von 31,5 mag erkennbar.
Hellere Objekte als die 0. Größe erhalten ein negatives Vorzeichen, z. B. die Venus −4,4 mag oder die Sonne −26 mag.

Na so was. Da hat die Sonne tatsächlich ein negatives Vorzeichen. Das meine ich eben mit den konservativen Astronomen. Da benutzen sie einfach die alten Maßeinheiten aus Babylon weiter und wursteln sich damit so durch. Für unsere Katze bedeutet das jedenfalls, dass sie mit bloßem Auge gerade noch so zu sehen ist, wenn man sich auf der Südhalbkugel befindet.
Südlich von der Katze liegt das Sternbild Luftpumpe und westlich von ihr das Sternbild Kompass.
Und diese technischen Namen für Sternbilder, sind geschichtlich sehr spannend.
Im Zusammenhang der Kolonialisierung, Ausbeutung und dem grenzenlosen Glauben an Technik und Fortschritt entrissen wir den auf der Südhalbkugel lebenden indigenen Völkern auch ihren Himmel, ihre Sterne, ihre damit verbundenen Geschichten und somit ihre Kultur. Diese Hybris drückt sich dann in Namen für Sternbilder, wie Luftpumpe, Kompass, Chemischer Ofen, etc. aus. Welch unfassbare abendländische Arroganz.

Aber zurück zur Katze.
Eingeführt wurde das Sternbild „Felis“ von Jérôme Lalande in seiner Himmelskarte von 1799 und es ist unter anderem im berühmten Sternkatalog von Johann Elert Bode zu finden. Eine Motivation dafür mag gewesen sein, den Dichter Voltaire zu ärgern, der keine Katzen mochte und des Öfteren lästerte, dass sie die Aufnahme unter die 33 Sternbild-Tiere nicht geschafft hatten. Lalande jedenfalls nannte als Begründung: Ich mag Katzen. Soll diese Katze an den Himmelskarten kratzen. Der Sternenhimmel hat mich genug Sorgen gekostet, jetzt kann ich auch einen Scherz damit haben.

Ein kleiner Trost zum Schluss:
Wenn auch die Hauskatze heutzutage unter den 88 anerkannten IAU-Sternbildern fehlt, so stellen immerhin drei der IAU-Sternbilder taxonomisch Katzen dar: Löwe, Kleiner Löwe und Luchs. Das muss allen Katzenfreunden genügen.

Die Chancen stehen gut


Es ist mal wieder so weit. Sternschnuppenzeit im August.
Und diesmal ohne störenden Vollmond und mit besten Wettervoraussagen.
Über dieses Ereignis habe ich zwar schon in der Vergangenheit geschrieben, aber es ist immer wieder einige Worte wert, und ihr glaubt ja gar nicht, wie viel ich von einem mal auf das nächste Ereignis, an den Artikeln schraube. Einfach nur kopieren und nochmal veröffentlichen is nich…
Also dann:
Jedes Jahr im August erreicht der Nachthimmel seinen Höhepunkt an Schönheit und Faszination, wenn die Perseiden, auch bekannt als „Tränen des Laurentius“, über uns hinwegziehen.
Dieser jährliche Meteoroidenschauer ist vermutlich das von Medien und Amateurastronom:innen am meisten erwartete und beobachtete Himmelsereignis in unserem Jahreslauf.

Namensgebung

Der scheinbare Ursprung dieses Stroms, liegt im namensgebenden Sternbild Perseus.
Das Sternbild soll die Gestalt des griechischen Helden Perseus darstellen, der die tödliche Medusa besiegte. Der Stern Algol repräsentiert das abgeschlagene Medusenhaupt, das er in der Hand hält.
Der Name „Perseiden“ leitet sich also von diesem Sternbild ab, aus dem heraus die Meteore zu strömen scheinen.
Tatsächlich stammen die Meteore aber aus den Hinterlassenschaften des Kometen 109P/Swift-Tuttle. .
Sie erscheinen uns aufgrund der Perspektive nur so, als kämen sie aus der Richtung des Sternbildes Perseus.
Da das Erscheinen der Perseiden mit dem Fest des Märtyrers Laurentius am 10. August zusammenfällt, der im Jahre 258 das Martyrium auf einem glühenden Rost erlitt, werden sie im Volksmund auch Laurentiustränen oder Tränen des Laurentius genannt. Kurz vor seinem Tod soll Laurentius der Legende nach seinem Widersacher, dem römischen Kaiser Valerian, die folgenden Worte gesagt haben:

Du armer Mensch, mir ist dieses Feuer eine Kühle, dir aber bringt es ewige Pein.

Hach, wie ist das einfach nett, wenn man in der Astronomie so schön vom Höckchen auf’s Stöckchen kommt.

Beobachtung

Perseus gehört zu den 48 klassischen Sternbildern, die von Ptolemäus beschrieben wurden.
Die erste überlieferte Beobachtung der Perseiden fand vor etwa zwei Jahrtausenden in China statt. Danach gibt es Berichte aus Japan und Korea. In Europa stammt die erste bekannte Beobachtung aus dem Jahr 811.
Bereits im Mittelalter hatten arabische Astronomen die eigenartige Verdunklung des Sterns Algol beobachtet. Der Name leitet sich aus dem arabischen Ras al Ghul ab und bedeutet Haupt des Dämonen.

Vom 17.Juli bis zum 24. August kann jedes Jahr vermehrt mit Sternschnuppen gerechnet werden.
Das Maximum findet immer um den 12. August herum statt.

Am besten beobachtet man die Sternschnuppen an einem möglichst dunklen Ort auf dem Land, wo kein Stadtlicht stört. Man legt sich am besten auf eine Wiese auf den Rücken und wendet nach Mitternacht den Blick gen Osten, also in Richtung Erddrehung. Man dreht sich dann quasi mit der Erde in den Meteorschauer hinein. Das ist dann etwa so, als führe man mit einem Auto schnell durch den Regen. Dann bekommt die Windschutzscheibe ja auch deutlich mehr Regen ab, als die Heckscheibe.
Im Gegensatz zu letztem Jahr haben wir 2023 das Glück, dass der Mond die Beobachtungen nicht durch seine Helligkeit stören wird.
Am besten sichtbar sind die Perseiden auf der Nordhalbkugel.

Was sind nun die Perseiden?

Die Perseiden bestehen aus dem, was der Komet 109P/Swift-Tuttle. bei seinen letzten Besuchen durch erwärmung, schmelzen etc. verloren hat.
Er erscheint ungefähr alle 130 Jahre und entfernt sich dann stets etwas schlanker, als er vorher war. Das nächste Mal wird er um das Jahr 2126 erwartet. Ganz genau kann man das bei Kometen nie sagen, weil ihre Bahn von den Planeten gestört werden können, bzw. sie selbst ihre Bahn ändern, wenn sie aktiv sind. Dann wirkt sich die Aktivität wie kleine Schubdüsen aus.
Die Erde kreuzt auf ihrer Bahn immer um den 12. August die Staubspur, die dieser Komet im All hinterlässt, wenn er vorbei kommt. Die Staubteilchen treffen dabei mit hoher Geschwindigkeit auf die Atmosphäre und bringen die Luftmoleküle zum Leuchten. Die Sternschnuppe ist daher nicht das verglühende Staubkorn selbst, sondern wird durch das Rekombinationsleuchten der ionisierten Luft sichtbar.

Momentan werden die zu erwarteten Sternschnuppen jedes Jahr immer weniger, weil zum einen schon viel in der Erdatmosphäre verglühte und zum anderen sich der Kometenstaub, immer mehr verteilt und somit ausdünnt.
Es wird Zeit, dass er mal wieder vorbei kommt, und seine Bahn für uns mit neuem „Sternenstaub“ auffüllt.
Eines Tages wird der Komet vollständig aufgelöst sein.
Dann wird es die Perseiden nicht mehr geben, weil kein Nachschub an Staub mehr kommt.

Sternschnuppen hören

Hörbar sind die Perseiden zumindest für Amateurfunker, die einen Empfänger und eine passende Antenne besitzen, auch.
Diese Disziplin des Amateurfunks nennt man Meteor Scatter.
Wer einen passenden Empfänger und eine Antenne besitzt, kann das Französische Radar-Signal des Weltraumradars GRAVES benutzen. Dieses französische Radarsystem sendet auf 143,050 MHz einen Dauerträger, Dauerton, der über Phasenarray-Antennen den Himmel “abtastet”. Meteoriten, aber auch andere Objekte (Flugzeuge, Satelliten, die ISS, der Mond) reflektieren das Signal und streuen es in alle Richtungen, und diese Reflexionen können dann in Europa gut empfangen werden. Anhand der Doppler-Abweichung erkennt man dann, welches Objekt das Funksignal reflektiert hat: der Mond oder Flugzeuge bewirken eine sich nur langsam ändernde Dopplerabweichung, bei Objekten in Erdumlaufbahn ändert sich die Abweichung schnell, und bei Meteoriten extrem schnell.
Und wie sich Sternschnuppenanhören findet ihr in
„diesem Link“.

Fazit

Die Perseiden bieten eine großartige Gelegenheit, die Wunder des Universums zu bestaunen und gleichzeitig Einblicke in die faszinierende Welt der Astronomie zu gewinnen. Obwohl wir meist von störendem selbstgemachten Kunstlicht, Lichtverschmutzung, umgeben sind,
welches uns oft von den Schönheiten des Nachthimmels trennt, erinnert uns dieses alljährliche Naturschauspiel daran, wie klein wir im Vergleich zum Universum sind und wie viel es noch zu entdecken gibt. Also schnappt euch eine Decke, sucht euch einen gemütlichen Ort und lasst euch von den Tränen des Laurentius verzaubern.
Und bitte auch das Wünschen nicht vergessen…

Von Wasser, äther, Spiegeln, Zahnrädern und Licht


Meine lieben,
Gerne lese ich dann und wann Weltraumbücher für Kinder, weil ich in ihnen immer mal wieder auf ganz verblüffende kindgerechte Erklärungen physikalischer oder astronomischer Phänomene stoße. Diese Ideen verwende ich dann für meine Kinderveranstaltungen.

gestern hörte ich in dem Astronomiebuch „Hat der Weltraum eine Tür“ für Kinder und Jugendliche der Kinderuniversität Tübingen zum ersten mal von einem spannenden Versuch, mit welchem die Lichtgeschwindigkeit gemessen wurde.
Dieser geniale Versuch ist der Anlass zu diesem Artikel.

In Station sechs zu meiner Serie zu den schwarzen Löchern streiften wir die Messung der Lichtgeschwindigkeit zwar kurz, sind dort aber eher auf weitere Eigenschaften des Lichtes eingegangen. Heute schauen wir uns an, wie man sich allmählich der Lichtgeschwindigkeit mittels verschiedener Versuche annäherte.

Galileis Misserfolg

Sehr frühe Diskussionen über die Geschwindigkeit des Lichts stammen aus dem 17. Jahrhundert. Galileo Galilei war einer der ersten, der versuchte, die Geschwindigkeit des Lichts zu messen. Er nutzte dabei eine Methode, die auf der Beobachtung der Laternensignale entfernter Beobachter basierte. Obwohl er einige Schätzungen machte, war sein Ansatz unzureichend, da die Lichtgeschwindigkeit extrem hoch ist und die technischen Mittel der damaligen Zeit nicht ausreichten, um eine präzise Messung vorzunehmen.
Wie sein Versuch genau ablief, konnte ich nicht herausfinden.

Ein Mond verspätet sich

Im Jahr 1676 stellte der dänische Astronom Ole Roemer fest, dass die Zeiten zu welchen der Mond IO seinen Planeten, Jupiter, verdeckt, je nach der Position der Erde zum Jupiter bis zu mehreren Minuten variierten. Das passte so gar nicht zu den Zeiten, die man mittels Tabellen und Formeln vorausberechnet hatte. Man kann sich gut vorstellen, dass er mit seiner beunruhigenden Beobachtung sofort zu seinem Vorgesetzten, dem großen und berühmten Astronomen Giovanni Domenico Cassini, der zu der Zeit Direktor des Pariser Observatoriums war, ging, um ihm davon zu berichten.
Aus diesen Abweichungen schloss nun Römer, dass das Licht eine endliche Geschwindigkeit haben muss, wenn die Verzögerungen vom Abstand zwischen Jupiter und der Erde abhängig sind. Je nach Position von Erde und Jupiter braucht das Licht einfach länger, bzw. wieder kürzer, um von dem Ereignis der Bedeckung von Jupiter durch seine Monde zu künden. Ja, auch Schatten breitet sich mit Lichtgeschwindigkeit aus…
Und so formulierte er 1676 also die Hypothese, dass die Lichtgeschwindigkeit endlich sein müsse.
Der von Roemer ermittelte Wert für die Geschwindigkeit des Lichtes wich nur um 30 % vom tatsächlichen Wert ab.
Sein Vorgesetzter, Cassini, stimmte zunächst zu und widersprach anschließend, weil er ein Anhänger der damals vorherrschenden Annahme einer augenblicklichen Lichtausbreitung war, die auf René Descartes zurück ging.
Cassini war eine sehr illustre und konservative Persönlichkeit, in welcher sich das alte geozentrische Weltbild, das neue von Kopernikus und so manch andere Ansichten vermischten. Er ist bei Gelegenheit mal einen eigenen Artikel wert.

