Die Sonne tönt – Klingel oder Orgelpfeife

Liebe Leserinnen und Leser,

Viele von uns haben es noch in der Schule gelernt:
“Die Sonne tönt nach alter Weise,
in Bruder Sphären Wettgesang.
Und ihre vorgeschrieb’ne Reise,
vollendet sie mit Donnergang…”
Goethes Prolog im Himmel aus Faust I.

Mit der eher esoterischen Idee von Sonnenton, Erdenton und klingender Himmelsmechanik, haben wir uns in “Das Ohr am Teleskop” und “klingende Planetenbahnen” beschäftigt.
Schon klar, niemand kann die Sonne hören. Schon alleine deshalb nicht, weil 149 Mio Kilometer Vakuum zwischen ihr und uns liegen.

Es gibt aber in der Tat Gründe, sich damit zu beschäftigen, ob die Sonne klingt und schwingt, wie Schallwellen sich im Stern fortpflanzen, ob sie eher Glocke oder Orgelpfeife ist und vieles mehr.
Der Hauptgrund ist das Problem, dass wir nicht in die Sonne hinein sehen können. Was wir von ihr sehen, ist ihre Photosphäre, die alles überstrahlt und keinen Blick nach innen zulässt. Ich habe schon im vorigen Artikel erwähnt, dass uns ein Neutrino-Teleskop den Blick nach innen gewähren würde. Dieses wird es aber aufgrund der Eigenschaft, dass Neutrinos quasi mit nichts wechselwirken, nie geben. Mit Radio-Teleskopen kann man je nach dem, welche Wellenlänge man betrachtet, ein bisschen unter die Oberfläche schauen, aber auch nicht wirklich in den Stern hinein.

Vieles, was wir über das Innere von Sternen, und was dort passiert wissen, kommt aus Simulationen am Computer. Man spielt beispielsweise mit den Verhältnissen von Wasserstoff, Helium Metallen und Massen herum, und passt die Modelle an, bis sie das tun, was wir auch beobachten.
Mit “Metallen” meinen Astronomen alle Elemente, die schwerer als Wasserstoff und Helium sind, weil die Hauptsache, die in einem Stern passiert, die Fusion von Wasserstoff zu Helium ist. Somit reduzieren Astronomen häufig den Rest der Chemie auf “Metalle”.

Und an dieser Stelle wird die Sache etwas absurd. Wir beobachten, dass die Sonne brodelt. Wir sehen, dass die Sonne schwingt. Wir hören leider nicht, wie sie klingt, obwohl der Schall im Stern enorm sein muss und neben der Konvektion für das Wallen, Brodeln, pulsieren und Schwingen des Sterns verantwortlich ist.
Die Sonne ist ein einziger riesiger Resonator.
Die Schwingungsmuster an ihrer Oberfläche verraten den Sonnenforschern viel über das Innere der Sonne, z. B. was sich in ihren Schichten tut, wie innere Schichten rotieren, man kann überprüfen, ob die Modelle des inneren der Sonne, z. B. Temperatur etc. ungefähr passen, und vieles mehr.
Heute greifen wir nur ein Klang-Phänomen heraus. Es ist gut möglich, dass hier noch weitere Artikel über die Astroseismologie folgen werden.

Schwingende Saiten

Im eindimensionalen, ist eine gespannte Saite das einfachste, was man sich schwingend und klingend vorstellen kann. Sie ist gespannt an zwei festen Punkten aufgehängt und schwingt, wenn man sie anspielt. An den Aufhängungen nicht, aber in der Mitte schwingt sie am meisten. Bei tiefen Instrumenten, z. B. bei einem E-Bass kann man das sogar sehen. Die Saite wird durch ihre relativ große Amplitude verwaschen im Bild. Teilt man nun die Saite in der Mitte, so erhält man die doppelte Frequenz. Bei Flageolett-Tönen, wo man die Mitte der Saite nicht ganz drückt, sondern nur leicht abdempft, schwingt dann die linke Hälfte stets gegenläufig zur rechten. Der Flageolett-Punkt schwingt, wie die beiden äußeren Aufhängungen der Saite nicht. Man nennt das auch Knoten.
Wir haben also die Aufhängungen der Saite und dazwischen in der Mitte einen Knoten. Links und Rechts davon jeweils einen Bauch. Musikalisch erklingt die Oktave. Diese schwingt doppelt so schnell, wie der Grundton der Seite.
Teilt man die Saite in Drittel,
bekommt man die Quinte, dann die nächste Oktave, die Quarte usw.
Die hier entstehenden übereinander geschichteten Töne nennt man in der Physik die Harmonischen.
Spielt man ein Instrument, so erklingen immer einige dieser Harmonischen gleichzeitig. Dieser Zusammenklang macht die Charakteristik, macht den Klang, macht den Sound des Instruments aus.
Im Grunde ist die Saite durch ihre Schwingung und ihre Obertöne in der Zeitlupe dann auch wellig, bzw. gekräuselt.

Schwingende Flächen

Wir gehen nun einen Schritt weiter in unserer akustisch-visuellen Beobachtung.
Es gibt aus dem 17. Jahrhundert einen interessanten Versuch des Physikers Chladni
Ernst Florens Friedrich Chladni, der 1787 die Schrift Entdeckungen über die Theorie des Klanges veröffentlichte, tat folgendes:
Er nahm eine Glasscheibe und spannte diese wagerecht an einer Ecke in eine Klemme. Dann bestreute er sie mit Sägespänen. Nun strich er den Rand der Scheibe mit einem Geigenbogen an, um sie in Schwingung zu versetzen. Die Vibration brachten nun die Sägespäne zum Hüpfen. Nun ist es aber so, dass es nun auch auf der Fläche Knoten gibt, die nicht schwingen. Andere Orte schwingen so stark, dass die Späne quasi abgeschüttelt werden. Es entstehen nun Muster aus Orten, wo sich die Späne sammeln, und Orten, wo nachher keine mehr sind, weil sie vertrieben wurden.
Je nach dem, wo und wie Kladny die Scheibe mit seinem Bogen anstrich, änderten sich diese Muster. In manchen Erlebnisparks, z. in Schloss Freudenberg, ist dieser Versuch zum selbst ausprobieren, aufgebaut.
Im Gegensatz zur Welle einer Saite, hat man nun schon eine gekräuselte Oberfläche auf der zweidimensionalen Scheibe.
Auf ein Musikinstrument übertragen, entspricht diese Situation z. B. auch einer Trommel, wo das Trommelfell über den Körper der Trommel gespannt ist.

Und nun überlegen wir uns im nächsten Schritt, wie sich das ganze mit unserer Sonne verhält, die ein Gasball ist.

Die schwingende Sonne

Ich sagte schon, dass die Sonne brodelt. Gasblasen steigen auf und vergehen, wegen des Wärmeaustausches. Selbiges geschieht in der Küche im Kochtopf. Da die Ränder der blasen, auch Granulen genannt, kühler sind, leuchtet die Sonne dort stets etwas dunkler. Auch durch den Dopplereffekt kann man sehen, wenn sich eine Granule auf uns zu bewegt. Dann ist das Licht etwas ins blaue hinein gestaucht. Ins rote, wenn sich eine von uns entfernt, z. B. auflöst.
Die Frage ist nun, ob dieses Geblubber analog zum Weinglas auch den ganzen Stern zum Schwingen bringt.
Der Kochtopf wird ja auch vom kochenden Wasser in Schwingung versetzt und mit ihm meist auch der ganze Herd samt Arbeitsplatte.
Wie das ganze System schwingt, hängt beispielsweise davon ab, woraus die Küche gemacht ist, wie alles miteinander verbaut ist etc.
Der Schall pflanzt sich in unterschiedlichen Materialien und unterschiedlichen Aggregatzuständen (gasförmig, flüssig, fest) unterschiedlich schnell fort. Das machen Seismologen sich zu Nutze, um das innere der Erde zu erforschen. Plattentektonik, Vulkane erzeugen Schall. Das kann für Frühwarnsysteme unverzichtbar sein. Manchmal erzeugt man auch künstlich Schall, um ihn an anderer Stelle zu empfangen, um Rückschlüsse darüber zu erlangen, ob er beispielsweise durch eine Gasblase oder eine Flüssigkeit gegangen ist.

Das geht so natürlich bei der Vermessung unserer Sonne nicht. Dennoch lohnt es sich, das ganze Geblubbere und Gewabere auf ihrer Oberfläche zu beobachten. Genau das tut die Astroseismologie. So fand man beispielsweise eine Schwingung des ganzen Sterns, die sich alle fünf Minuten wiederholt. Das bedeutet, dass die Sonne sich alle fünf Minuten mal etwas aufbläht, um anschließend wieder zu schrumpfen. Man hat auch noch andere Schwingungsmuster gefunden. In diesem Sinne verhält sich unsere Sonne, als wäre sie eine Art Gong. Angeschlagen wird er von den sich stets verändernden Granulen, die wie Regen auf einem Blechdach den ganzen Stern quasi zum “klingen” bringen.
Die Nasa hat das mal sonifiziert, wobei ich jetzt nicht weiß, ob sie den Fünf-Minuten-Rhythmus oder eine andere Eigenschwingung verwendet hat.

So klingt unsere Sonne

Die Materie an der Oberfläche der Sonne wird in erster Linie durch
die Granulation bewegt. Die in ihr aufsteigenden und absinkenden
Materieballen haben Durchmesser von etwa 1500 Kilometern. Das ist
ein Zehntel Prozent des Sonnendurchmessers. Der Doppler-Effekt
verrät uns ihre Geschwindigkeiten: diese liegen etwa bei einem Kilometer in der Sekunde. Innerhalb von Minuten lösen sie sich auf, um neuen Granulen Platz zu machen. Zu den Granulen kommen noch die Supergranulen, langsamer in ihrer Bewegung, doch größer und beständiger.

Lange schon weiß man, dass es Sterne gibt, die sich innerhalb von Tagen aufblähen und wieder zusammen ziehen. Man weiß auch, dass Sterne verschiedener Masse, alters und Lebensstadium unterschiedlich schwingen und sich deutlich in ihrer Bildung von Granulen unterscheiden.

Man könnte noch sehr viel mehr über die Astroseismologie schreiben.
Ich habe hier alles natürlich nur sehr vereinfacht darstellen können, ansonsten wäre der Artikel ein Buch geworden.

Jetzt hoffe ich, dass ihr die Faszination mit mir teilt, dass die Sonne in einem gewissen Sinne quasi ein Gong ist.

Und damit verabschiede ich mich für heute.
Es grüßt euch
euer Gerhard.

Teilchensuche – Den Sonnen-Neutrinos auf der Spur

Liebe Leserinnen und Leser,
Am 16.09.2019 machte das Messinstrument KATRIN Schlagzeilen.
Da dieses am KIT steht und ich als Mitarbeiter des KIT darauf irgendwie stolz bin, möchte ich hier auch etwas zum Thema Neutrinoforschung auf dem Blog beitragen.

KATRIN ist ein Messinstrument wie ein Hochhaus, das so groß ist, dass man es über 8500 km hinweg um den ganzen Kontinent herum von Bayern per Schiff nach Karlsruhe schaffen musste, weil es auf dem Landweg nicht am Stück auf die Straßen gepasst hätte.
So ein riesiges Instrument wird dazu benutzt, um das kleinste Teilchen, das Neutrino zu wiegen.
Das kleinste Teilchen, das so klein und leicht ist, dass es fast nie irgendwo anstößt und mühelos die Erde, unseren Körper durchdringt. Milliarden dieser Teilchen treffen in jeder Sekunde auf jeden Quadratzentimeter unseres Körpers und wir merken nichts davon.
Bei Kernverschmelzung wie im Innern unsere Sonne, bei Sternexplosionen, Supernovae entstehen riesige Mengen dieser Geisterteilchen.
Das Universum ist voll davon. Es sollten sogar noch welche durchs All vagabundieren, die uns vom Urknall erzählen können.
Mit Katrin soll Klarheit darüber geschaffen werden, wie viel Masse Neutrinos denn nun besitzen. Noch ist die Masse nicht bestimmt, aber eine Obergrenze, die sie nicht übersteigen dürfte.
Aber, bevor man die Dinger wiegen kann, muss man sie erst mal finden. Darum geht es heute:

Lange Zeit war überhaupt nicht klar, ob Neutrinos eine Ruhemasse besitzen oder wie Photonen (Lichtteilchen) nicht. Diese Frage führt uns direkt zu unserer Sonne.
Aber der Reihe nach:

Der Name leitet sich da her, dass das Neutrino elektrisch neutral ist.
Es wechselwirkt quasi mit nichts und dennoch wird ein erheblicher Teil der Energie, die in unserem Kernfusionsreaktor Sonne, entsteht, von ihnen davon getragen.
Es gibt drei Arten von Neutrinos, Elektron- Myon- und Tau-Neutrinos.
Wenn es uns denn mal gelingt, mit einem Detektor eines einzufangen, dann erzählt es uns, wo es her stammt

• kosmischen Neutrinos (Weltall)
• solaren Neutrinos (Sonne)
• atmosphärischen Neutrinos (Erdatmosphäre)
• Geoneutrinos (Erdinneres)
• Reaktorneutrinos (Kernreaktoren)
• Neutrinos aus Beschleunigerexperimenten

Zunächst wurde das Neutrino, wie so vieles in der Physik nur postuliert, weil man es noch nicht nachweisen konnte.
Betrachtet man den radioaktiven Beta-Zerfall mancher Elemente, ein Neutron zerfällt zu einem Proton, einem Elektron und, ja zu was denn noch?
Man stellte fest, dass etwas fehlt. Die Bruchstücke des zerfallenen Atomkerns waren leichter, als ein kompletter Kern. Diese winzige fehlende Masse oder diese Energie, muss von etwas davon getragen worden sein, was man nicht messen konnte.
Auch die kinetische Energie der zerfallenen Teile war immer etwas kleiner, als sie hätte sein sollen.
1933 postulierte Wolfgang Pauli daher dieses Teilchen. Manche kennen diesen Pauli vielleicht noch aus dem Chemieunterricht als Pauli-Prinzip.
Auch bei der Kernverschmelzung geht die Bilanz nur mit Neutrinos auf, die entstehen und Energie davon tragen.
Also machte man sich daran, verschiedene Detektoren zu bauen, um Neutrinos nachzuweisen.

Alle Detektoren basieren auf der Tatsache, dass es ganz selten halt doch passiert, dass ein Neutrino ein Atom anrempelt. Das führt entweder zu einem kleinen Blitz, z. B. bei Wasser- oder Eis-Dbasierten Detektoren, wie dem Ice-Cube in der Antarktis, bzw. das angestoßene Atom nimmt die Energie des Neutrinos auf, und verwandelt sich in ein anderes Element. Ich wusste bis etwa Mitte der 90er Jahre nichts von Neutrinos und schon gar nicht, wie man sie nachweisen kann. Da hörte ich, dass sie im Kern unserer Sonne entstünden und dass deutlich mehr davon entstehen sollten, wie man nachgewiesen hatte.
Das Buch “Den Geheimnissen der Sonne auf der Spur” von Prof. Rudolf Kippenhahn, war an dieser Stelle unglaublich erhellend für mich.

Ein Element, womit Neutrinos manchmal wechselwirken ist das Chlor-Isotop CL37
Es ist etwas schwerer, als das uns bekanntere CL35, weil es zwei Neutronen mehr in seinem Kern hat. Neutronen verändern die chemischen Eigenschaften von elementen quasi nicht.
Manchmal nimmt nun so ein Chlor37-Atom ein Neutrino bestimmter Energie auf, und verwandelt sich unter Abgabe eines Elektrons in ein Argon-Atom. Das ist ein Edelgas.
Darauf beruhte ein Experiment, das den Astrophysikern lange
Sorgen bereitete. In einem großen Tank war Chlor in Form der Verbindung Perchloräthylen den Neutrinos der Sonne ausgesetzt. Der Stoff ist eine Flüssigkeit, die man hauptsächlich in der Reinigungsindustrie verwendet, ähnlich dem uns bekannteren Tetrachlorkohlenstoff.
Raymond Davis von der Universität von Maryland, der dieses Experiment entwickelt hat, verwandte 38000 Liter dieses Stoffes.
Da auch andere Strahlung ungewollt diese Reaktion auslösen können, schirmte man den Tank ab, indem man ihn in eine aufgelassene Goldmine, etwa 1500 m unter die Erdoberfläche packte. Nur Neutrinos können so eine dicke Schicht ungehindert durchqueren.
Außerdem war der Tank noch mit einem Wassertank umgeben, da Wasser ganz gut gegen Strahlung isoliert.
Welche Energie ein sog. Sonnenneutrino ungefähr haben könnte, erfuhr man durch Sonnen-Simulationen im Computer.
Da Neutrinos nur dort entstehen, wo die Kernfusion stattfindet, würde man, gäbe es ein Neutrinoteleskop, die Sonne nur als Scheibchen eines Zehntels der sichtbaren, wahrnehmen. So ein Teleskop wird es nie geben. Somit können wir nicht in die Sonne hinein schauen.
Man konnte nun auf das Modell basierend festlegen, wieviele Neutrinos dieser bestimmten Sorte ungefähr von unserer Sonne zu erwarten wäre. Die meisten verfehlen den Detektor natürlich, bzw. gehen durch ihn hindurch, ohne mit einem Cl-Atom zu reagieren.
Leider reagiert das Cl37 nur auf hochenergetische Neutrinos, die nicht von dem Prozess her rühren, der die meiste Energie erzeugt, der Verschmelzung von Wasserstoff zu Helium. Für diese niderenergetischen Neutrinos ist das Cl37 blind.