Von Zahnrädern, Spiegeln und Lichtquellen

Und jetzt kommen wir zu dem in oben erwähnten Kinderbuch beschriebenen Experiment.
Der französische Physiker Armand Fizeau führte 1849 ein bahnbrechendes Experiment durch, das eine präzisere Annäherung an die Lichtgeschwindigkeit ermöglichte.
1849 nahm Fizeau Messungen der Lichtgeschwindigkeit in verschiedenen Medien vor. Seine erste Untersuchung galt der Lichtgeschwindigkeit in Luft, wofür er eine von Galileo Galilei erdachte Methode verfeinerte. Mit einem rotierenden Zahnrad und mit Hilfe zweier Fernrohre konnte er aus der Umdrehungsgeschwindigkeit des Rads und der vom Licht zurückgelegten Strecke die Lichtgeschwindigkeit annähernd berechnen.
Ein Lichtstrahl wurde auf den Spiegel gerichtet und von dort zum rotierenden Zahnrad reflektiert. Abhängig von der Rotationsgeschwindigkeit des Rades konnte der zurückkehrende Strahl entweder durch eine Zahnlücke passieren oder wurde blockiert. Indem er die Rotationsgeschwindigkeit anpasste, konnte Fizeau die Geschwindigkeit des Lichts auf ungefähr 313.000 Kilometer pro Sekunde bestimmen – ein Wert, der erstaunlich nah an der heutigen akzeptierten Lichtgeschwindigkeit von etwa 299.792 Kilometer pro Sekunde liegt.
Der ermittelte Wert, der um fünf Prozent zu hoch war, wurde später von Foucault korrigiert.
Ebenfalls 1849 berechnete Fizeau mit der Methode der Spiegelrotation die Lichtgeschwindigkeit in unbewegtem Wasser, 1851 folgte die Messung in bewegtem Wasser. Anhand der Messergebnisse konnte Fizeau zeigen, dass die Lichtgeschwindigkeit in Wasser geringer ist als in Luft. Die Abhängigkeit der Lichtgeschwindigkeit von der Strömungsrichtung des Wassers ließ sich nicht mit dem Additionsgesetz der Geschwindigkeiten der klassischen Mechanik vereinbaren, weshalb die Fizeau’schen Messungen später von Albert Einstein als experimentum crucis (entscheidendes Experiment) für die spezielle Relativitätstheorie gewertet wurden.

Die Tatsache, dass Licht sich in verschiedenen Medien mit unterschiedlicher Geschwindigkeit bewegt, und dass diese dann auch noch davon abhängt, ob das Medium strömt, oder in Ruhe ist, führt uns unmittelbar zu unserem nächsten Versuch.

Das Grab des Äthers

Bevor wir den besprechen, müssen wir einen kleinen Umweg über die alten Griechen nehmen. Der Zusammenhang wird bald deutlich werden.


Aristoteles verwarf aus einigen Gründen die Idee der Atome und des leeren Raumes.
Dass hier auf Erden leichte Gegenstände langsamer als schwere fallen, schrieb er der Tatsache zu, dass es keinen leeren Raum gäbe, ansonsten müssten in ihm alle Gegenstände gleich schnell fallen. Der hätte Augen gemacht, wenn er 1971 hätte sehen Können, wie ein Astronaut gleichzeitig eine Feder und einen Hammer aus Hüfthöhe auf den Mond fallen ließ. Beide Teile, Hammer und Feder erreichten gemeinsam die Mondoberfläche…
Aristoteles erfüllte das Vakuum mit Äther. Diesen Äther, nicht zu verwechseln mit der stark riechenden chemischen Verbindung gleichen Namens, hielt man für eine dünne, universelle Substanz, die den gesamten Raum und auch alle materiellen Körper durchdringen, die sich aber nicht messen lasse. Als Idee hielt sich der Äther bemerkenswert lange und lebte auch dann noch weiter, als der Grund entfallen war, der Aristoteles ursprünglich dazu veranlasst hatte, ihn zu postulieren.

Und hier schließt sich nun der Kreis zur Ausbreitung von Licht in ruhenden oder strömenden Medien. Damals war der „Äther-Glaube“ noch topp aktuell. Sollte es ihn tatsächlich geben, dann sollte sich das Licht gegen oder mit der Bewegung der Erde um sich selbst und um die Sonne mit unterschiedlicher Geschwindigkeit ausbreiten.

1887 führten die beiden Amerikanischen Physiker Michelson und Morley einen Versuch durch, der das Grab des Äthers werden sollte.
Ausgangspunkt ihres Versuches war genau die oben schon erwähnte Idee, dass wenn es einen Äther gäbe, sollte man in Bewegungsrichtung der Erde durch ihn hindurch eine Art Äther-Wind nachweisen können. Das ist dann vergleichbar mit einem Schiff, das durch das Wasser pflügt. Wellen breiten sich gegen die Fahrtrichtung des Schiffes mit weniger Geschwindigkeit aus, als in Fahrtrichtung.
Das sollte mit in den Äther einfallendem Licht nicht anders sein.
Es sollte gegen den Äther-Wind langsamer sein, als mit ihm.
Solch einen Effekt jedoch konnten die beiden Wissenschaftler nicht nachweisen. Das bedeutet, dass sich Licht mit konstanter Geschwindigkeit von 300.000 km/s durch den Raum, durch das Vakuum bewegt und dass das Vakuum letztlich nicht von einem Äther erfüllt ist.
Licht genügt das Vakuum als Medium.
Es benötigt keinen weiteren Stoff hierzu, wie beispielsweise der Schall die Luft.

Wikipedia erklärt den Versuchsaufbau in aller Kürze so:

Um die Relativgeschwindigkeit von Erde und Äther festzustellen, wurde ein Lichtstrahl über einen halbdurchlässigen Spiegel auf zwei verschiedene Wege getrennt, reflektiert und am Ende wieder zusammengeführt, sodass sich ein Interferenzmuster stehender Lichtwellen bildete (Michelson-Interferometer). Aufgrund der Bewegung der Erde im Äther ergäbe sich, dass ein Lichtstrahl in Bewegungsrichtung länger benötigt als ein Strahl senkrecht dazu. Da sich der Apparat als Teil der Drehung der Erde um die Sonne relativ zum vermuteten Äther bewegte, erwartete man Verschiebungen der Interferenzstreifen, wenn der Apparat gedreht wird. Albert A. Michelson führte das Experiment, das wegen der im Verhältnis zur Lichtgeschwindigkeit c geringen Bahngeschwindigkeit v der Erde nicht einfach war, zuerst 1881 durch, jedoch war hier die Genauigkeit nicht ausreichend, denn Michelson hatte in seinen Berechnungen die Veränderung des Lichtweges senkrecht zur Bewegungsrichtung nicht einbezogen. 1887 wiederholten er und Edward W. Morley das Experiment mit ausreichender Genauigkeit. Obwohl das Ergebnis nicht vollständig negativ war (zwischen 5 und 8 km/s), war es nach Einschätzung von Michelson und anderen Physikern jener Zeit viel zu gering, um etwas mit dem erwarteten Ätherwind zu tun zu haben. Wenn nicht nur die Relativgeschwindigkeit der Erde zur Sonne von 30 km/s berücksichtigt wird, sondern auch die – zu Michelsons Zeit noch unbekannte – Rotationsgeschwindigkeit des Sonnensystems um das galaktische Zentrum von ca. 220 km/s und die Relativgeschwindigkeit zwischen dem Sonnensystem und dem Ruhesystem der kosmischen Hintergrundstrahlung von ca. 377 km/s, so wären nochmals größere Werte zu erwarten. Darüber hinaus haben spätere, bis in die heutige Zeit durchgeführte Messungen die ursprüngliche Methode Michelsons weiter verfeinert und lieferten im Rahmen der Messgenauigkeit vollständige Nullresultate.

Danke Wiki…
Irgendwie erinnert mich der Versuchsaufbau fast an den Aufbau der Messgeräte zum Nachweis von Gravitationswellen. Und die Frage, die mit diesem Versuch an das Licht gestellt wird, ist eindeutig eine Wellen-Frage. Hier ist das Licht also Welle und nicht Teilchen.
Ist das nicht schön?

Fazit

Und hier kommt noch ein kleines Fazit von mir und ChatGPT:

Wir haben erlebt, dass die Messung der Lichtgeschwindigkeit eine sehr spannende Reise durch die Physik ist. Würde man alles vertiefen, was wir hier leider nur streifen konnten, dann könnte man damit locker ein dickes Buch füllen.
Von den frühen Schätzungen und Annäherungen bis hin zu den hochpräzisen modernen Techniken hat die Bestimmung der Lichtgeschwindigkeit unser Verständnis des Universums und der Naturgesetze revolutioniert. Die Lichtgeschwindigkeit bleibt ein wesentlicher Bestandteil der modernen Physik und wird auch in Zukunft weiterhin eine Quelle der Inspiration für Wissenschaftler auf der ganzen Welt sein.

Und wer sich noch mehr für Licht, Interferenz, seine weiteren Eigenschaften, , Äther, und das Vakuum interessiert, dem empfehle ich meine Artikel

Ein Bruder im Geiste zu Gast auf Blindnerd


Meine Lieben,
heute habe ich die Ehre, einen weiteren blinden Hobbyastronomen hier als Gast begrüßen zu dürfen. Wir kannten uns bisher nicht persönlich. Sein Name tauchte manchmal in diversen sozialen Medien auf. Aufmerksam wurde ich auf ihn durch einen Artikel, den er im Newsletter von Blindzeln.org veröffentlichte. Was die Blindzler sind und tun, beschrieb ich schon an anderer Stelle, wo es u. A. um den Arbeitskreis der blinden Autor:innen ging.
Sofort nahm ich mit diesem interessanten Menschen Kontakt auf, und bot ihm an, mein Gast sein zu dürfen.
Er sagte zu und erwies mir damit eine große Ehre.
Nun also die Bühne frei für meinen Mitbruder im Geiste, Hermann-Joseph Kurzen.

Bis kurz vor der Erlangung der Mittleren Reife konnte ich noch sehen. Damals betrug mein Sehrest noch ca. 10 %. Zu jener Zeit kannte ich den Spruch „Unter den Blinden ist der Einäugige König“ noch nicht. Das ist jetzt rund 50 Jahre her. Damals hatte ich einen Sportunfall und innerhalb von nur zwei Wochen war ich blind. Aber das ist eine ganz andere Geschichte.

An wissenschaftlichen sowie technischen Themen war ich eigentlich schon immer interessiert. Und dafür habe ich einen nicht unbedeutenden Teil meines Taschengeldes ausgegeben. Es hat mich in der Schule immer geärgert, dass derartige Themen nur stiefmütterlich durchgenommen wurden. Und so bin ich gewissermaßen in die Welt der Technik und Wissenschaft hineingerutscht. Und mit diesem Wissen konnte ich auch gut angeben. Folgerichtig habe ich auch keine Gegenmaßnahmen unternommen. Genau das Gegenteil habe ich gemacht. So richtig haben das weder meine Lehrer noch meine Mitschüler verstanden. Aber das hat mich nur noch stärker motiviert. Einen Teil meines Kleiderschrankes habe ich dazu benutzt, um dort Bücher, Zeitschriften und kleinere Instrumente unterzubringen. Nur ein Astronomie-Diplom habe ich eingerahmt und an die Wand gehängt. Sinnigerweise habe ich mich für die Wand entschieden, die der Tür gegenüber war.

In der Schule lernt man zunächst in der Heimatkunde seine unmittelbare Umgebung kennen. Später kommt dann die Erdkunde hinzu. Und dann ging es bei mir privat weiter mit der Astronomie. Den Mond kannte ich ja bereits. Aber im Grunde genommen wusste ich nicht besonders viel über ihn. Fragen über Fragen tauchten in diesem Zusammenhang auf. Und in der Fachliteratur habe ich dann nach Lösungen gesucht. Bedingt dadurch wurde ich manchmal als „Professor“ bezeichnet. Man darf bei allem nicht vergessen, dass das Jahrzehnt war, in welchem die Amerikaner vollundig verkündet hatten, dass sie bis zum Ende des Jahrzehnt auf dem Mond landen wollten. Und so war ich endgültig verloren und habe mich dann eben auch noch mit der Weltraumfahrt beschäftigt. Ich habe dann sogar kleine Raketen gebaut, die ich aus Gegenständen des täglichen Lebens zusammengebaut habe, die jedoch nicht funktionstüchtig waren. So bestand beispielsweise der Raketenkörper aus einem Maßbecher aus Aluminium. Als Düse für den Raketenmotor habe ich die Tülle eines Heizkessels verwendet. Und es gab sogar eine Nutzlast. Dabei habe ich auf eine kleine Glühbirne zurückgegriffen, die normalerweise bei meiner Modelleisenbahn zum Einsatz kam. Natürlich fehlte auch eine Batterie nicht.

Und dann kam jener Tag, an dem ich beim Fussballspielen unbedingt ins Tor wollte. Und dann gab es jenen Elfer, der mir zum Verhängnis wurde. Dabei fing alles gut an, denn den Ball habe ich gegen die Stirn bekommen. Von dort aus landete er am Lattenkreuz, das damals noch aus Holz war. Anschließend trudelte der Ball ins Toraus.
Am Morgen des nächsten Tages sah ich im Winkel meines rechten Auges einen Fleck. Das war in etwa so, als ob ich eine Brille mit Gläsern in der Farbe Rosa aufgesetzt hätte. Im Laufe des Tages wurde das Rosa immer dunkler und am folgenden Tag war es bereits ein tiefes Dunkelrot. Auch konnte ich praktisch von Stunde zu Stunde beobachten, dass dieser Fleck immer größer wurde. Und dann ging es auch am anderen Auge los. Ein Besuch beim Augenarzt ergab dann, dass sich meine Netzhaut großflächig ablöste und sich schon richtige Blasen gebildet hatten. Heutzutage hätte man eventuell etwas mit einem Laser machen können. Doch damals steckte die dazu erforderliche Technik noch in den Anfängen. Ich hatte damals keine Chance und innerhalb von zwei Wochen war ich vollblind. Eine Welt ist in mir zusammengebrochen. Aber irgendwie musste es ja weitergehen, denn ich musste mich auf die Mittlere Reife vorbereiten. Das ist mir auch ohne Zeitverzögerung gelungen und so hielt ich wie vorgesehen dann das Zeugnis in der Hand. Da war ich stolz wie der berühmte Bolle. An die Astronomie habe ich in der Zeit nur sehr selten gedacht. Und wenn es doch mal dazu kam, dann waren es keinesfalls angenehme Gedanken.

Und das Leben ging weiter. Fast stündlich lernte ich neue Dinge. Manchmal habe ich mich sogar darüber gewundert, was man selbst als Blinder so alles machen kann. Und irgendwann hatte ich auch wieder die Musse, mich mit der Astronomie zu beschäftigen. Ich habe nicht eingesehen, warum mein Wissen über die Astronomie in irgendwelchen grauen Gehirnzellen versauern sollte. Natürlich war die Versorgung mit Informationen nicht ganz so einfach. Aber wo ein Wille ist, da ist auch ein Weg. Informationen habe ich wie ein ausgetrockneter Schwamm aufgesogen. Dadurch hatte ich ein gutes Gehirntraining, von dem ich immer noch profitiere.

Wahre Freunde entpuppen sich erst in der Not. Und in Peter hatte ich so einen Freund. Fast unbemerkt habe ich ihn im Laufe der Zeit mit meinem Astronomievirus infiziert. Und als die Krankheit dann ausbrach, war es für eine Heilung viel zu spät. Wir haben dann das Beste aus der Situation gemacht und uns noch intensiver mit der Astronomie beschäftigt. Aber so eine wirkliche Ablenkung von dieser heimtückischen Krankheit war es nun beileibe nicht. Er hat sich immer wieder Literatur von mir ausgeliehen. Und eines Tages hatte er die Idee, dass er doch bestimmte Texte auf Cassette Aufsprechen könne. Dieser Gedanke war mir auch schon gekommen, aber ich habe mich nicht getraut, ihn daraufhin anzusprechen.

Kennengelernt habe ich ihn übrigens im Kino. Es wurde der Katastrophenfilm „Der Untergang Japans“ gegeben. Ich hatte mir eine Jumbotüte mit Popcorn sowie eine 2-l-Flasche Coca-Cola gekauft. Peter meinte, dass ich das doch unmöglich alleine vertilgen kann. Er erklärte sich bereit, mir bei der Vertilgung zu helfen, denn es wäre doch schade, wenn die Sachen verderben würden. In der Pause mussten wir uns dann Nachschub besorgen. Der Film beginnt übrigens mit einer Szene, in der ein U-Boot gezeigt wird, mit dessen Hilfe offensichtlich der Meeresboden untersucht wird. Dieser Eindruck wird dann in der folgenden Szene bestätigt, in der die Besatzung über „schwarze“ Raucher diskutiert. Schwarze Raucher, black smokers, sind kaminartige Hydrothermalquellen am Ozeanboden, die mit Eisen, anderen Metallen und Schwefelwasserstoff bzw. Metallsulfiden angereichertes heißes Wasser ausstoßen. Kommt das heiße Quellwasser mit dem sauerstoffreichen kalten Meerwasser zusammen, fallen rauchartige, schwarze Metallsulfide aus. Dadurch entstehen auch bis zu 15 m hohe Kamine, aus denen das ca. 350 °C heiße Wasser ausströmt. Überraschenderweise lebt im Umkreis dieser heißen Quellen eine Lebensgemeinschaft mit einer Vielzahl verschiedener Mikroorganismen und Tieren, zum Teil in engster Symbiose. Und plötzlich kommt Bewegung in die Geschichte, denn der Meeresboden bewegt sich und es steigen Schlammwolken auf. Der Kapität ordnet unverzüglich an, dass aufgetaucht werden soll. In der Folge gibt es mehrere Erdbeben und auch einige Vulkane brechen aus. Die Erdbeben und vulkanischen Aktivitäten sind besonders stark. Ganz Japan gerät in Panik und von China aus machen sich viele Schiffe auf den Weg, um möglichst viele Japaner zu evakuieren. Doch das war erst der Anfang. Einige Wissenschaftler kommen auf die Idee, Vulkane mit Atombomben zu bewerfen. Doch dann geht es erst so richtig los und die Lage gerät vollends außer Kontrolle.

Am nächsten Tag besuchte mich dann Peter. Und dabei erfuhr er auch von meiner Leidenschaft für die Astronomie. Seitdem sind wir Freunde. Später erfuhr ich dann, dass Peter sich auch für Startrek interessiert. Und schon hatten wir ein weiteres Gesprächsthema.

In den folgenden Jahren haben wir dann sehr viel Zeit miteinander verbracht. Und stets – oder doch zumindest meistens – spielte die Astronomie bzw. die Weltraumfahrt oder Himmelsmechanik oder auch die Kosmologie eine wichtige Rolle. Auch nach meiner Erblindung hat sich daran nichts geändert. Wir haben gemeinsam Kurse bei der Volkshochschule besucht. Mit einem sprechenden Taschenrechner von Texas Instruments, der immerhin ca. stolze 250 D-Mark gekostet hat, haben wir u. a. Satellitenbahnen berechnet. Auch haben wir die schnellste bzw. energiemäßig günstigste Route eines Raumschiffs für einen Flug von der Erde zum Mars berechnet. Und natürlich wollten wir auch wieder zur Erde zurückkehren können. Um besser beurteilen zu können, was alles zum Überleben auf dem Mars erforderlich ist, mussten wir uns natürlich auch mit den dortigen Gegebenheiten beschäftigen.

Etwas einfacher wurde es dann, nachdem die ersten sprechenden Computer verfügbar waren. Zu Beginn der 80-er Jahre gab es da noch die Firma Audiodata. Sie boten einen CP/M-Rechner an, der in seinen Ausmaßen nicht unähnlich einem Koffer für eine Flugreise war. Eingebaut war ein kleiner Bildschirm, der in etwa die Größe der Handinnenfläche einer erwachsenen Person hatte. Auch standen zwei Diskettenlaufwerke zur Verfügung. Es kamen Disketten mit einem Durchmesser von 5,25 Zoll zum Einsatz, die jweils eine Kapazit von ungefähr 180 KB hatten. Auch gab es einen Kopfhöreranschluss. Zusammen mit dem Betriebssystem wurde eine Software-Sprachausgabe geladen. Auch wurde mit BASIC eine Programmiersprache mitgeliefert. Es gab da einen Interpreter sowie einen Compiler. Durch Beziehungen bin ich an ein BASIC-Programm gekommen, mit der eine Mondlandung simuliert werden konnte. Es konnte sogar berechnet werden, wie tief ein Krater bei einem Absturz sein würde. Da der Quelltext mitgeliefert wurde, konnte man individuelle Anpassungen vornehmen. Das war schon eine tolle Sache. Und so habe ich auch meine Gehversuche beim Programmieren gemacht. Nachdem IBM seinen ersten Personal Computer auf den Markt gebracht hat, habe ich mir natürlich auch diesen zugelegt. Gekauft habe ich ihn ebenfalls bei der Fa. Audiodata. Und so konnte ich unterstützende Software für unser Hobby entwickeln. Ganz spannend wurde es, nachdem einige Amateurfunksatelliten gestartet wurden. Da konnte man sich so richtig ausleben. Und im Laufe der Zeit sammelte sich immer mehr Wissen an.

Meine Phantasie habe ich von Startrek beflügeln lassen. Besonders angetan haben es mir die Folgen mit James T. Kirk.
Besonders faszinierend fand ich die Möglichkeit des Beamens. Ich war allerdings der Meinung, dass das allein schon aus Energiegründen nicht möglich ist.
Nicht vergessen sollte man auch nicht die Trikorder, die in vielen Details doch an heute übliche Smartphones erinnern.

Insgesamt gesehen ist die Astronomie und verwandte Wissenschaften eine wirklich spannende Sache. Bei den üblicherweise verdächtigen Sendern gibt es zahlreiche Dokumentation zur Astronomie sowie zur Weltraumfahrt. Und dann gibt es ja noch die Mediatheken sowie das Internet. Ich frage mich öfters, wie die Leute ins Internet gekommen sind, als es noch keine Computer gab. – (Hermann-Josef Kurzen)

Mein lieber Herrmann,
ich, und ich denke auch einige, die hier mitlesen, sind sehr berührt von Deinem Artikel. Mir persönlich gibt er mal wieder Recht. Die „Inklusion am Himmel“ funktioniert einfach. In vielen Passagen Deines Artikels habe ich mich derart gefunden, dass die direkt aus meiner Feder hätten stammen können. Geschmunzelt habe ich an der Stelle, als Du beschriebst, dass man Dich Professor nannte. Genau das war bei mir auch so. Ich hoffe, dass dieser Titel bei Dir nicht mit so viel Neid und Missgunst besetzt war, als bei mir. Mich sollte der Professor damals einfach nur lächerlich machen. Aber lassen wir das.
Ich bin riesig Stolz, dass ich nun endlich jemanden gefunden habe, der in Sachen Astronomie ganz ähnlich tickt, als ich.
Ich danke Dir, dass Du heute mein Gast warst und glaube, dass hier und heute, am Freitag den 21.07.2023 etwas sehr schönes begonnen hat.

Eine Revolution für blinde Menschen


Meine lieben,

heute möchte ich gerne mit euch ein Jubiläum feiern, das vor allem für uns blinde Menschen eine Revolution in der Hilfstechnologie ausgelöst hat, die ihresgleichen sucht.
Ich persönlich empfinde sie als mindestens so einschneidend, wie die Erfindung der Punktschrift oder die Verbreitung intensivem Trainings in Orientierung, Mobilität und sonstiger lebenspraktischer Fertigkeiten.

Fangen wir also mit einer Geschichte an, wie ich das gerne tue.

Der Auftritt

Am Morgen des 3. April 1973 sollte der Ingenieur Martin Cooper eigentlich in einer Morning Show im US-Fernsehen auftreten. Der Motorola-Ingenieur war nach New York geflogen, um die neue Entwicklung seiner Firma vorzustellen.
Scheinbar war aber dann dem Fernsehsender seine neue Erfindung doch nicht so wichtig, und man hat ihn wieder ausgeladen.
Daraufhin suchte und fand man einen Radiosender, der großes Interesse an dem hatte, was hier erstmals präsentiert werden sollte.
Cooper sagte ein Interview draußen im freien zu, denn schließlich wollte er zeigen, welche Freiheit sein neues Gerät der Menschheit bringen könnte. Die Freiheit nämlich, ganz mobil und ohne Kabel telefonieren zu können.

Und so stand Cooper also an jenem 03.04. vor 50 Jahren vor dem Hilton-Hotel auf der 6th Avenue in New York und zeigte dem Reporter den grauen, 25 Zentimeter langen Kasten mit Antenne.
Das Telefon wog mehr als ein Kilogramm. Und man konnte gerade mal 25 Minuten telefonieren, länger hielt die Batterie nicht durch. Cooper meinte, dass das nicht so schlimm sei, weil man ob seines Gewichtes von über einem Kilogramm das schwere Gerät ohnehin kaum länger in der Hand halten könne.

Cooper ist heute 94 Jahre alt und erinnert sich noch genau an den Anruf, den er mit diesem Monstrum von Telefon damals tätigte.
Und so zückte Cooper sein Telefonbuch, um seinen Kollegen, der bei der Konkurrenz, den Bell Labs arbeitete, anzurufen, wo ebenfalls an derlei Erfindungen geforscht wurde. Er wollte ihm zeigen, dass seine Firma das Rennen offensichtlich gewonnen hatte.

Überraschenderweise ging dieser Kollege sogar selbst ans Telefon und nicht seine Sekretärin. Coper sagte:

Hi, Joel! Hier ist Marty Cooper. Ich rufe Dich von einem Mobiltelefon an, einem richtigen Mobiltelefon – einem persönlichen tragbaren Telefon.