Diese Neutrinos bei denen Chlor funktioniert, machen nur etwa 1,5 % des Neutrinostromes aus, der von der Sonne kommen sollte.
Interessant ist an dieser stelle z. B., wie man in 650 Tonnen Perchloräthylen nach
35 Argonatomen suchen soll.
Lange Rede, kurzer Sinn. Selbsd, wenn man alle möglichen statistischen Fehler einbezog, kamen nach sieben Jahren Laufzeit nur ein fünftel des erwarteten Neutrino-Werts heraus.
Da die Sonnenmodelle außer den Neutrinos im wesentlichen alle Eigenschaften des Sterns richtig widerspiegelten, konnte ja auch etwas am Experiment falsch sein.
Aber auch andere Experimente, z. B. mit Wasserdetektoren zeigten alle zu wenige Neutrinos von der Sonne an.
Verständlicherweise versuchte man nun an verschiedenen Parametern der Modelle zu drehen, was ich uns an dieser Stelle erspare, aber es half nichts und machte das Modell im Grunde schlechter.

Heute weiß man, dass das Defizit der Neutrinos da her rührt, dass Neutrinos eine Ruhemasse haben müssen. Sie können sich auf ihrem Weg von einer Sorte in eine andere verwandeln.
Das bedeutet, dass viele Sonnenneutrinos bei uns als etwas anderes ankommen, als wonach wir suchen und worauf unser Detektor reagiert.
Diese sog. Fähigkeit zu oszilieren funktioniert nur dann, wenn man eine Ruhemasse zugrunde legt. Wie groß diese ist, wissen wir noch nicht. Wir wissen seit KATRIN bis jetzt nur, dass sie nicht größer als ein Elektronenwolt sein sollte. Früher ging man von 2 Ev aus. Somit ist man jetzt schon doppelt so gut, als vorher. Diese Erkenntnis stammt genau aus dem KATRIN-Messinstrument, das hier in Karlsruhe steht.
Wir dürfen gespannt sein, was hier noch geschieht.

Ihr findet hier einige super spannende Links, die alles wesentliche zu KATRIN erklären. Es lohnt sich, hier mal rein zu schauen.
Ein schönes Youtube-Video über die Geschichte und den Aufbau gibt es hier.
Eine Meisterleistung der KIT-Pressestelle findet ihr hier.
Alle guten Dinge sind drei.
Eine Radiosendung des SWR würdigt dieses Ergebnis ebenfalls.

Und damit verabschiede ich mich für heute und hoffe, dass der Artikel etwas Freude macht.

Droht Gefahr von unserer Sonne?

Liebe Leserinnen und Leser,
Nach einer etwas längeren Urlaubspause, melde ich mich hiermit auf Blindnerd zurück:
“Die Sonne, der Stern von dem wir leben” ist der Titel des wunderbaren Buches von Prof. Rudolf Kippenhahn.

Ohne zweifel.
Sie spendet Licht und Wärme und ohne sie ist kein Leben möglich.
Sie schickt uns ihre Energie im Überfluss, so dass sogar noch mehr als genügend übrig bleibt, damit wir Strom daraus gewinnen können.
Im Grunde ist jede Energieform außer der Kernkraft irgend wann mal Sonnenenergie gewesen. Sie schlummert in Kohle, die mal Pflanzen waren, die durch ihr Licht wuchsen, im Erdöhl und im Holz an dessen Feuer wir uns wärmen. Wind und Wasserkreislauf werden von ihr angetrieben, was jeder noch aus dem Biologieunterricht kennt.

In alten Zeiten glaubte man, die Sonne sei das vollkommenste, göttlichste, reinste und perfekteste Objekt am Himmel.
Aber spätestens, als man Fernrohre auf sie richtete, fand man, dass sie doch nicht ganz so glatt und vollkommen ist. Sie hat eine etwas gekörnte Oberfläche und noch schlimmer. Sogar Flecken. Und damit noch immer nicht genug. Diese Flecken bewegen sich und es gibt Zeiten mit vielen und Zeiten mit wenig bis gar keinen Sonnenflecken.
Galilei hat sie beobachtet und gezeichnet.

Durch intensive Beobachtungen der Sonne, z. B. Samuel Heinrich Schwabe über 40 Jahre lang, oder Die Hausfrau Siglinde Hammerschmidt über 20 Jahre lang,
fand man heraus, dass alle 11 Jahre die Sonne maximal viele Flecken aufweist.
Was diese Flecken aber waren, konnte man sich früher nicht erklären.

Manchmal kam es aber vor, dass in der Nähe von Sonnenflecken die Sonne plötzlich eine Art Lichtausbruch hatte. Kurz nach so einem Ereignis konnte man dann vermehrt Polarlichter sehen, Kompassnadeln erzitterten. Telefondrähte schlugen Funken, Uboote wurden falsch geortet, weil ihr Funk gestört wurde. In ganzen Landstrichen fielen die Stromnetze aus, als es dann welche gab etc.

Immer dann, wenn so ein Sonnenausbruch, auch Flare genannt, auf die Erde zeigt, dann passieren etwa zwanzig Stunden später derartige Dinge.
Was solch ein Ausbruch uns anhaben kann, konnte man am 01.09. vor 150 Jahren erleben.
Als der Astronom Carrington gerade Sonnenflecken zählte, leuchtete neben einer Fleckengruppe plötzlich ein riesiger Sonnenflare auf.
Schon bald darauf konnte man Polarlichter bis fast zum Äquator beobachten, Kompassnadeln zitterten, Telefonleitungen schmolzen oder schlugen Funken und Stromnetze fielen aus.
Vor einigen Jahren brachte ein ähnliches schwächeres Ereignis dieser Art das Kanadische Stromnetz zum erliegen.

Man weiß mittlerweile, dass Sonnenflecken durch sehr starke Magnetfelder entstehen. Diese können sich so nahe kommen, dass sie sich berühren und auslöschen. Dass das funktioniert liegt daran, dass die Sonne sich im sog. Plasmazustand befindet. Das ist neben fest, gasförmig und flüssig ein weiterer Aggregatzustand mit seltsamen Eigenschaften, Die wir uns für einen weiteren Artikel vorbehalten, in welchem wir über den Stoff der Sonne sprechen werden.
Tatsache ist, dass wenn sich Magnetfelder derart auslöschen, sehr viel Energie und auch Sonnenmaterial in den Weltraum geschleudert wird.
Das sind dann geladene Teilchen. Treffen die nun auf das Magnetfeld der Erde, dann wird dieses durchgeschüttelt. Für Stromleitungen kann das bedeuten, dass sie wie eine Antenne wirken, weil der Sonnensturm in sie hinein induziert. Dadurch entstehen in den Leitungen Ströme, die dort nicht hin gehören. Sicherheitssysteme schalten dann Kraftwerke aus.

Es entstehen großartige Polarlichter, weil die geladenen Sturmteilchen mit den Molekülen unserer Atmosphäre rekombinieren. Das kann man sich so ähnlich vorstellen, wie eine Neonröhre funktioniert.
Auch Polarlichter behandeln wir mal extra.