Das mag ein Schlag für Bell gewesen sein, aber längst kein Untergang. So viel also zu dieser Geschichte.

Das erste

Das erste Mobiltelefon, das Motorola DynaTAC 8000X, war ein wahrer Pionier seiner Zeit. Es war zwar groß und sperrig, wog rund ein Kilogramm und hatte eine begrenzte Akkulaufzeit, aber es markierte den Anfang einer Ära, die die Kommunikation überall und jederzeit ermöglichte. Das DynaTAC 8000X war ein Luxusgut, das sich nur wenige leisten konnten, aber es legte den Grundstein für die Entwicklung und Verbesserung dieser Technologie.

Die Konkurrenz-Firma Bell setzte auf die Weiterentwicklung der Autotelefone, die es damals schon gab und für die in einigen US-Großstädten bereits Mobilfunknetze vorhanden waren. Auf die griff auch das Motorola-Gerät zurück.

Wie es weiter ging

Es sollte noch weitere zehn Jahre dauern, bis die Technologie tatsächlich auf den Markt ging. Zuvor musste noch die Politik überzeugt werden und sich die Industrie auf einen einheitlichen Mobilfunkstandard einigen, der zunächst auch nur in einigen Großstädten funktionierte. September 1983 war das erste System in Chicago fertig, danach folgte Washington DC. Erst dann konnte man die Mobiltelefone auch kaufen. Sie waren anfangs auf das Netz in einer Stadt beschränkt.
In den darauf folgenden Jahren wurden Mobiltelefone kleiner, leichter und erschwinglicher. Die Einführung der zweiten Generation (2G) in den 1990er Jahren brachte digitale Übertragungstechnologien wie GSM (Global System for Mobile Communications) mit sich, die eine bessere Sprachqualität und zuverlässigere Verbindungen ermöglichten. Dies führte zu einem Massenmarkt für Mobiltelefone und einem sprunghaften Anstieg der weltweiten Mobilfunknutzer.
Mit dem Aufkommen der dritten Generation (3G) in den frühen 2000er Jahren begann das Mobiltelefon seine Funktionen zu erweitern. Internetzugang, mobile Datenübertragung und Multimediafunktionen wie das Abspielen von Musik und Videos wurden zur Norm. Die vierte Generation (4G) brachte noch schnellere Datenübertragungsraten und ermöglichte das nahtlose Streaming von Inhalten mit.
In den letzten Jahren hat die fünfte Generation (5G) des Mobilfunks Einzug gehalten und verspricht eine noch schnellere und zuverlässigere Konnektivität. Mit 5G werden nicht nur Mobiltelefone, sondern auch das Internet der Dinge (IoT) und neue Technologien wie autonomes Fahren und Augmented Reality revolutioniert.
Jeder weiß, dass sich mittlerweile auch Design und Bedienkonzepte weiterentwickelt haben.
Touchscreens ersetzten physische Tasten weitgehend und Smartphones bieten eine Vielzahl von Funktionen und Apps, die das tägliche Leben erleichtern. Von der Kommunikation über Anrufe und Textnachrichten bis hin zur Fotografie, Navigation, sozialen Medien und mobilem Banking haben Smartphones unsere Art zu leben, zu arbeiten und zu interagieren verändert.
Darüber hinaus hat das Mobiltelefon eine neue Ära der globalen Vernetzung geschaffen. Menschen können über große Entfernungen hinweg in Echtzeit kommunizieren, Informationen teilen und sich mit anderen auf der ganzen Welt verbinden. Soziale Medien und Messaging-Dienste ermöglichen es uns, unser Leben mit anderen zu teilen und Verbindungen zu knüpfen, die sonst nicht möglich wären.
Und obige ‚Sätze treffen eben auch ganz besonders für uns Menschen mit Blindheit zu. Dies würdige ich in folgendem Fazit.

Mein Lebenshelfer

Ich glaube, es war so 2007. Da verabschiedete sich über Nacht mein alter sprechender Nokia-Knochen mit Tastatur. Ein neues Handy musste her. Sollte ich mir jetzt für relativ viel Geld noch einen quasi schon veralternden neuen Knochen und dann noch das teuere Sprachpaket, das man extra kaufen musste, besorgen, oder sollte ich es mit der Neuheit eines Iphones versuchen, das zwar teuer, aber die Sprachausgabe schon integriert hatte?

Als begeisterter Technik-Nerd entschied ich mich für letzteres. Es gab damals in meinem Bekanntenkreis keine blinden Menschen, die schon so ein Smartphone besaßen. In Deutschland gab es nur wenige blinde Menschen, die schon Erfahrung mit der Bedienung eines Touchscreen-Handys hatten. Somit musste ich mir das alles aus dem Netz fischen und es selbst versuchen und lernen.
Und ich kann euch sagen. Das erste Wochenende mit diesem Gerät war furchtbar. Ich sehnte mich sehr nach meinem Tastentelefon zurück und fragte mich, wer denn um Himmels Willen diese Fensterputzerei erfunden hatte.
Aufgeben kam nicht in Frage. Dafür war das Teil dann doch zu teuer. Also hielt ich durch. Die Lernkurve ging steil nach oben und als der Groschen dann endgültig gefallen war, besetzte das Teil bald all meine Lebensbereiche.

Mehr und mehr entdeckte ich Erweiterungen, die mir das Leben als blinder Mensch in einer bis dato unbekannten Weise erleichtern.
Von der einfachen Eieruhr,
der Wetteransage,
Vorlesen von Post,
als Kochhelfer,
als Navigator und Fahrplanfinder,
von Hörbuchleser bis Radio, Fernsehen und Podcasts,
und seit ich auch noch die dazu passende Uhr am Handgelenk trage auch als Sportbegleiter,
mache ich fast nichts mehr, wo das Gerät nicht auf die eine oder andere Weise zum Einsatz kommt. Ganz besonders in den Zeiten des Lockdowns und der Pandemie war und ist es mir zu einer unverzichtbaren Kommunikationshilfe in allen Lebensbereichen geworden.
Sogar der Sternenhimmel lässt sich damit blind erkunden.
Für manche von euch mag sich das jetzt nach einer unglaublichen Abhängigkeit von einem Gerät anfühlen, und das stimmt leider auch. Ich wüsste nicht, was ich tun sollte, würde es mir von jetzt auf gleich ausfallen. Aus diesem Grunde behalte ich nach einem Wechsel auf ein neueres Modell stets das Vorgängermodell als Ersatz zurück. Außerdem bin ich dankbar dafür, mir eine Versicherung für dieses so unverzichtbare Hilfsmittel leisten zu können.

Ich weiß, dass es bis heute noch blinde Menschen gibt, die dieser Technologie misstrauisch gegenüber stehen, bzw. sie aus anderen Gründen nicht nutzen können. Aber all jenen, die es können, rufe ich zu, sich darauf einzulassen. Und für die anderen stehen mittlerweile glücklicherweise Geräte zur Verfügung, die eventuell besser bedienbar sind, und dennoch einige dieser neuen Funktionen und Hilfsmittel in sich vereinen.
Ich bin sehr dankbar, genau in dieser Zeit zu leben. Ich weiß noch genau, wie es ohne all das war, und darf jetzt erleben, wie es jetzt mit allen diesen tollen Erfindungen ist.

Ein Eisverkäufer bereitet Kopfzerbrechen

Die Frage

Gestern kam in einer Telko des Arbeitskreises Blautor ein spannendes Thema auf. In einer Show wurde wohl die Frage gestellt, ob heißes oder kaltes Wasser schneller gefriert. Und ja, so seltsam es klingt. Unter gewissen Umständen gefriert das heiße Wasser schneller.
Natürlich hatte ich von diesem Phänomen schon gehört. Ich wusste auch, dass es bis heute nicht eindeutig erklärt ist, und dass ein Eisverkäufer eine Rolle in der Angelegenheit spielt.
ChatGPT lieferte mir hier nur schwache Anhaltspunkte, aber einige Stichworte dann doch.

Nun gut. dann setzen wir die Bruchstücke meiner Erinnerung, das Geschwurbel von ChatGPT und etwas Wiki zusammen, und machen daraus eine erzählbare Geschichte.

Das Phänomen

Das Phänomen, bei dem warmes Wasser schneller zu gefrieren scheint als kaltes Wasser, wird als das Mpemba-Phänomen bezeichnet. Es ist benannt nach dem tansanischen Schüler Erasto Mpemba, der es 1963 wieder entdeckte.

Wieder entdeckt deshalb, weil das Phänomen schon bei den alten Griechen erwähnt wurde.
Von schnellerem Gefrieren erwärmten Wassers berichtete bereits im vierten vorchristlichen Jahrhundert der Philosoph Aristoteles als Beispiel für die von ihm postulierte Antiperistasis, die folgendes beschreibt:
Eine Eigenschaft, z. B. die Temperatur eines Körpers ändert sich, wenn dieser sich in einer Umgebung anderer Temperatur befindet,

Im 13. Jahrhundert diskutierte dies der Mönch und Philosoph Roger Bacon (Opus Majus 6.1).
Im 17. Jahrhundert erwähnten die Philosophen und Wissenschaftler Francis Bacon (Novum Organum 2.50) und René Descartes (Les météores 1) den Effekt.

1775 erschien eine Arbeit von dem schottischen Wissenschaftler Joseph Black, in der er den Effekt anhand von Experimenten sicherstellte.
1788 bemerkte der erste deutsche Professor für Experimentalphysik Georg Christoph Lichtenberg bei eigenen Versuchen einen solchen Vorgang, konnte ihn aber nicht zuverlässig reproduzieren.

1963 stieß also nun der tansanische Schüler und Eisverkäufer Erasto B. Mpemba auf das Phänomen, als er Speiseeis herstellte. Zusammen mit Denis G. Osborne veröffentlichte er 1969 die Ergebnisse zahlreicher Versuche zu diesem Thema. Jedoch dauerte es einige Jahre, bis der Effekt weiter wissenschaftlich untersucht wurde.
2016 erschien ein Übersichtsartikel, der darstellt, dass der Effekt, in der Definition „Abkühlung bis zum Gefrierpunkt“, angeblich nicht existiert.

2022 in „Mpemba Effect Demystified“ wurde der Mpemba-Effekt erklärt, aber eben noch nicht vollständig.

Ein Beispiel aus dem Leben

Hier ein Beispiel eines Naturvolkes, das das Phänomen bis heute zu nutzen scheint.
Wenn die Bewohner der Pontusgegenden auf dem Eis ihre Hütten für den Fischfang aufschlagen, erwärmen sie ihre Angelruten zunächst in der Sonne, oder schütten sogar heißes Wasser darüber, um sie dann rascher vereisen lassen zu können. Sie benutzen das Eis anstelle von Blei, um ihre Ruten zu beschweren.
Dann schlagen sie Löcher in das Eis, um zu fischen.

Erklärungsversuche

Bis heute ist das Mpemba-Phänomen immer noch Gegenstand wissenschaftlicher Diskussionen und es gibt keine eindeutige Antwort auf die Ursache.
Es gibt mehrere mögliche Erklärungen für das Phänomen, aber keine davon ist allgemein akzeptiert. Hier sind einige der vorgeschlagenen Mechanismen:

1. Verdunstung:

Wenn Wasser verdunstet, entzieht es der verbleibenden Flüssigkeit Wärme, was zu einer Abkühlung führt. Dieser Effekt könnte dazu führen, dass warmes Wasser schneller abkühlt und schließlich gefriert.

Durch Verdunstung kühlen wir unseren Körper, indem wir schwitzen. Wenn man Alkohol, z. für eine Desinfektion auf die Haut gibt, spürt man ganz deutlich, dass es an der Stelle richtig kühl wird. Bei entweichenden Gasen, z. B. aus einer Gasflasche oder aus einem Feuerzeug ist der Effekt noch deutlich stärker zu spüren. So vereisen beispielsweise Heizungsmonteure die Rohrenden, mit Stickstoff oder Trockeneis (CO2), wenn sie verhindern wollen, dass Wasser austritt, ohne einen Pfropfen benutzen zu müssen.
Wenn eine Flüssigkeit verdunstet, dann wechselt sie von flüssig zu gasförmig. Solch ein Zustandswechsel verbraucht deutlich mehr Energie, als einfach nur durch normale Abkühlung frei wird.
Deshalb kühlt heißes Wasser durch den verdunstenden Dampf rascher ab als kaltes.
Ich bin immer wieder davon beeindruckt, wie lange sich Schnee gegen die warme Sonne behaupten kann. Das liegt daran, das ungeheuer viel Energie nötig ist, damit Eis einfach in flüssiges Wasser über gehen kann.

2) Konvektion:

Konvektion erleben wir im Alltag ganz besonders, wenn wir Wasser kochen. Heißes Wasser ist leichter als kaltes. Es steigt auf und bildet Blasen. Das kalte Wasser sinkt dann ab. Dadurch entstehen Konvektionsströme, um Wärmeunterschiede auszugleichen. Wetterphänomene und Meeresströmungen sind ebenfalls Beispiele für Konvektion, wobei diese noch von der Erddrehung überlagert werden. Und ja, betrachtet man unsere Sonne mit speziellen Filtern, dann kann man sehen, dass es auch auf ihrer Oberfläche blubbert und brodelt.

Konvektion verbraucht dann auch dadurch Energie, weil Teilchen der Flüssigkeit in Bewegung versetzt werden. Das könnte eventuell dazu beitragen, dass warmes Wasser tatsächlich schneller erkaltet.

3) Überkühlung:

Bei dieser dritten Idee bin ich fast sicher, dass ChatGPT schwurbelt. Mir sind da zu viele Ungenauigkeiten darin.
Dennoch könnte unter gewissen Umständen die Überkühlung von Wasser eine Rolle spielen.
Ich schreibe hier mal ohne Gewähr, was ich dazu weiß und verstanden habe.

Überkühlt ist eine Flüssigkeit dann, wenn sie noch flüssig ist, obwohl sie bereits eine Temperatur unter ihrem Gefrierpunkt erreicht hat. Für Wasser also unter 0 Grad C.
Hier spielen chemische Verunreinigungen eine Rolle. Wir kennen das im Winter, wenn wir unsere Straßen salzen. Salz bewirkt, dass sich der Gefrierpunkt von Wasser weit in den Minusbereich verschiebt. Deshalb „schmilzt“ unser gesalzenes Eis, obwohl es weit unter 0 Grad kalt ist.
Bedenken wir, dass der Wiederentdecker des Effektes ein Macher von Speiseeis war. Somit hat er eventuell das Phänomen gar nicht nur in reinem Wasser gefunden, sondern in Flüssigkeiten und Säften, die dann zu Speiseeis verarbeitet wurden.

Es wäre an dieser Stelle tatsächlich spannend, ob der Effekt auch mit destiliertem Wasser auftritt. Darüber habe ich aber leider jetzt, so auf die Schnelle nichts gefunden.

Wie auch immer.
theoretisch kann es wärme- und energietechnisch schon zu einer Situation kommen, dass warmes Wasser seine Energie auf eine Weise schneller los wird, als kaltes Wasser.
Um derlei zu beschreiben, benötigt man dann aber sehr komplizierte mathematische Gleichungen.
Solche Wärmegleichungen, auch Adiabaten-Gleichungen genannt, werden sehr schnell unübersichtlich, enthalten sehr viele Variablen und können sogar unlösbar in chaotische Zustände geraten.

Die Thermodynamik, wie man diese Spielart in der Physik nennt, ist mit ihrem Hauptsätzen und der Entropie eine sehr schmerzhaft zu erlernende Disziplin, wie ich in meinem Studium erleben durfte.
Sie ist so mächtig, dass die Verletzung eines ihrer Gesetze das ganze Universum aus den Angeln heben könnte.

Das war sie, die Sommergeschichte vom Eisverkäufer und dem neu entdeckten alten Phänomen.

Fazit:

Es ist wichtig zu beachten, dass das Mpemba-Phänomen nicht immer auftritt und von verschiedenen Faktoren wie der Qualität des Wassers, dem verwendeten Gefäß, der Umgebungstemperatur und anderen Variablen abhängen kann. Wissenschaftliche Studien haben unterschiedliche Ergebnisse hervorgebracht, und es bedarf weiterer Forschung, um das Phänomen vollständig zu verstehen.

Ein Feiertag, blutendes heiliges Brot und ein Bakterium


Meine lieben,

heute greife ich der Zeit etwas voraus. Der heutige Artikel soll mal um den kommenden Feiertag des Fronleichnam gehen. Da ich aber zu dieser Zeit auf einer wunderbaren Chorfreizeit sein werde, an einem Ort, wo man nicht so einfach auf das solide deutsche Internet vertrauen kann, veröffentliche ich etwas früher. Und ach ja, den Chor kennen viele aus meinen Adventskalendern, wo unsere Weihnachtslieder bereits erklangen.
Ich traue es mich jetzt einfach mal, euch auch in der Sommerzeit auf unsere Weihnachtslieder zu schicken. Immerhin nahmen wir unsere Weihnachtslieder im Hochsommer auf, und eine ganz liebe Mutter einer wunderbaren Alt-Stimme backte sogar trotz brüllender Hitze Weihnachtskekse für uns. Das war ein Spaß.
Also, zur Sommerweihnacht bitte hier lang.

Wenn ihr euch jetzt fragt, was dieser Fronleichnams-Feiertag mit Astronomie zu tun hat, dann fragt ihr euch das absolut mit Recht. Heute führt uns unsere Geschichte tatsächlich nicht in die Astronomie, sondern in die Mikrobiologie. Bevor wir aber damit beginnen, sollten wir erst mal für alle klären, was Fronleichnam überhaupt ist, und weshalb er gefeiert wird.

Was ist Fronleichnam

Fragen wir doch dazu mal wieder unsere künstliche Intelligenz, und stoppen sie, wenn sie es zu bunt treiben möchte.

Fronleichnam ist ein katholischer Feiertag, der in einigen Ländern, insbesondere in Deutschland, Österreich, der Schweiz, Belgien, den Niederlanden und einigen Teilen der Schweiz, gefeiert wird. Der Name „Fronleichnam“ stammt aus dem Mittelhochdeutschen und bedeutet wörtlich „Leib des Herrn“.
Der Feiertag findet immer am zweiten Donnerstag nach Pfingsten statt und wird zur Feier der leiblichen Gegenwart Jesu Christi im Sakrament der Eucharistie begangen. Es ist eine Möglichkeit für die Gläubigen, ihre Verehrung für das Sakrament der Eucharistie auszudrücken, bei dem Brot und Wein als Symbol für den Leib und das Blut Christi betrachtet werden.
Während des Fronleichnamsfestes findet eine Prozession statt, bei der der Priester die geweihte Hostie in einer Monstranz, einem speziellen Behältnis für die Darstellung der Hostie, durch die Straßen trägt. Die Gläubigen begleiten die Prozession, beten und singen religiöse Lieder.
Fronleichnam ist ein gesetzlicher Feiertag in den meisten Bundesländern Deutschlands, was bedeutet, dass an diesem Tag Schulen und viele Unternehmen geschlossen sind. Es ist auch ein Tag, an dem viele Menschen an Gottesdiensten und Prozessionen teilnehmen, um ihren Glauben zu feiern.

Wann ist Fronleichnam – Wir erinnern uns

Wir erinnern uns:
Fronleichnam hängt durchaus von astronomischen Gegebenheiten ab. Der Tag findet stets zehn Tage nach Pfingstmomtag statt. Somit fällt dieser Tag immer auf den übernächsten Donnerstag nach Pfingstmomtag.
Pfingsten hängt davon ab, auf welchen Sonntag der Ostersonntag fällt. 50 Tage nach Ostern ist Pfingsten.
Der Ostersonntag fällt meistens auf den Sonntag nach dem ersten Frühlingsvollmond. Dieser wiederum ist der erste Vollmond nach dem astronomischen Frühlingsbeginn, der kalendarisch am 21.03. stattfindet.
Wie sich das alles genau berechnet, beschrieb ich beispielsweise in dem Artikel Wieso ist Ostern manchmal so früh, und manchmal so spät.

Und nun zu unserer Frage und Geschichte:

Was hat Fronleichnam eigentlich mit Mikrobiologie zu tun …?

Das beantworte ich euch lieber selbst, weil die hölzerne KI das nicht so schön kann, damit daraus eine Geschichte wird.

Dazu müssen wir zurückreisen ins tiefste und blutige Mittelalter…in einen Mikrobenzirkus-

Im Jahre 1264 ereignete sich ein bemerkenswertes „Blutwunder“ in der Kirche der heiligen Christina in Bolsena (Italien).
Der böhmische Mönch, Peter von Prag, bereitete, wie gewohnt, Hostien für das Abendmahl vor. Er gehörte zu denjenigen, die bis dato an der „Transsubstantation“ zweifelten, welche erst 1215 als Dogma in der Kirche eingeführt worden war. Dieses Dogma der Transsubstantation besagt, dass die geweihte Hostie, die beim Abendmahl gereicht wird, der tatsächliche Leib Jesus Christus ist (und nicht nur, wie vorher, ein Symbol dessen).
Dieser zweifelnde Mönch entdeckte nun blutrote Verfärbungen auf den Hostien. Die Deutung in der damaligen Zeit war klar:

Die Hostien haben angefangen zu bluten, um ihm, dem zweifelnden Mönch und allen anderen zu zeigen, dass alle Zweifel falsch sind. Sind die Hostien geweiht für das Abendmahl, sind sie keine gewöhnlichen Oblaten mehr, sondern zweifelsohne der wahrhaftige Leib Jesus Christi.

Zufälliger Weise verweilte Papst Urban IV. zur gleichen Zeit nur wenige Kilometer entfernt auf seinem Sommersitz. Er hörte von diesem „Blutwunder“ und war selbst davon so beeindruckt, dass er festlegte, von nun an sei das Festum Corporis Christi am Donnerstag nach Trinitatis zu halten, welches wir heute als den Feiertag Fronleichnam in den überwiegend katholischen Regionen kennen.

Das Blutwunder

Aus heutiger Sicht weiß man, dass es einen Erreger gibt, welcher auf kohlenhydrathaltigen Nährböden einen markanten, leuchtend roten Farbstoff bildet. Dabei handelt es sich um Serratia marcescens, einem Stäbchenbakterium, welches zur Familie der Enterobacteriaceae gehört. Aus modernen, wissenschaftlichen Betrachtungen geht man heute rückblickend davon aus, dass viele historische Schilderungen über blutrote Verfärbungen auf Brot, Polenta und vor allem geweihten Hostien diesem Erreger zuzuschreiben sind.

Im Mittelalter wurden leider auch viele Menschen aufgrund von Fehldeutungen von Hostienerscheinungen ermordet. Dabei handelte es sich vor allem um jüdische Pfandleiher, bei denen zu damaliger Zeit Hostien als Pfand hinterlegt wurden. Wurden diese später wieder ausgelöst und zeigten sich danach blutrote Verfärbungen, war aus damaliger Sicht die Deutung klar: Der jüdische Pfandleiher hatte den Leib Jesus Christi mit einem heißen Messer gemartert, so dass dieser anfing zu bluten. Folglich landete der Pfandleiher (und oftmals auch viele weitere Juden aus seiner Umgebung) auf dem Scheiterhaufen. So geschehen z.B. 1492 in Sternberg (Mecklenburg), wenig später wird dort die heilige Blutkapelle errichtet.
Im Mittelalter entwickelte sich ein wahrer „Hostienboom“. Zu den Orten, wie Sternberg oder auch Wilsnack (Brandenburg), wo nach einem Kirchenbrand in den Trümmern des massiven Altars „blutende Hostien“ gefunden wurden, entwickelten sich große Wallfahrten. Dort zeigten sich fortan seltsame Wunderheilungen, die mit der Anbetung der blutenden Hostien in Verbindung gebracht wurden. Lahme konnten wieder laufen oder Totgeglaubte wurden geheilt. Die Kirche verdiente durch einen regen Ablasshandel sehr gut daran mit. Erst 1517, durch Martin Luther, endete dieser „Teufelsspuk“, wie er ihn nannte, zumindest dort, wo sich die Reformation durch setzte. Die wissenschaftliche Aufklärung begann dann im Jahre 1819:

In der Nähe von Padua in Italien zeigten sich wieder blutrote Verfärbungen, diesmal auf Polenta. Durch wissenschaftlich-analytisches Vorgehen konnte in diesem Fall aber sehr schnell eine „göttliche Mahnung“ ausgeschlossen werden. Der Erreger Serratia marcescens wurde isoliert, die Übertragbarkeit durch die Hände demonstriert und u.a. wurde die Alkohollöslichkeit der roten Farbstoffs Prodigiosin gezeigt.

Der ursprüngliche Name des Erregers Bacterium prodigiosum und die Bezeichnung des von ihm gebildeten Farbstoffs Prodigiosin gehen auf den Zusammenhang mit diesen scheinbaren Blutwundern in Bolsena zurück: lateinisch prodigium, „Wunderzeichen“. Damit verknüpft wurden auch bereits die ersten rückblickenden, wissenschaftlichen Betrachtungen zu „blutenden Hostienerscheinungen“ im Mittelalter angestellt.