Nun müssen wir uns berechtigt die Frage stellen, welche Konsequenzen solch ein heftiger Sonnensturm, wie das sog. Carrington-Ereignis hätte, wenn er die Erde träfe.
Wie oben schon erwähnt, legt er Stromnetze lahm, zerstört Leitungen und vieles mehr. In heutiger Zeit wären seine Auswirkungen noch verherender. Mittlerweile kreisen tausende Kommunikationssatelliten um unsere Erde. Diese würden beschädigt, bzw. fielen vorübergehend aus. Kein GPS, kein Internet, kein Fernsehen und andere Kommunikationsmöglichkeiten könnten nachhaltig gestört werden. In diesem Sinne hängt unsere Kommunikation an einem seidenen Faden, denn es gibt keinen Grund, dass so etwas nicht wieder passieren könnte. Sonnenflecken kommen und gehen und damit auch die sehr komplexen Magnetfelder, die wenn sie sich auslöschen, diese Sonnenstürme erzeugen.
Wie die magnetische Sonne und ihr Dynamo genau funktionieren, ist bis heute noch nicht ganz verstanden. Auch dazu muss ich leider auf einen weiteren Artikel vertrösten.

Was also tun, wenn …
Es bleibt uns nicht viel mehr, als das Weltraumwetter, wie man die Sonnenaktivität auch bezeichnet, zu beobachten. Insbesondere in Zeiten hoher Aktivität mit vielen Sonnenflecken, müssen wir auf der Hut sein. Wir müssen ununterbrochen beobachten und besitzen ein Warnsystem für das Weltraumwetter. Bricht in einer uns zugewandten Fleckengruppe ein Flare aus, so nehmen wir ihn ungefähr 8 Minuten später war, weil das Licht von der Sonne so viel Zeit benötigt, bis es uns erreicht.

Zum Glück ist der Teilchenschauer deutlich langsamer unterwegs, als die Lichtgeschwindigkeit. Wir können dann kritische Systeme ausschalten, und den Sturm abwarten. Satelliten schaltet man dann mal besser in ihren Save-Mode, obwohl man das nur ganz ungern tut, denn man weiß nicht, ob man sie wieder aufwecken kann.
Stromnetze gestaltet man vielleicht besser so, dass sie sich nicht mehr stück für Stück als Kettenreaktion abschalten können (dezentral)
Was aber alles dann noch ausfallen würde, ist relativ ungewiss.

Nun, wie oft müssen wir mit so etwas rechnen?
Die Sonne ist im gegensatz zu unserer Erde riesig. 1,44 Mio Kilometer gegen 10.000 Kilometer im Durchbesser.
Außerdem sind wir 149 Mio Kilometer von der Sonne entfernt.
Nun kann die Sonne einen Sturm in alle Richtungen abschießen. Das bedeutet, dass die meisten Sonnenstürme uns nicht treffen, weil sie z. B. auf der gegenüberliegenden Seite der Sonne los gehen. Dann kriegen wir davon nichts mit.
So kann man berechnen, das statistisch gesehen so ein großer Sonnensturm vielleicht ein zwei mal pro Jahrtausend auftritt.
Wie gesagt. Sonnenausbrüche gibt es immer. Vor allem in Zeiten hoher Sonnenaktivität, aber uns treffen sie zum Glück eher selten.

Somit ist es unsere hohe Aufgabe, das Weltraumwetter zu beobachten und Notfallpläne auszuarbeiten für den Fall der Fälle. Hoffen wir, dass wir sie nie brauchen…

Was ist der Supermond?

Seid herzlich gegrüßt,

da ist es wieder, das Medienereignis des “Supermondes”.

Was soll das überhaupt sein? Darum geht es in diesem Artikel.

Heute, 19.02.2019 um 16:54 ist Vollmond.
Sieben Stunden vorher, um 10:09, passiert der Mond seinen erdnahesten Punkt auf seiner Bahn.

Ja, Vollmond ist astronomisch gesehen nur ein Augenblick, weil der Mond auf seiner Bahn nicht stehen bleibt, um sich von uns feiern zu lassen, sondern weil er für uns unsichtbar sogleich wieder mit dem Abnehmen beginnt.
Wenn er heute also bei uns aufgeht, ist er genau gesehen, schon nicht mehr voll, und auch nicht mehr genau im Perigäum.
Das bedeutet “Supermond”, aber alles der Reihe nach:

Es dürfte niemandem entgangen sein, dass der Supermond immer nur bei Vollmond auftritt. Aber längst nicht jeder Vollmond ist ein Supermond. Der Mond bewegt sich ein mal pro Monat auf seiner elliptischen Bahn um die Erde. Das bedeutet, dass der Mond der Erde einmal pro Monat seinen erdnächsten – und einmal seinen erdfernsten Punkt durchläuft. Die Erde steht in einem der beiden Brennpunkte der Ellipse.

Die Zeitspanne zwischen zweier Durchläufe des Perigäums, nennt man den anomalistischen Monat.
Er spielt in unserem Jahreslauf keine Rolle und wird von Astronomen benötigt, um in Finsternisberechnungen einzufließen.

Die Zeitspanne zwischen zweier Neumonden, nennen wir den synodischen Monat.
Dieser bestimmt sich von Neumond zu Neumond und dauert im Mittel 29,53… Tage.
Er spielt für uns lediglich im Kirchenjahr eine Rolle, indem man mit ihm den Ostertag berechnet, aus welchem sich einige weitere Feiertage ableiten, siehe
Osterbeitrag 2018
Wenn wir Monat sagen, so meinen wir meist unsere kalendarische Einteilung des Erdumlaufes in zwölf Teile um die Sonne. Diese Zeitspanne hat mit dem Mond nichts zu tun, und mit den zwölf Sternzeichen übrigens längst auch nicht mehr.

Nun kann man sich fragen, wieso denn dann nicht jeder Vollmond ein Supermond ist. Kurz gesagt, weil der Mond sich nicht bei jedem Vollmond auf seinem erdnahsten Punkt (Perigäum) befindet. Das liegt daran, dass der synodische Monat nicht gleich lang ist, wie der anomalistische Monat.

Multipliziert man beide Umlaufzeiten und rechnet man sie auf das Datum eines Supermond-Ereignisses, dann sollte man wieder einen Supermond-Tag erwischen, aber es gibt dazwischen noch weitere. So selten sind die gar nicht und kommen quasi jährlich, manchmal sogar mehrfach vor.

Ganz nebenbei; anomalistische Monate gibt es bei allen Planeten, die Monde besitzen, weil auch diese sich auf elliptischen Umlaufbahnen um ihre Planeten bewegen.

Also ist Die Tatsache, dass die Zeitspannen zwischen Neumond und Neumond und Perigäum-Durchgang zu Perigäum-Durchgang nicht gleich lang sind, dafür hauptverantwortlich, dass nicht jeder Vollmond ein Supermond sein kann.
Außerdem bewegt sich das Erd-Mond-System im Jahreslauf um die Sonne, so dass sich der Winkel des Sonnenlichtes täglich um etwa ein Grad nach links verschiebt. Das verlängert den astronomischen Tageslauf etwas über die Zeitdauer einer Erdumdrehung, hinaus.

Wie “super” so ein Supermond sein kann, hängt auch stark davon ab, wo sich der Beobachter auf der Erde befindet.
Der Mond läuft nämlich nicht um den Äquator herum. Seine Bahn läuft fünf Grad gegen die Ekliptik geneigt. Die Ekliptik ist die Ebene, in welcher alle Planeten umlaufen.
Somit befindet er sich die Hälfte des Monats etwas oberhalb und in der anderen Hälfte, etwas unterhalb der Ekliptik.
Die Schnittpunkte zwischen der Mondbahn und der Ekliptik, nennt man Knotenpunkte.
Die daraus sich ergebende Periode nennt man dann den dragonistischen Monat.
Und dieser dragonistische Monat ist zeitlich auch wieder etwas unterschiedlich zu den beiden anderen Monats-Definitionen.

Man kann den Monat auch noch über andere Umläufe definieren. Startet man die Umlaufbahn des Mondes bei einem Stern, und wartet, bis er wieder dort ist, so erhält man z. B. den siderischen Monat.

Kommen wir zurück zu unserem Drachenmonat, der sich über die Knotenpunkte definiert.
Dieser ist dafür verantwortlich, dass nicht jeder Vollmond eine Mondfinsternis und nicht jeder Neumond eine Sonnenfinsternis ist.

Und was hat das nun mit unserem Supermond zu tun? Kommt sofort.

Apropos Sonnenfinsternis. Es gibt auch Super-Neumonde. Davon spricht nur niemand, weil man eben außer bei Sonnenfinsternissen den Neumond nicht sehen kann.