Schlussbemerkungen

  • Als geborenes Mitglied der evangelischen Kirche hatte ich zu diesem Feiertag keinen besonderen religiösen Bezug. Meine Großmutter erzählte mir nur immer, dass die evangelischen Christen auf dem einen Berge an diesem Feiertag ganz bewusst als Provokation ihre weiße Wäsche wuschen und aufhängten. Das war weit hin sichtbar, bis zum katolischen Berge. Diese taten dann dasselbe am evangelischen Buß und Bettag im November, den es ja heute nur noch in manchen Bundesländern als evangelischen Feiertag gibt.
  • Mitte der 90er Jahre wohnte ich gegenüber einer katholischen Kirche. Ich genoss es, von meinem Bette aus die evangelischen Posaunenchöre zu hören, die man sich für diesen heiligen Tag ausgeliehen hatte.
  • Was ich mit diesem Beitrag auf keinen Fall möchte, ist jemandem die Wichtigkeit dieses Tages zu nehmen. Die Verwandlung von Brot und Wein lassen wir hier mal ganz außen vor. Aber die Verwandlungsmöglichkeiten von uns Menschen Durch die Worte, Ideen, das Leben und das Wirken Jesu, sollte uns unabhängig von Wundern, Heilungen etc. durchaus interessieren. Es geht um seine Person und um das geistige Erbe, das er uns hinterließ. Ob er nun Gottes Sohn ist, oder wie es sich ansonsten mit der Dreifaltigkeit, Vater, Sohn und Heiliger Geist, verhält, mag jeder für sich selbst entscheiden.
  • Übrigens gibt es ein wunderbares Buch von dem von mir schon erwähnten und hoch geschätzten Autor @Florian @Freistetter. Durch sein Buch „Das Universum in einhundert Sternen“ wurde ich auf diese Geschichte aufmerksam.

Ich wünsche uns allen einen schönen Fronleichnams-Feiertag.

Ein Kosmischer Milchkaffee


Meine lieben,

gerade bin ich durch Twitter darauf aufmerksam gemacht worden, dass am 01.06.2023 der diesjährige Kosmologie-Tag stattfinden soll. Bisher wusste ich gar nicht, dass es so einen Tag überhaupt gibt, zumal er nie am selben Datum begangen wird.

Dann nehmen wir den doch zum Anlass, mal etwas über die Kosmologie im allgemeinen zu schreiben. Am Ende gibt es dann noch eine kleine kuriose Geschichte.
Ein Novum ist heute außerdem auf dem Blog, dass ich das erste Mal mit einer Partnerin zusammen arbeite, die einige von euch bereits kennen gelernt haben dürften. Sie heißt ChatGPT und soll mir Fakten für diesen Artikel liefern.
Schauen wir mal, wie sie sich anstellt.

Was ist die Kosmologie?

ChatGPT sagt:

Die Kosmologie ist ein Zweig der Physik, der sich mit dem Studium des Universums als Ganzes befasst. Sie beschäftigt sich mit Fragen zur Entstehung, Entwicklung, Struktur und dem Schicksal des Universums. Die Kosmologie versucht, die grundlegenden Eigenschaften des Universums zu verstehen, einschließlich seiner Größe, Form, Zusammensetzung, Energieinhalte und Verteilung von Galaxien und anderen astronomischen Objekten.
Die moderne Kosmologie basiert auf Beobachtungen, theoretischen Modellen und Experimenten. Eine wichtige Grundlage der Kosmologie ist das allgemeine Relativitätsgesetz von Albert Einstein, das die Gravitation als Krümmung von Raum und Zeit beschreibt. Im kleinen findet hier die Quantentheorie ihre Anwendung.
Die kosmologischen Modelle basieren oft auf der Annahme, dass das Universum homogen und isotrop ist, was bedeutet, dass es in großem Maßstab einheitlich und in jeder Richtung gleich aussieht.
Ein wichtiges Konzept in der Kosmologie ist der Urknall, eine Theorie, die besagt, dass das Universum vor etwa 13,8 Milliarden Jahren aus einem extrem heißen und dichten Zustand entstanden ist. Seitdem hat sich das Universum ausgedehnt und abgekühlt, und es hat sich eine Vielzahl von Strukturen gebildet, darunter Galaxien, Sterne und Planeten.

Die Kosmologie befasst sich auch mit anderen wichtigen Fragen, wie der Dunklen Materie und der Dunklen Energie, die zusammen den Großteil der Masse und Energie im Universum ausmachen sollen, aber bisher nicht direkt beobachtet wurden. Die Erforschung dieser Themen und die Entwicklung von Theorien und Modellen, um die Eigenschaften des Universums zu erklären, sind zentrale Aufgaben der Kosmologie.

Das hat diese neue künstliche Intelligenz doch gar nicht schlecht erklärt, finde ich. Nur weniges habe ich verändert oder ergänzt.
Allerdings beleidigt sie damit auch mein Schreiberherz, weil sie das so gut kann…
Aber ganz ohne Zweifel. So einer wichtigen Wissenschaft kann man durchaus mal einen Tag widmen, um auf diese und deren Inhalte aufmerksam zu machen.

Der Kosmologietag

Meine KI-Partnerin sagt:

Der Tag der Kosmologie ist ein jährlich stattfindendes Ereignis, das die Wissenschaft und das Interesse an der Kosmologie feiert. Es ist ein Tag, an dem Menschen weltweit zusammenkommen, um über die faszinierenden Aspekte des Universums zu diskutieren, Forschungsergebnisse zu präsentieren und das allgemeine Bewusstsein für die Kosmologie zu erhöhen.
Der genaue Tag der Kosmologie kann je nach Initiative, Organisation oder Region variieren.

Während des Tags der Kosmologie finden oft verschiedene Veranstaltungen statt, darunter Vorträge, Konferenzen, Workshops, Ausstellungen, öffentliche Beobachtungen des Himmels, Wettbewerbe und mehr. Ziel ist es, das Interesse der Menschen an der Kosmologie zu wecken, Wissen zu vermitteln, Diskussionen anzuregen und die Bedeutung der Erforschung des Universums zu betonen.
Es ist wichtig anzumerken, dass der Tag der Kosmologie kein offizieller Feiertag ist, sondern eine Initiative von Wissenschaftlern, Astronomen, Bildungseinrichtungen, Sternwarten und anderen Organisationen, die die Faszination für das Universum teilen und verbreiten möchten.

ChatGPT schwurbelte und fabulierte hierüber noch weiter, rutschte dann aber in die Esoterik und fast schon in die Astrologie ab. Das wurde mir dann zu viel und zu wage. Ja, das muss man wissen, wenn man sich mit dieser Dame einlässt. Niemals würde sie zugeben, etwas nicht zu wissen. Meistens phantasiert sie dan einfach weiter, wenn man ihr kein Einhalt gebietet.
Kommen wir nun also zu unserer Geschichte mit dem Milchkaffee.

Welche Farbe hat das Universum?

Das Universum kann man sich durchaus für diese Frage als eine Art Flüssigkeit denken, in welcher alle seine Bestandteile durcheinander wirbeln. Diese Flüssigkeit sollte, wenn man sie aus ungeheurer Ferne betrachtet, doch auch ungefähr eine einheitliche Farbe besitzen.

Auf diese Frage gibt es keine einfache Antwort. Das liegt daran, dass das Universum in seiner Gesamtheit keine eindeutige Farbe hat, wie wir sie von alltäglichen Objekten kennen.
Die Farbe eines Objekts hängt von der Art des Lichts ab, das es emittiert, reflektiert oder durchlässt, und wie dieses Licht von unseren Augen und unserem Gehirn interpretiert wird. Im Falle des Universums besteht es aus einer Vielzahl von Objekten wie Sternen, Galaxien, Gaswolken und interstellarem Staub, die unterschiedliche Farben haben können.
Wenn wir das gesamte sichtbare Lichtspektrum betrachten, würden wir verschiedene Farben sehen, die von den unterschiedlichen Arten von Objekten im Universum erzeugt werden. Sterne können verschiedene Farben haben, abhängig von ihrer Temperatur. Zum Beispiel erscheinen heißere Sterne bläulich-weiß, während kühlere Sterne eher rötlich erscheinen. Galaxien können ebenfalls verschiedene Farben haben, je nach den enthaltenen Sternen und der Menge an Staub und Gas.
Es gibt jedoch auch Bereiche des Universums, die außerhalb des sichtbaren Lichtspektrums liegen, wie zum Beispiel die Mikrowellenhintergrundstrahlung, die als Überbleibsel des Urknalls betrachtet wird. Diese Strahlung hat eine charakteristische Farbe im Mikrowellenbereich.
Zusammenfassend lässt sich sagen, dass das Universum keine einheitliche Farbe hat, sondern vielmehr eine Vielzahl von Farben aufgrund der verschiedenen Arten von Objekten und Strahlung, die darin existieren.

Damit wollten sich aber einige Wissenschaftler:innen nicht zufrieden geben. Zumindest eine statistische Farbe, ähnlich einer gut durchmischten Flüssigkeit, sollte man wenigstens berechnen können.

Diese Idee führt uns unmittelbar zu unserem kosmischen Milchkaffee.
Lassen wir dazu nochmal meine Assistentin zu Wort kommen.

Cosmic Latte ist eine informelle Bezeichnung für die durchschnittliche Farbe des Universums. Im Jahr 2002 führten Astronomen des Johns Hopkins University Physics Laboratory eine Studie durch, um die gesamte Farbe des sichtbaren Lichts im Universum zu bestimmen. Dabei analysierten sie das Licht von mehr als 200.000 Galaxien und kombinierten diese Daten, um eine repräsentative Farbe zu ermitteln.
Das Ergebnis dieser Analyse ergab eine leicht gelblich-weiße Farbe, ähnlich der Farbe von Kaffee mit Milch. Die Astronomen nannten diese Farbe humorvoll „Cosmic Latte“. Es war eine anschauliche Art, die durchschnittliche Farbe des Universums zu beschreiben.
Es ist jedoch wichtig anzumerken, dass Cosmic Latte keine wissenschaftlich anerkannte oder exakte Farbbezeichnung ist. Die Farbe des Universums kann je nach den untersuchten Daten und den verwendeten Analysemethoden variieren. Dennoch hat sich der Begriff Cosmic Latte als eine populäre und leicht verständliche Art etabliert, die Durchschnittsfarbe des Universums zu beschreiben.

Mir als Blindnerd stellt sich natürlich jetzt die Frage, wie sich wohl der Gesamtklang des Universums anhören mag…
Und es gibt übrigens einen ganz wunderbaren Podcast, der sich Cosmic Latte nennt. Den kann ich euch nur empfehlen.

Eine Torte für die Mathematik – Wir begehen den $\pi$-Tag


Meine lieben,
Immer wieder habe ich das Datum verpasst. Aber diesmal nicht. Es geht um den 14. März eines jeden Jahres. Schreibt man das Datum in englischer Schreibweise, dann ist es March, 14th. oder 03.14. Und diese letzte Schreibweise kommt uns doch irgendwie bekannt vor. Spätestens dann, wenn man den Punkt durch unser deutsches Komma ersetzt. Dann wird daraus nämlich die Zahl 3,14, also die Kreiszahl $\pi$.

Diese Zahl ist den meisten aus der Schule bekannt. Mathematik, Geometrie und damit verbunden auch die Astronomie wäre ohne sie nicht denkbar. Ob dieser Wichtigkeit verwundert es nicht, dass man ihr genau den 14.03. als Gedenktag widmete.
Dann tun wir das doch einfach auch und begehen den $\pi$-Tag.
Bevor es los geht, noch eine kleine Anmerkung:

Wenn ich das Pi-Zeichen $\pi$ hier immer für Sehende schön angezeigt einfüge, dann kann es sein, dass im Fließtext der Lesefluss für unsere Sprachausgabe nutzer:innen etwas beeinträchtigt wird, weil dann immer auf einen mathematischen Modus umgeschaltet wird. Außerdem wird das $\pi$-Zeichen und andere mathematische Ausdrücke auf unseren Punktschriftzeilen leider momentan nur in der englischsprachlich mathematischen Notation für Blinde ausgegeben. Deshalb kann es durchaus sein, dass ich derlei dann und wann als Fließtext setze und nicht so formatiere, wie es mathematisch schön und korrekt auszusehen hätte. An anderen Stellen werde ich einfach zwei Varianten verwenden. Seht mir das also bitte nach.

Die Feier

Als Begründer dieser Tradition gilt Larry Shaw, der den Pi Day 1988 am Exploratorium in San Francisco initiierte, wo er seitdem jährlich begangen wird.

2009 wurde in den USA der 14. März vom US-Kongress zum offiziellen Nationaltag für die Kreiskonstante Pi erklärt.
Der Pi-Tag wird traditionell mit dem gemeinsamen Verzehren von kreisförmigen Kuchen begangen (im Englischen wird der griechische Buchstabe π lautgleich wie das englische Wort pie, Kuchen, ausgesprochen). Ein solcher Kuchen von 20 Zentimetern Durchmesser hat zudem π Quadratdezimeter Grundfläche.
Zur Verbreitung des Gedenktages trägt auch bei, dass zufällig der 14. März auch der Geburtstag Albert Einsteins und (seit 2018) der Todestag Stephen Hawkings ist. Besonders genaue Anhänger feiern um 13:59:26 Uhr und erreichen die Kreiszahl damit bis zur siebten Nachkommastelle
(3/14 1:59:26 pm).
Am Massachusetts Institute of Technology wurden 2015 in Anlehnung an den Pi-Tag einige Termine auf Samstag, den 14. März um 9:26 Uhr ET (3/14/15 9:26 am) gelegt.
Mindestens seit dem Jahr 2000 wird auch ein Pi-Näherungstag (Pi Approximation Day) am 22. Juli gefeiert, mit dem die näherungsweise Darstellung von π durch Archimedes (Archimedischer Algorithmus) als 22/7 ≈ 3,14 geehrt werden soll.
Daran sieht man sofort, dass die Kreiszahl Jahrtausende alt ist, wenn schon der alte Grieche mit ihr arbeitete, der mit seinem Heureka-Ruf aus seiner Wanne sprang.

Ich weiß nicht, ob er sich als er seinen Widersacher bat, seine Kreise nicht zu stören, gerade geometrisch mit der Kreiszahl beschäftigte, aber es soll ja dann quasi leider sein letzter Satz gewesen sein.

Was ist $\pi$
Zur Bezeichnung Pi kam die Zahl durch die Anfangsbuchstaben der beiden griechischen Wörter Perimetrus (Umfang) und Peripheria (Randbereich).

Ein Kreis mit dem Durchmesser 1 hat den Umfang pi.
Die Kreiszahl, auch Ludolphsche Zahl, Ludolfsche Zahl oder Archimedes-Konstante, abgekürzt mit dem griechischen Kleinbuchstaben ($\pi$), ist eine mathematische Konstante, die das Verhältnis des Umfangs eines Kreises zu seinem Durchmesser angibt. Dieses Verhältnis ist für alle Kreise gleich, unabhängig von ihrer Größe. Die dezimale Darstellung der Kreiszahl beträgt 3,14159265… Die PÜnktchen stehen für weitere Ziffern, denn pi reißt nicht ab.
Im Alltag reichen aber oft die ersten beiden Stellen hinter dem Komma aus.

Seit dem 8. Juni 2022 sind 100 Billionen Nachkommastellen der Kreiszahl bekannt.

Ein weiterer Ansatz pi zu definieren führt über den Vergleich der Kreisfläche und des Quadrates seines Radius. So ergibt sich die Kreisfläche als R^2 *pi. Kennt jeder noch aus der Schule.
Es gibt noch weitere Möglichkeiten pi über Reihen, Kettenbrüche, Winkelfunktionen etc. anzunähern, aber die sparen wir uns an dieser Stelle.
Einige dieser Ansätze durfte ich im Studium der Analysis und der Numerik kennenlernen.

Die Kreiszahl ist transzendent und hat damit unendlich viele Nachkommastellen. Darin sind bislang keine vorhersagbaren Muster erkennbar, die Ziffernfolge erscheint chaotisch.
Die Zahl ist eine irrationale Zahl, also eine reelle, aber keine rationale Zahl. Das bedeutet, dass sie nicht als Verhältnis zweier ganzer Zahlen , also nicht als Bruch , dargestellt werden kann. Das wurde 1761 (oder 1767) von Johann Heinrich Lambert bewiesen.
Dass pi transzendent ist, bedeutet auch, dass es kein vom Nullpolynom verschiedenes Polynom mit rationalen Koeffizienten gibt, das pi zur Nullstelle hat. So ist auch jede Zahl, die durch algebraische Operationen wie Addition und Multiplikation mit sich selbst und mit ganzen Zahlen aus erzeugt wird, wiederum transzendent. Das wurde erstmals von Ferdinand von Lindemann 1882 bewiesen.

Als Konsequenz ergibt sich daraus, dass es unmöglich ist, pi nur mit ganzen Zahlen oder Brüchen und Wurzeln auszudrücken, und dass die exakte Quadratur des Kreises mit Zirkel und Lineal nicht möglich ist.

Geschichte der Annäherung

Die Notwendigkeit, den Umfang eines Kreises aus seinem Durchmesser zu ermitteln oder umgekehrt, stellt sich im ganz praktischen Alltag: Man braucht solche Berechnungen zum Beschlagen eines Rades, zum Einzäunen runder Gehege, zum Berechnen der Fläche eines runden Feldes oder des Rauminhalts eines zylindrischen Getreidespeichers. Daher suchten Buchhalter und Wissenschaftler, vor allem Mathematiker und Astronomen, seit der Antike nach immer genaueren Näherungswerten für die Kreiszahl. Wesentliche Beiträge lieferten etwa ägyptische, babylonische und griechische Wissenschaftler, im Mittelalter vor allem chinesische und persische Wissenschaftler, in der Neuzeit französische, englische, schottische, deutsche und schweizerische Wissenschaftler. In der jüngeren Geschichte gerieten die Bestrebungen zur größtmöglichen Annäherung an phasenweise zu einer regelrechten Rekordjagd, die zuweilen skurrile und auch aufopfernde Züge annahm.
Aber wie schon gesagt, reichen im Alltag oft schon die ersten zwei Nachkommastellen als Näherung aus.
Mit der Näherung der ersten21 Nachkommastellen wäre erst der Umfang eines Kreises von etwa 3,8 Billiarden km Durchmesser (das entspricht der Entfernung zum Polarstern) um einen Millimeter falsch (nämlich zu kurz) berechnet.

Die Kreiszahl und einige ihrer Eigenschaften waren bereits in der Antike bekannt. Das älteste bekannte Rechenbuch der Welt, das altägyptische Rechenbuch des Ahmes aus der Mitte der 16. Jahrhundert v. Chr., erwähnt einen Bruch, der zumindest bis zur dritten Nachkommastelle ungefähr pi ergibt.

Als Näherung für pi benutzten die Babylonier häufig einfach nur 3 +1/8, solange dessen Abweichung von gut 4,5 % nicht ins Gewicht fiel. Den Wert 3 nutzte man auch im alten China, und er findet sich auch in der biblischen Beschreibung des Wasserbeckens, das für den Jerusalemer Tempel geschaffen wurde:

Dann machte er das Meer. Es wurde aus Bronze gegossen und maß 10 Ellen von einem Rand zum anderen; es war völlig rund und 5 Ellen hoch. Eine Schnur von 30 Ellen konnte es rings umspannen.

1. Buch der Könige, Kapitel 7 Ausstattung des Tempels, Vers 23, König Salomo, Hiram aus Tyrus formte das Meer, ein Wasserbecken aus Bronze.

In Indien nahm man für die Kreiszahl in den Sulbasutras, den Schnurregeln zur Konstruktion von Altären, den Wert und wenige Jahrhunderte v. Chr. in der Astronomie den Näherungswert Quadratwurzel aus 10, $\sqrt{10}$.

Handwerker benutzten in Zeiten vor Rechenschiebern und Taschenrechnern die Näherung 22/7 und berechneten damit vieles im Kopf. Der Fehler gegenüber pi beträgt etwa 0,04 %. In den meisten Fällen liegt das innerhalb der möglichen Fertigungsgenauigkeit und ist damit absolut akzeptabel.

Eine andere oft genutzte Näherung ist der Bruch 355/113 , immerhin auf sieben Stellen genau.

Und in dem Zusammenhang fällt mir eine kleine Geschichte zu pi ein.
Vor etwa zwanzig Jahren brachte eine Firma für Hilfsmittel für blinde Menschen einen sog. wissenschaftlichen Taschenrechner mit Sprachausgabe heraus. Auf einer Hilfsmittelmesse und auch danach noch, hatte ich die Gelegenheit, das Gerät zu testen. Noch am Messestand probierte ich gleich mal die Pi-Taste aus. Und obwohl dieser Rechner zehn Stellen anzeigen konnte, gab der Druck auf die pi-Taste lediglich nur 3,14 aus. Das war mir jetzt aber doch zumindest für das interne Rechnen etwas zu ungenau, wenn man bedenkt dass schon alte Handwerker und Astronomen das besser hin bekamen. Also gab ich tatsächlich einfach mal die kleine Aufgabe pi mal 100 ein. Als Ergebnis erhielt ich tatsächlich 314,0. Selbiges probierte ich dann auch noch mit der Euler-Zahl und mit der Quadratwurzel aus zwei aus. Es war dasselbe. Spätestens nach der dritten Nachkommastelle brachen all diese Zahlen ab. Das ärgerte mich dann schon, dass sich so ein Taschenrechner als wissenschaftlich bezeichnete und dazu noch um 500 Euro kosten sollte. Die Aufgabe 10/3*3 ergab übrigens nicht 10, sondern 9,99…
Aber zurück zur Kreiszahl.

Kommt pi vielleicht doch mal zum Abschluss?

Möndchen

Ich habe jetzt nicht ganz das Bild im Kopf, was die im folgenden erwähnten „Möndchen“ genau waren. Ich nehme an, dass hier ein Kreis in ganz viele „Kuchenstückchen“ zerschnitten wurde, und man diese gegeneinander zu einem Rechteck legte. Die Rundungen der Stückchen werden immer kleiner, in desto mehr Teile man den Kreis zerschneidet. Das ganze wird also einem Rechteck immer ähnlicher, dessen lange Kanten eben durch die Teilbögen des Kreises etwas wellig sind.
Somit ist das eine geometrische Annäherung an pi.

Die Flächensumme der Möndchen des Hippokrates entspricht der Fläche eines rechtwinkligen Dreiecks. Ein Beispiel für eine rationale Darstellbarkeit von Kreisausschnitten, weshalb es lange für möglich gehalten wurde, dass auch die Kreiszahl selbst rational ist.

Für den griechischen Mathematiker Archimedes und viele nach ihm war unklar, ob die Berechnung von pi nicht doch irgendwann zum Abschluss käme, ob also eine rationale Zahl sei, was die jahrhundertelange Jagd auf die Zahl verständlich werden lässt. Zwar war den griechischen Philosophen die Irrationalität derartiger Zahlen bekannt, dennoch hatte Archimedes keinen Grund, bei einem Kreis von vornherein eine rationale Darstellbarkeit der Flächenberechnung auszuschließen. Denn es gibt durchaus allseitig krummlinig begrenzte Flächen, die sich als rationale Zahl darstellen lassen, sogar von Kreisteilen eingeschlossene wie die Möndchen des Hippokrates.

Annäherung durch Vielecke

Archimedes gelang es um 250 v. Chr., die Kreiszahl mathematisch einzugrenzen, d. h. eine Ober- und Unterschranke anzugeben. Hierzu näherte er sich wie auch andere Mathematiker mit regelmäßigen Vielecken dem Kreis an, um Näherungswerte für pi zu gewinnen. Mit umbeschriebenen und einbeschriebenen Vielecken, beginnend bei Sechsecken, durch wiederholtes Verdoppeln der Eckenzahl bis zu 96-Ecken, berechnete er obere und untere Schranken für den Kreisumfang.

In den westlichen Kulturen stellten diese Berechnungen von Archimedes über eine sehr lange Zeit – wie in manchen anderen gesellschaftlichen und kulturellen Bereichen auch – den Status quo in Bezug auf die Genauigkeit der Kenntnis von pi dar. Erst im 16. Jahrhundert erwachte das Interesse wieder.

Fortschritte in der Annäherung erzielten in der Zeit des 4. bis 15. Jahrhunderts vor allem chinesische und persische Wissenschaftler:
Im dritten Jahrhundert bestimmte Liu Hui aus dem 192-Eck die Schranken 3,141024 und 3,142704 sowie später aus dem 3072-Eck den Näherungswert 3,1416.
Um 480 berechnete der chinesische Mathematiker und Astronom Zu Chongzhi (429–500) für die Kreiszahl , also die ersten 7 Dezimalstellen. Er kannte bereits einen Näherungsbruch, der in Europa erst im 16. Jahrhundert gefunden wurde (Adriaan Metius, deshalb auch Metius-Wert genannt). Im 14. Jahrhundert berechnete Zhao Youqin die Kreiszahl über ein 16384-Eck auf sechs Dezimalstellen genau.
Der indische Mathematiker und Astronom Aryabhata gibt im Jahre 498 das Verhältnis des Kreisumfangs zum Durchmesser mit an, was nur um rund 0,00023 % zu hoch liegt.
In seinem 1424 abgeschlossenen Werk Abhandlung über den Kreis berechnete der persische Wissenschaftler Dschamschid Masʿud al-Kaschi mit einem 3×228-Eck bereits auf 16 Stellen genau.

In Europa gelang es Ludolph van Ceulen 1596, die ersten 35 Dezimalstellen von pi zu berechnen. Angeblich opferte er dafür 30 Jahre seines Lebens. Van Ceulen steuerte allerdings noch keine neuen Gedanken zur Berechnung bei. Er rechnete einfach nach der Methode des Archimedes weiter, aber während Archimedes beim 96-Eck aufhörte, setzte Ludolph die Rechnungen bis zum einbeschriebenen $2^62$-Eck fort.

Bis heute lässt die Zahl pi die Mathematiker nicht in Ruhe. Es gäbe hier noch viel zu berichten, wie man sich mit neueren mathematischen Verfahren und Algorithmen und Computern der Zahl versuchte anzunähern, aber für deren Verständnis ist viel mathematisches Grundwissen nötig, das ich nur teilweise besitze. Das erspare ich uns jetzt. Wer hier tiefer einsteigen möchte, findet auf Wikipedia tiefe Befriedigung.