Und hier schließt sich der Kreis zum Supermond:
Nicht immer gelingt es der Mondscheibe, die komplette Sonne bei einer Finsternis abzudecken. Und ich meine jetzt keine partielle Abdeckung, wo der Mond nur die Sonne anbeißt. Diese Erscheinung hat mit dem Beobachtungspunkt des Betrachters im Bezug zum Verlauf der Finsternis zu tun und nichts mit Perigäum oder Aphogäum.
Ich meine eine ringförmige Sonnenfinsternis.
Bei einem derartigen Ereignis ist der Mond auf seiner Bahn erdfern, so dass der Mond aus Sicht der Erde etwas kleiner wirkt.
Ist nun die Erde in ihrem Jahreslauf gerade sonnennah (Perihel), z. B. im Januar, so erscheint die Sonne etwas größer.

Diese Größenunterschiede sind mit bloßem Auge und ohne Messhilfe nicht wahrnehmbar, aber wenn bei einer derartigen Konstellation, Erde im Perihel und Mond im Aphogäum, zufällig eine Sonnenfinsternis stattfindet, vermag der Mondschatten lediglich ein Loch in der Sonnenscheibe zu erzeugen und ein gleißend heller Rand bleibt unverdeckt.

Bei Mondfinsternissen sind diese Dinge nicht von Belang, weil hier der Erdschatten alles dominiert. Im Gegensatz zum Mond ist die Erde so groß, dass sie bei einer Mondfinsternis den Mond immer locker abdecken kann. Höchstens auf die Dauer der Mofi könnte sich Aphogäum oder Perigäum vielleicht auswirken. Das weiß ich aber momentan nicht genau. Bei Erde und Sonne wirkt sich zumindest Sonnennähe im Winter auf der Nordhalbkugel dahingehend positiv aus, dass der Sommer wenige Tage länger ist, weil sich die Erde sonnenfern langsamer auf ihrer Bahn bewegt.

Also. Totale Sonnenfinsternisse können Superneumonde sein…
Bei allen Arten von Vollmonden ist die Distanz Erde-Mond nicht von Bedeutung.
Will sagen, mit dem bloßen Auge ist ein sog. “Supermond” nicht von einem normalen Vollmond zu unterscheiden, denn dieser Unterschied beträgt nur ungefähr 13 %. Das sieht bei so einem kleinen Mondscheibchen und ohne Vergleichsobjekt, niemand.

Steigt der Vollmond am Horizont auf, wird er oft als übergroß empfunden. Das ist ein Phänomen, dass an dieser Stelle irgendwie unser Gehirn ausgetrickst wird. Ganz erforscht ist das Phänomen noch nicht, aber dass es in den Medien den Supermond noch superlativer macht, ist klar.

Und nein. Die Schwankung der Distanz Erde-Mond, zeigt auch keine erkennbare Wirkung auf Ebbe und Flut. Das kann man mit einfachster newtonschen Mechanik und dem Abstand-Quadrat-Gesetz, Schulphysik also, ausrechnen, dass hier keine plötzlichen Superkräfte auftreten, die uns ob positiv oder negativ, beeinflussen könnten.

Ich möchte an dieser Stelle mondfühligen Menschen diese Schlafstörung nicht absprechen. Ich kenne genügend sehr seriöse Menschen, die unter diesem Phänomen, leiden, bzw. davon sprechen.
Die Himmelsmechanik ist daran aber erwiesener maßen nicht schuld.

Und zum Schluss noch.
Ich liebe unseren Supermond, denn der Mond ist immer super.
Hätten wir den Mond nicht, so würde unsere Erdachse unkontrolliert ihre Stellung verändern. Das bedeutet, dass wir längst nicht so regelmäßige Jahreszeiten hätten. “Danke Mond, dass Du unsere Erdachse irgendwie gerade hältst.”

Ebbe und Flut sind ganz wichtig für unsere Meere und unser Klima. “Danke Mond, dass Du jeden Tag Kraftsport mit unserem Wasser treibst”.

und “Danke, Mond, dass Du, indem Du manchmal die Sonne abdeckst, uns die Schönheiten der Korona zeigst, und dass wir dadurch wissen, dass die Masse der Sterne Licht ablenken kann.”
“Danke auch, dass wir in Dir ein Licht in der Nacht haben” Hätte ich als Blinder und durch unsere lichtverschmutzten Städte fast vergessen.

Fazit: “Supermond ist super, Mond.”
Und weil ihr bis hier hin ausgehalten habt, obwohl der Artikel etwas länglich war, bekommt ihr hier noch ein Video mit Mondbildern für die Sehlinge und schöner Klaviermusik, bei der man auch über das gelesene nachdenken kann, wenn man die Mondbilder nicht sieht.
Zum Mondvideo
Jetzt wünsche ich uns heute Abend einen schönen Blick auf den Supermond.

Klingende Planetenbahnen

Seid herzlichst gegrüßt,
Vor einigen Artikeln startete ich die Serie “Mit dem Ohr am Teleskop”.
Mit dem Ohr am Teleskop

Im ersten Teil befassten wir uns mit der Weltharmonik. Die alten Pythagoräer glaubten, dass sich die Planetenbewegungen in harmonische Gesetze erklären lassen. Ähnlich der Intervalle, aus denen unsere Musik besteht. Noch Johannes Kepler versuchte, diese Weltharmonik zu finden und musste dann feststellen, dass sich die Planetenbahnen nicht ganz so harmonisch verhielten, wie er gerne gehabt hätte.

Trotz allem, lebt die Idee der Planetenmusik weiter und fasziniert bis heute.

Nun greife ich ganz tief in meine Kiste, und ziehe einen meiner ersten Texte, den ich jemals zu Astronomie schrieb, heraus.

Wer mal auf einem meiner Workshops oder Vorträge war, wird sich daran erinnern, dass wir uns die verklanglichten Planetenbahnen anhörten. Ich lernte diese Klänge in den Sendungen von Joachim Ernst Behrendt, “Nada Brama” und “Das Ohr ist der Weg”, vor fast dreißig Jahren, kennen.

Glücklicherweise sind diese Klänge auch öffentlich im Internet zu finden, so dass ich sie hier präsentieren kann, ohne Urheberrechte zu verletzen.

Bevor es los geht, werde ich einige allgemeine Dinge zur Verklanglichung, auch sonifizierung, von Daten erleutern, damit die Idee klar wird, die hinter all dem steckt.

Jeder, der nach Noten musiziert, verklanglicht Daten. Die Notenschrift ist im Grunde eine graphische Darstellung von Intervallen und Tonlängen und eventuell noch Lautstärke und Tempo.
Was auf dem Notenblatt steht, wird Musik, indem der Inhalt interprätiert und in ein Musikinstrument gegeben wird.
Die Noten selbst sind nicht die Musik, sondern höchstens die Idee oder die Spielanweisung.
Es gibt auch nicht nur eine graphische Notation für Musik. Nun kann man sich überlegen, auch andere Daten zu verklanglichen.

Hier ein einfaches Beispielvon Sonifizierung:
Kein Fernsehfilm, in welchem eine Szene auf einer Intensivstation vorkommt, wäre denkbar, ohne das rhythmische Pipsen des Herz-Sensors zu hören. Das ist die Verklanglichung des Herzschlages, oder Pulses des Patienten.
In diesem Fall dient der Klang dazu, auch ohne Sichtkontakt zu wissen, wie es um den Patienten steht. Das Tempo der Tonfolge zeigt den Pulsschlag an, der dann vom Arzt verstanden werden muss.
Der Pipston könnte ebenso ein Trommelschlag oder Knacken sein.

Viele Sonifizierungen beziehen noch die Tonhöhe mit ein.
Das Variometer eines Segelflugzeuges zeigt via ansteigender oder fallender Töne an, ob sich das Flugzeug im Steig- oder Sinkflug befindet.
Segelflieger mögen mir hier verzeihen, dass ich etwas ungenau bin, aber für den Moment reicht es so.

Somit haben wir also als ersten Parameter die Zeit und als zweiten Parameter die Tonhöhe.
Damit kann man alle zweidimensionalen Daten verklanglichen, wenn man die Tonintervalle entsprechend klug wählt.

Zu jedem Zeitpunkt X, lässt sich ein Wert Y ablesen, der mittels eines Tones ausgegeben wird.
Ändert sich die Tonhöhe nicht, bedeutet das, dass y immer gleich bleibt. Wir haben eine Parallele zur X-Achse.

Steigt der Ton gleichmäßig an, könnte es sich um eine steigende Gerade handeln.

Hören wir eine auf- und absteigende Tonfolge, ist es vielleicht ein Sinus.

Eine Parabel Ax^2 +bx +c, mit a>0,

wäre dann ein zunächst sehr schnell abfallender Ton, dessen Fallen immer langsamer wird. Nach dem Durchgang durch ihr Minimum, würde der Ton zunächst langsam, dann aber immer schneller ansteigen, bis er vermutlich den Hörbereich verlässt.
Mein Farberkennungsgerät zeigt Lichtintensitäten mittels Tonhöhen an.

Ein derartig zweidimensionales Klangsystem reicht schon aus, um die Bahnen unserer Planeten zu verklanglichen.
Johannes Kepler schrieb ein Buch darüber, wie man die Bahnen der Planeten sich musikalisch vorstellen kann. Er legte die Umlaufbahn des Saturn auf das tiefe G, etwas jenseits des linken Endes einer Piano-Tastatur und verteilte dann die Intervalle der anderen Umlaufbahnen auf die Tastatur.

Trägt man die Geschwindigkeiten der Planeten auf der Y-Achse ab und den zeitlichen Verlauf auf X, dann erhält man eine regelmäßige Welle für jeden Planeten. Befindet sich der Planet nahe der Sonne auf seinem Perihel, so bewegt er sich etwas rascher. An seinem sonnenfernsten Punkt, dem Aphel, ist er am langsamsten. Dazwischen sind dann alle anderen Werte. Inhaltlich beschreibt das Kepler in seinem zweiten Gesetz.

Es besagt, dass wenn man einen Fahrstrahl vom Stern zum Planeten zieht, dieser in gleicher Zeit stets gleich große Flächen überstreicht.

Daraus folgt, dass der Planet in Sonnennähe etwas schneller sein muss, als bei seinem Aphel. Wie stark diese Geschwindigkeit variiert, hängt von der Exzentrizität der Umlaufbahn ab.

Das erste Keplersche Gesetz besagt, dass sich Planeten auf elliptischen und nicht auf Kreisbahnen bewegen. Der Kreis ist ein Sonderfall einer Ellipse, bei dem beide Brennpunkte auf den selben Punkt fallen.

Ordnet man nun den Umlaufgeschwindigkeiten Töne nach der Idee Keplers zu, passiert folgendes.
Der Ton variiert um so mehr, desto elliptischer die Bahn des Planeten ist.
Merkurs Tonkurve variiert sehr stark, weil er eine sehr exzentrische Bahn hat.
Venus und Erde dagegen variieren nur wenig, da ihre Bahnen fast kreisförmig sind. Dieses Intervall, das zwischen der kleinen und der großen sechsten variiert, schwankt zwischen Dur und Moll.
Kepler nannte es daher das ewige Lied des Elends der Erde.

Mars variiert wegen seiner exzentrischen Bahn wieder sehr stark. Man muss hier aber dann schon etwas länger zuhören, weil er durch seine größere Entfernung zur Sonne dann schon langsamer ist.

Zwischen Mars und Jupiter ist eine große Lücke, in welcher der Asteroidengürtel Platz findet.
Das macht sich im Sprung eines großen Intervalles bemerkbar.

Saturn klingt dann schon sehr tief. Uranus und Neptun sind überhaupt nicht mehr als Töne wahrnehmbar. Ihre Frequenzen sind so tief, dass man sie nur noch als Rhythmen wahrnimmt.

Bei den äußeren Planeten ist es sehr schwer, die Exzentrizität der Bahnen zu hören, weil sich diese zeitlichen Umschichtungen innerhalb vieler Minuten bis Stunden sehr langsam vollziehen.
Außerdem waren Uranus und Neptun noch nicht bekannt, als Kepler die restlichen Umlaufbahnen auf eine Piano-Tastatur verteilte. Er ging davon aus, dass es keine weiteren Himmelskörper in unserem System mehr gäbe, weil er jede Umlaufbahn in einen der fünf platonischen Körper einschrieb.
Platonische Körper sind solche, die gleiche Flächen besitzen.
Am bekanntesten sind der Würfel und das Tetraeder.

Zwei Professoren, Willie Ruff & John Rodgers, haben in den siebziger Jahren des letzten Jahrhunderts Keplers Umlaufbahnen und sein Vorschlag, diese musikalisch darzustellen, aufgegriffen und in einen Computer gespeist, der dann die Klänge synthetisch erzeugte.
Sie nutzten sogar noch das Sterio-Panorama, um das ganze noch etwas plastischer werden zu lassen.
Legt man die Sonne z. B. in den Nullpunkt eines Koordinatensystems, so gruppieren sich alle Planeten irgendwo um den Nullpunkt herum. lässt man sie nun laufen, drehen sie sich um den Nullpunkt.

Sie legten die Perihels der Planeten eher auf die rechte Seite und die Aphels auf die linke.
Somit entsteht fast der Eindruck von akustischen Kreisbahnen, wenn man sich das über einen Kopfhörer anhört.

Man ist quasi die Sonne und hört die Planeten um einen herum laufen.
Die Tonhöhe sagt etwas über den Abstand zur Sonne aus, und das Panorama gibt einem noch eine Positionsinformation.
Gernot Meiser vom AV-Atelier.de besitzt ein mobiles Planetarium. Er hat es geschafft, den Sound, den ich in meinem Vortrag abspielte, tatsächlich um das ganze Planetarium herum laufen zu lassen. Das war großartig.
Vielleicht erinnert sich ja der eine oder die andere noch daran, wie es sich in der Orgelfabrik Durlach, bzw. im Theater in Sarlouis, anhörte.

Jetzt wird es Zeit, sich mal anzuhören, worüber ich hier spreche.

Hier noch einige Hörhinweise, damit ihr euch in dieser Kackophonie zurecht findet.
1) Wir starten mit dem schnellen sausenden Merkur auf seiner stark elliptischen Bahn. Er pipst sehr hoch, weil er so nahe an der Sonne, und somit sehr schnell unterwegs ist.

2) Jetzt folgt das Moll-Dur-Duo von Venus und erde, das immer zwischen Moll und Dur variiert. Zuerst kommt die Venus und dann die Erde etwas später.

3) Nun folgt der Mars, dessen bahn stark elliptisch ist, was man im laufe des Stückes deutlich wahrnimmt. Wenn Jupiter dazu kommt, hört man sehr deutlich, wie Mars beschleunigt, weil er sich seinem Perihel nähert.

4) Der Sprung über den Asteroidengürtel hinweg zum tiefen brummenden Jupiter, ist unüberhörbar.

5) Nun setzt das ganz tiefe brummen des Saturn ein. Es kann sein, dass manche Lautsprecher oder Headsetz diesen tiefen Ton kaum noch darstellen können.

6) Die Planeten Uranus, Neptun und Pluto sind nur noch als Rhythmen wahrnehmbar. Der Uranus tickt so vor sich hin.
Dann folgt der Neptun als tiefere Trommel und ganz zum Schluss ertönt die Basstrommel des Pluto.

Im ersten Link zu meiner Aufnahme, habe ich den Pluto als Zwergplaneten weg geschnitten.
Im Interview mit Ruff, einem der Erfinder dieses Sonifizierungsprojekts der Keplerdaten, , ist Pluto noch dabei, weil er zu dieser Zeit noch Planet war.
Auch dieses Interview ist sehr hörenswert, allerdings auf Englisch.

Die sonifizierten Umlaufbahnen gab man sogar den Voyager-Sonden mit auf die Reise. Ich habe keine Ahnung, ob außerirdische Wesen, die nicht meinen Blog lesen, diese Sounds interpretieren können…

Jetzt wünsche ich erfolgreiches Hören.

Zuden klingenden Bahnen

Hier nun das erwähnte Interview eines der beiden Erfinder dieses Sonifizierungs-Projekts.

Zum Interview auf Youtube

Nun hoffe ich, dass euch diese Sounds ebenso faszinieren, wie mich schon seit Jahrzehnten.
Bis zum nächsten Mal grüßt euch

euer Gerhard.