Weitere Kuriositäten

  • Freunde der Zahl feiern am 14. März (in US-amerikanischer Notation 3/14) den Pi-Tag und am 22. Juli (in US-amerikanischer Notation 7/22) den Pi Approximation Day.
  • Im Jahr 1897 sollte im US-Bundesstaat Indiana mit dem Indiana Pi Bill die Kreiszahl gesetzlich auf einen der von Hobbymathematiker Edwin J. Goodwin gefundenen Werte festgelegt werden, der sich auf übernatürliche Eingebungen berief. Aus seinen Arbeiten lassen sich unterschiedliche Werte für die Kreiszahl ableiten, unter anderem 4 oder 16⁄5. Nachdem er eine gebührenfreie Nutzung seiner Entdeckungen anbot, verabschiedete das Repräsentantenhaus diesen Gesetzentwurf einstimmig. Als Clarence A. Waldo, Mathematikprofessor der Purdue University, davon zufällig bei einem Besuch des Parlaments erfuhr und Einspruch erhob, vertagte die zweite Kammer des Parlaments den Entwurf auf unbestimmte Zeit.
  • Paragraph 30b der Straßenverkehrszulassungsordnung bestimmt in Deutschland für die Berechnung des (für die Kfz-Steuer relevanten) Hubraums eines Verbrennungsmotors: „Für pi wird der Wert von 3,1416 eingesetzt.“
  • Die Versionsnummer des Textsatzprogramms TeX von Donald E. Knuth wird entgegen den üblichen Konventionen der Software-Entwicklung seit den 1990er Jahren so inkrementiert, dass sie sich langsam annähert.
  • Der Versionsname der freien Geoinformationssystemssoftware QGIS lautet in der Version 3.14 „Pi“. Für Bugfix-Versionen werden zusätzliche Dezimalstellen hinzugefügt.
  • Wissenschaftler senden mit Radioteleskopen die Kreiszahl ins Weltall. Sie sind der Meinung, dass andere Zivilisationen diese Zahl kennen müssen, wenn sie das Signal auffangen können.
  • Der aktuelle Rekord im Pi-Vorlesen liegt bei 108.000 Nachkommastellen in 30 Stunden. Der Weltrekordversuch begann am 3. Juni 2005 um 18:00 Uhr und wurde am 5. Juni 2005 um 0:00 Uhr erfolgreich beendet. Über 360 Leser lasen jeweils 300 Nachkommastellen. Organisiert wurde der Weltrekord vom Mathematikum in Gießen.

Film, Musik, Kultur und Literatur

• Im Roman Der Zauberberg von Thomas Mann schildert der Erzähler im Kapitel Der große Stumpfsinn auf mitleidig-belächelnde Weise, wie die Nebenfigur des Staatsanwalts Paravant den „verzweifelten Bruch“ Pi zu enträtseln versucht. Paravant glaubt, dass die „planende Vorsehung“ ihn dazu bestimmt habe, „das transzendente Ziel in den Bereich irdisch genauer Erfüllung zu reißen“. Er bemüht sich, in seiner Umgebung eine „humane Empfindlichkeit zu wecken für die Schande der Verunreinigung des Menschengeistes durch die heillose Irrationalität dieses mystischen Verhältnisses“, und fragt sich, „ob nicht die Menschheit sich die Lösung des Problems seit Archimedes’ Tagen viel zu schwer gemacht habe, und ob diese Lösung nicht in Wahrheit die kindlich einfachste sei.“ In diesem Zusammenhang erwähnt der Erzähler den historischen Zacharias Dase, der Pi bis auf zweihundert Stellen nach dem Komma berechnet hat.
• In der Science-Fiction-Serie Raumschiff Enterprise bemächtigt sich in Folge 43, Der Wolf im Schafspelz (orig. Titel Wolf in the Fold), ein fremdes Wesen des Bordcomputers. Der 1. Offizier Spock befiehlt darauf dem Computer, die Zahl Pi bis auf die letzte Nachkommastelle zu berechnen. Durch diese Aufgabe wird der Computer so überfordert, dass das Wesen den Computer wieder verlässt.
• 1981 wurde Carl Sagans Buch Contact veröffentlicht. Das Buch beschreibt das SETI-Programm zur Suche nach außerirdischer Intelligenz und damit verbundene philosophische Betrachtungen. Es endet mit der fiktiven Beantwortung der Frage, ob das Universum zufällig entstanden ist oder planvoll geschaffen wurde. Die Zahl spielt für die im Rahmen der Handlung folgerichtige Antwort die zentrale Rolle.
• 1998 veröffentlichte Darren Aronofsky (Requiem for a Dream) den Film Pi, in dem ein mathematisches Genie (Sean Gullette als ‚Maximilian Cohen‘) die Weltformel aus herausfiltern möchte.
• Auf dem 2005 erschienenen Doppelalbum Aerial von Kate Bush ist ein Lied der Zahl Pi gewidmet.
• Die im November 2006 eröffnete Medieninstallation Pi in der Wiener Opernpassage widmet sich unter anderem der Kreiszahl.
• Im Film Nachts im Museum 2 (2009) ist die Kreiszahl die Kombination für die Tafel des Ahkmenrah. Die Kombination wird mit Hilfe von Wackelkopf-Einsteins gelöst und öffnet in dem Film das Tor zur Unterwelt.
• Die progressive Deathcore-Band After the Burial hat auf ihrem Debütalbum Forging a Future Self das Lied Pi (The Mercury God of Infinity) veröffentlicht. Es besteht aus einem Akustikgitarrensolo, auf das ein Breakdown folgt, dessen Rhythmus an die ersten 110 Stellen der Kreiszahl angelehnt ist.

Und was lernen wir aus all dem?

Fange niemals einen Satz an wie:

„Pi ist genau …“
Der wird immer falsch.

Rechnerinnen – zum Weltfrauentag 2023

Prolog

Heute ist der 08.03., Welt-Frauentag. Was liegt näher, so einen Tag zu begehen, als dass ich mir Gedanken über große Frauen in Astronomie und Wissenschaft mache. Das seid ihr ja von mir gewöhnt, dass an jedem 08.03. eine Wissenschaftlerin gewürdigt wird.

Bis heute sind Frauen in naturwissenschaftlich-technischen Berufen leider noch immer unterrepräsentiert. Die Statistiken sprechen hier eine sehr deutliche Sprache. Trotz Frauenbewegung, Emanzipation, Erziehungsurlaub auch für Männer, gesetzliche Gleichberechtigung und dafür aufgeschlossene Männern, ist es noch nicht gelungen, diesen Missstand in den Griff zu bekommen.
Dennoch hat es immer wieder Frauen gegeben, die trotz Benachteiligung, Unterdrückung, Bildungsverbot und Leben in einer streng patriarchaisch dominierten Gesellschaft, großartiges in Wissenschaft, z. B. der Astronomie, geleistet haben. Sie setzten sich in einer harten Männerwelt durch und waren vielleicht sogar öfter, als man denkt, die schlaueren Köpfe. Zumindest zeugen einige Dokumente davon, dass viele starke kluge Frauen die Fäden ihrer männlichen Professoren in Händen hielten…
Bis in biblische Zeiten hinein, kann man diese Phänomene beobachten. Somit scheint der Satz

Der Mann kann noch so viele Dinge bauen – Es steht und fällt ein Volk mit seinen Frauen.

mehr Wahrheitsgehalt zu besitzen, als manchen lieb ist.

So lasst uns den Weltfrauentag 2023 damit begehen, indem wir die Person und das Lebenswerk von Williamina Fleming würdigen.

Leben

Ihre Eltern waren Robert Stevens und Mary Walker Stevens. Williamina besuchte öffentliche Schulen in Dundee (Schottland) und wurde mit 14 Jahren Lehrerin. Das stelle man sich vor. Also wenn ich mir überlege, wo ich mit vierzehn Jahren war…

Sie heiratete James Orr Fleming. Als sie 21 Jahre alt war, übersiedelte das Paar in die USA nach Boston. Ihr Ehemann verließ sie, als sie mit ihrem Sohn Edward schwanger war. Das muss sehr schwer für sie gewesen sein, in dieser Zeit quasi ein vaterloses Kind als allein erziehende Frau groß zu ziehen. Das war ein großes gesellschaftliches Problem und sicherlich irgendwie auch eine Schande.

So musste sie sich eine Arbeit suchen, um den Lebensunterhalt für sich und ihr Kind zu verdienen.
Sie fand eine Stelle als Angestellte im Haus des Professors Edward Charles Pickering. Pickering, beeindruckt von der Intelligenz Flemings und unzufrieden mit seinen männlichen Assistenten am Harvard-College-Observatorium, erklärte, seine Hausangestellte könne deren Arbeit besser erledigen.

So beauftragte Pickering im Jahr 1881 in dem Observatorium Williamina mit Büroarbeiten und ab 1886 mit der Klassifikation von Sternen.

Lebenswerk

Ihr System basierte darauf, jedem Stern einen Buchstaben zuzuordnen in Abhängigkeit davon, wie viel Wasserstoff in seinem Spektrum beobachtet werden konnte. A-Sterne hatten am meisten Wasserstoff, B-Sterne etwas weniger, und so weiter. Insgesamt gruppierte Fleming die Sterne in 17 Kategorien ein.
Annie Jump Cannon , auch eine Frau, verbesserte später das System und entwickelte eine einfachere Klassifizierung auf Basis der Temperatur.

Wir erinnern uns, dass das, woraus Sterne im wesentlichen Bestehen, Wasserstoff und Helium, auch die Entdeckung einer Frau und Astronomin war. Sie würdigte ich
zum Frauentag 2022 in „Die Frau mit dem Sonnenstoff„.

Fleming beteiligte sich an der Katalogisierung der Sterne, der später als Henry-Draper-Katalog veröffentlicht wurde. In neun Jahren erfasste sie mehr als 10.000 Sterne. Bei ihrer Arbeit entdeckte Williamina Fleming 59 Gasnebel, 310 veränderliche Sterne und 10 Novae. 1907 veröffentlichte sie eine Liste von 222 veränderlichen Sternen, die sie neu entdeckt hatte.
Pickering übertrug ihr die Verantwortung für Dutzende von Frauen, die für die Durchführung mathematischer Klassifikationen angestellt waren, und sie redigierte die Publikationen des Observatoriums.
Frauen wurden häufig als sog. Rechnerinnen angestellt, weil man sie deutlich geringer bezahlte. Solchen Rechnerinnen oder auch Computer genannten Frauen verdanken wir die Mondlandung. denn sie berechneten dafür die Flugbahn der Raketen. An dieser Stelle will ich euch ganz dringend den Film „Hidden Figures“ empfehlen. Dieser handelt genau von diesen Frauen, die den Mondflug berechneten und dazu noch dunkler Hautfarbe waren. Jeder weiß, dass solche Menschen in den 60er Jahren des letzten Jahrhunderts großen Diskriminierungen und Benachteiligungen ausgesetzt wahren. Das ist bis heute noch nicht völlig überwunden. Es gibt diese Geschichte auch als Buch. Auf Deutsch heißt es
Im Kernschatten des Mondes – Die unbekannten Heldinnen der NASA, Taschenbuch von Margot Shetterly, HarperCollins, 9783959674034
Es wurde auch in den Hörbüchereien für blinde Menschen aufgelesen.

Und wir lernten unsere heutige Astronomin im Zusammenhang mit sog. Weißen Zwergen kennen.
Im Jahre 1910 waren Teleskope schon deutlich besser und empfindlicher, so dass diese Objekte langsam beobachtet werden konnten.
In diesem Jahr entdeckten die Astronom*innen Henry Norris Russell, Edward Charles Pickering und Williamina Fleming, dass
40 Eridani B ein sonnennaher schwacher Stern ist, Dieser sollte eigentlich eine rote Zwergsonne sein.
Er leuchtet entgegen aller Erwartungen weiß und muss daher eine sehr hohe Oberflächentemperatur besitzen. Er ist also ein weißer Zwerg, der erste, welcher je erblickt wurde.
Über diese Zwerglein schrieb ich in Station acht auf unserer Reise zu den schwarzen Löchern.

Ihr Appell

Fleming gelangte zu der Überzeugung, dass die Astronomie ein geeignetes Betätigungsfeld für Frauen ist. In ihrem Artikel A Field For Woman’s Work in Astronomy ging sie auf die Tätigkeit von sich und ihren Kolleginnen am Observatorium näher ein und versuchte die Motivation von Frauen zu stärken, sich in die Astronomie wissenschaftlich einzubringen.
Da rennt sie bei mir offene Türen ein. Und außerdem ist die Astronomie eines der inklusivsten Dinge, mit welchen man sich beschäftigen kann.

Würdigungen

1899 erhielt sie den Titel Kurator für Astronomische Fotografien und 1906 wurde sie Ehrenmitglied der Königlichen Astronomischen Gesellschaft von London – die erste Frau, der diese Ehre zuteil wurde. Kurz darauf erhielt sie ein Ehrenstipendiat am Wellesley College. Kurz vor ihrem Tod zeichnete die Mexikanische Astronomische Gesellschaft sie für die Entdeckung neuer Sterne mit der Guadalupe Almendaro Medaille aus.
Nach ihr wurde 1970 der Mondkrater Fleming (zusammen mit Alexander Fleming) benannt, sowie 2022 der Asteroid (5747) Williamina.