Eine Mondfinsternis als Lebensretterin

Seid herzlich gegrüßt

Dann will auch ich mich nicht lumpen lassen, und mal über eine Mondfinsternis mit Tragweite schreiben.
Kolumbus und die Mondfinsternis vom Februar 1504:

Er war mit seiner Mannschaft auf Jamaika gestrandet. Der Sturm hatte die Schiffe zerstört und teile der Mannschaft begannen zu meutern.
Auch Nahrung und Wasser wurden knapp.
Außerdem mussten sie mit Racheangriffen der Ureinwohner rechnen, die sie zuvor geplündert hatten.
Nun erkannte Kolumbus, dass eine Mondfinsternis bevorstand. Hierfür benutzte er astronomische Karten zur Navigation des Astronomen Johannes Müller.
Er ist vermutlich eher unter dem Namen Regio Montanus bekannt, was der lateinische Name seines Heimatortes Königsberg, bedeutet.
Kurz um, wandte sich Kolumbus mit dieser Tatsache derart an den Häuptling, dass er für den Fall, dass keine weitere Hilfe von Seitens der Eingeborenen käme, er seinem christlichen Gott befehlen würde, ihnen Leid zu zu fügen. Als Zeichen, dass dieser Gott es Ernst meine, werde er in der folgenden Nacht dem Mond den Glanz nehmen.

Zum Glück sagten Kolumbusens Sternkarten die Mondfinsternis richtig voraus, ansonsten wären vermutlich einige in den Kochtöpfen der Ureinwohner  gelandet.
So aber, bekamen diese Angst und versorgten die Mannschaft weiterhin mit Nahrung und was sonst von Nöten war, um die Heimreise antreten zu können.

Johann Müller aus Königsberg war einer der größten Mathematiker und Astronomen des 15. Jahrhunderts.
Er ist auch unter dem Namen “Regio Montanus” bekannt. Dieser Lateinische Name, leitet sich aus seinem Geburtsort “Königsberg” ab.
Er erstellte u. a. Sternkarten und Sterntafeln für Seefahrer, die sich großer Beliebtheit erfreuten und die Navigation deutlich verbesserten.
In Wikipedia steht unglaublich viel von ihm.
Hätte Kolumbus nicht seine Efimeriden auf seinen Schiffsfahrten benutzt, so wäre es ihm hier sicher richtig schlecht ergangen und es hätte ihn vermutlich das Leben gekostet. Dank Müller blieb er am Leben.

Licht- und Schattenspiele auf dem Mond

Seid herzlich gegrüßt,

in diesem Jahr steht uns das große Jubiläum der Mondlandung bevor. Deshalb werde ich in diesem Jahr einige Artikel rund um den Mond verfassen.
Hier sollen drei Beispiele zur Sprache kommen, welch schöne Licht- und Schattenspiele Sonne und Mond für begeisterte Astronomen bereit halten.
Ein Astrophotograph veröffentlichte gestern Nacht einen Artikel über ein Phänomen auf dem Mond auf seinem Blog. Der erinnerte mich daran, dass ich vor vielen Jahren, als es meinen Blog noch nicht gab, ebenfals mal einen Artikel über selbiges Phänomen verfasste. Vielleicht erinnern sich manche von euch noch daran, als mein Blog noch eine Mailingliste war. Es geht um den Henkel des Mondes.

Der Goldene Henkel bezeichnet einen visuellen Effekt an der Tag-Nacht-Grenze des Mondes.
Etwa 10 bis 11 Tage nach Neumond liegt das Tal der Regenbogenbucht (Sinus Iridum) noch im Schatten, während die Bergspitzen des angrenzenden Juragebirges (Montes Jura) aufgrund ihrer Höhe bereits vom Sonnenlicht erreicht werden. Durch ihre prägnante, an einen Henkel erinnernde Form und das vom Mond gelblich reflektierte Licht, erhielt diese Formation den Namen „Goldener Henkel“.
Der Goldene Henkel ist bereits mit kleinen Ferngläsern und Feldstechern einmal monatlich für einige Stunden gut erkennbar.
Hier ein Link zum Goldenen Henkel mit Bildern, damit auch unsere Sehlinge auf ihre Kosten kommen.
Zum bebilderten Artikel

Das ist wirklich super spannend, wie ich finde, was hier die Gebirgszüge bewirken.
Vielleicht erinnern sich manche von euch noch an ein anderes Phänomen, das in Zusammenhang mit einer totalen Sonnenfinsternis auftreten kann. Ich bin grad nicht sicher, ob ich darüber schrieb.
Es ist die sog. Perlenschnur. Es kommt vor, dass, wenn die totale Bedeckung fast komplett ist, dass die Sonne noch durch einige Mondtäler am Rand der Mondscheibe leuchtet, wo hingegen die Berge bereits die Sonnenscheibe abdecken. Das sieht dann wie eine Perlenschnur mit Leuchtperlen aus. Das Phänomen dauert aber nur wenige sekunden und ist unterschiedlich ausgeprägt, je nach dem, wo und wann die Finsternis stattfindet.

Ein drittes von Astrophotographen sehr begehrtes Phänomen auf dem Mond ist der Hesiodusstrahl. Ich beschrieb ihn im Zusammenhang der Ankunft meiner taktilen Mondkarte. Es sei mir gestattet, hier einen Teil dieses Artikels erneut aufzuwärmen.

Zu bestimmten Zeiten liegt der Krater Hesiodus am Terminator, der Tag-Nacht-Grenze des Mondes.
Je nach Mondstand sieht der Terminator sehr unterschiedlich aus. Er verläuft bei Nicht-Vollmond immer entlang der Linie, die das fehlende Mondstück markiert. Je nach dem, ob zunehmender oder abnehmender Mond herrscht, ist sie nach rechts oder links gebogen. Denn der Mond nimmt nicht so zu und ab, wie man sich das Zerschneiden eines Kuchens vorstellt.
Ein fast voller Mond sieht nicht, wie eine Pizza aus, bei der ein Stück (abgerundetes Dreieck) fehlt. Er ist eher mit dem Logo der Firma mit dem abgebissenen Obst, vergleichbar.
Wenn man zwei gleichgroße Pappscheiben nimmt und die eine langsam über die andere gleiten lässt, dann kann man den verlauf des Terminators ertasten.
Es ist jetzt so, dass bei einem gewissen Mondstand die Sonne für den Mond so aufgeht, dass der Kraterwall des Hesiodus-Kraters von der Sonne beleuchtet wird. Diese leuchtet dann durch eine Spalte im Krater zum Nachbarkrater Pitatus herüber.
Die Sonnenstrahlen bilden dort einen Lichtstrahl auf dem noch dunklen Boden von Pitatus. Zuerst ist er sehr schmal, wird aber im Laufe von Stunden immer breiter, bis der Kraterboden von Pitatus vollständig ausgeleuchtet wird.
Mich hat jetzt natürlich, wenn ich die Sache schon nicht sehen kann, brennend interessiert, wo diese beiden Krater überhaupt auf der Mondscheibe zu finden sind.
Nun bat ich im ersten Schritt eine sehende Person, dass sie prüft, ob diese Krater auf meiner Karte eine Beschriftung tragen, denn nicht alle Krater und Berge haben ein Label. Das wäre zuviel. Im wesentlichen sind diejenigen beschriftet, die für die Menschheit eine besondere Bedeutung hatten, bzw. haben. So ist natürlich das Meer der Ruhe im Nordosten der Mondscheibe beschriftet, weil dort Apollo11 landete.
Jetzt, was tun. Ich recherchierte im Netz und fand heraus, dass Hesiodus ein Krater im Südwesten zu sein scheint, der ziemlich groß ist.
Auf der Mondscheibe ist Norden oben, und Süden unten.
Ich tastete und fand einige Kandidaten, die in die engere Wahl genommen werden konnten. Mit meiner sehenden Assistenz besorgten wir uns nun ein Bild des Phänomens aus dem Netz, in der Hoffnung, wir können den Krater durch den Vergleich des Bildes mit der taktilen Karte, finden. Um das an dieser Stelle abzukürzen:
Ganz sicher sind wir uns nicht, aber die Wahrscheinlichkeit ist sehr hoch, dass ich Hesiodus gefunden habe. Die Verbindungsrinne zu Pitatus ist bei der Auflösung der Karte vermutlich nicht zu ertasten.
Für mich ist es sehr schön, wenn ich mit der taktilen Karte vieles nachvollziehen kann, das Sehende am Mond fasziniert. Viel wichtiger dabei ist aber,
dass ich zum einen überhaupt etwas nachvollziehen kann und zum andern,
dass ich mitmachen kann.
Ich kann mitreden,
fragen stellen,
mir zeigen lassen, worum es geht,
das Eis der Sehenden brechen, weil sie von der Karte fasziniert sind und vieles mehr. In einem Wort gesagt.
Damit kann ich “Mondinklusion”…
Und um zu beweisen, wie ernst mir das ist, schicke ich hier für die Sehlinge unter uns noch einen Link mit, der zu einem wunderbaren Bericht über die Entstehung eines Hesiodusstrahl-Fotos führt. Dort sind dann auch Bilder drin. Somit kommt der wunderbare Sehsinn auch nicht zu kurz.
Zum bebilderten Artikel
Artikel mit Fotos
Das war mein Hesiodusstrahl. Ich hoffe, er leuchtet auch etwas für euch.

Ich danke den beiden Astro-Bloggern dafür, dass sie ihre spannenden Entstehungsgeschichten ihrer Astrofotos mit uns teilen. Ich finde das alles sehr aufregend und interessant, auch wenn ich das nicht sehe.

Bis zum nächsten Mal grüßt euch
euer Gerhard.

Mein Astronomischer Jahresrückblick 2018

Meine lieben Leserinnen und Leser,

ich hoffe, ihr alle hattet einen schönen Jahreswechsel und ein gutes Weihnachtsfest.

Er kommt zwar etwas spät, mein Jahresrückblick, aber ich hatte über die letzten Tage keinen Rechner. Naja, heute ist ja erst der siebente Januar, so dass man noch auf das vergangene Jahr zurück blicken kann.

Hier nun einige Highlights aus meiner Astronomie-Arbeit. Über einige berichtete ich schon und werde gelegentlich daran erinnern.

Zunächst startete das Jahr 2018 nicht besonders gut, denn ausgerechnet mein erstes Astrotreffen fiel wegen Krankheit ins Wasser.
Eigentlich wollte ich mich mit meinem lieben Freund Martin treffen, dem Entwickler von Universe2Go. Das ist die Astrobrille, mit deren Hilfe auch blinde Menschen Objekte am Himmel suchen und erfolgreich finden können.
Wir wollten uns treffen, um unsere Gedanken weiter zu spinnen, damit Astronomie künftig noch inklusiver werden kann. So wollte ich meinen Geburtstag verbringen.
Naja, vielleicht schaffen wir es ja in diesem Februar. Immerhin wäre der Geburtstag dann ein würdiger runder.

Im März erschien ein Artikel über meinen Astronomievortrag zum Thema “Inklusion am Himmel”, den ich zum Jubiläum der psychiatrischen Hilfe der Caritas im November 2017 hielt. Ich schrieb darüber im Jahresrückblick Ende 2017.
Dieses Vereinsorgan wird viele tausend fach gelesen. Somit war das für mich schon wichtig.
Hier ein Artikel dazu.
Zum Artikel

Im März und Aprill hielt ich Workshops sowohl an der Berufsbildungs-Einrichtung Nikolauspflege Stuttgart, als auch an der Schule für Menschen mit Sehbehinderung Mannheim.
Vor allem bei, wie auch immer benachteiligten Kindern, funktioniert Astronomie perfekt.
Ich schrieb darüber auf Blindnerd,
Astronomie für benachteiligte Kinder
als auch als Gast auf dem Blog von Lydias Welt
Zum Gastbeitrag bei #Lydiaswelt

Ein weiteres Highlight fand am 13.04.2018 statt. Ich durfte auf dem Kongress der Bahnhofsmissionen Baden-Württembergs einen Sensibilisierungs-Workshop für die Belange von Menschen mit Blindheit halten und mit meiner Gitarre deren Gottesdienst begleiten. Insbesondere für blinde Menschen ist die Bahnhofsmission manchmal der letzte rettende Anker, um an fremden Bahnhöfen weiter zu kommen. Wie oft hat mich so ein netter Mensch von Zug zu Zug gebracht.
Wie oft war ich schon dankbar über einen heißen Kaffee, wenn bei Minustemperaturen Züge ausfielen und stundenlange Wartezeiten die Folge waren.
Manchmal gab es dann sogar einen Teller heißen Eintopf.

Wer schon mal in den Räumen einer Bahnhofsmission über einige Stunden erlebt hat, wer da alles so anklopft, wird sehr schnell merken, wie wichtig und unverzichtbar diese Arbeit ist. Man wird mal wieder in die Realität zurück geführt. Das eigene Problem tritt in den Hintergrund, wenn man die Schicksale dieser betroffenen Menschen erlebt.
So eine Erfahrung erdet mich wieder neu und es wird mir dann klar, wie oft ich auf sehr hohem Niveau jammere.
Es war wirklich unglaublich, wieviel Idealismus, wieviel Liebe, wieviel Empathie ich auf diesem Kongress erleben durfte. Da machte es mir nichts aus, dass ich meinen Workshop gleich sechs mal hintereinander halten durfte.

Im Mai hatte ich mal Pause. Dennoch war der Mai 2018 ein ganz besonderer Monat für mich.
Viele Dinge jährten sich im Mai 2018. Ich schrieb darüber in

Mein Jubiläumsmonat Mai

Zwei Highlights gab es im Juni.

Ein ehemaliger Studienkollege von mir bat mich, mal einen Kinderworkshop zu Astronomie für seine Kinder zu halten. Als ich ihm antwortete, dass das nur für zwei Kinder zu aufwändig wäre, mobilisierte er kurzer Hand einige Freunde der Kinder und deren Familien. Also hatten wir dann am Ende mit etwa zwölf Kindern und einigen Eltern einen wunderbaren Astronomie-Nachmittag in meinem überfüllten Büro. Es war großartig. Sogar meine Apollo-Rakete von Lego hat den Mondflug überlebt. Es wurde Helium geatmett, viel gefragt und dann gab es noch eine Anleitung, wie man eine Sonnenuhr selbst basteln kann.

Der zweite Höhepunkt war der Besuch der Mitgliederversammlung des Vereines Andersicht e. V.
Zu Andersicht e. V.

Wie ihr auf deren Homepage sehen könnt, macht dieser Verein so einiges für menschen mit Seheinschränkung zugänglich. Ich ging auf die Versammlung, um Unterstützung zur Verwirklichung meines Planetenweg-Projekts zu erhalten. Die ist mir gewiss. Aus anderen Gründen ist aber das Projekt durchaus nicht so auf dem Weg, wie ich es gerne hätte. Vielleicht zeichnet sich aber hier bald ein Ende des Tunnels ab.

Wir hatten eine phantastische Führung durch die Englischen Gärten von Hannover. Es war ganz beeindruckend, denn unser Guide war selbst so gut, wie blind.
Es gab einen wunderbaren taktilen Plan zur Führung. Bis dahin hatte ich überhaupt keine Vorstellung, wodurch sich verschiedene Gärten, unterschiedlichster Epochen und Stilrichtungen auszeichnen.
Übrigens gibt es in Hannover auch ein ganz wunderbares Modell einer großen Kirche. Bin mir gerade nicht mehr sicher, ob es vielleicht sogar ein Dom oder Münster ist.
Apropos Hannover.
In Hannover hatte ich meinen ersten Vortrag zu meinem Buch im Literatursalon des dortigen Blindenvereines im Februar 2015.
Und Hannover ist die Geburtsstadt einer großen Astronomin. Ich schrieb über sie zum Weltfrauentag am 08.03.2018

Zur großen Hannoverschen Astronomin

Nicht zuletzt verfolgte ich im Juli mit großer Aufmerksamkeit, wie Amateurfunker halfen, dass der Funkkontakt zu Alexander Gerst für Schulen möglich wurde.
Hätte ich das in meiner Schule erlebt, dann wäre ich entweder durchgedreht, bzw. gleich Astronaut geworden.
Hier zeigte sich mal wieder, wie ganzheitlich Weltall sein kann. Da müssen Fragen auswendig gelernt und sprachlich geübt werden. Da muss Lampenfieber überwunden und Mut erprobt werden. Da lernen Schüler, wie man Kabel zieht, was alles für so eine Verbindung ins All nötig ist, dass Physik und Mathematik vielleicht doch nicht ganz so unnütze Fächer sind, den Umgang mit Werkzeugen und vieles mehr.

Alexander Gerst im Kontakt mit Schulen

Alexander Gerst hielt eine sehr ergreifende Rede an seinen noch nicht vorhandenen Enkel. Das ist es, was über Weltraum und Astronomie eben auch geschehen kann. Betrachtet man die Fragilität unseres Raumschiffes Erde, dann sollte das vor allem bei Kindern das Umweltbewusstsein stärken.
Diese Rede war so ergreifen, dass ich gerührt tatsächlich etwas Wasser in die Augen bekam.
“An meinen Enkel”

Und das Sprichwort, dass der Prophet im eigenen Land nichts gilt, stimmt sogar teilweise.
am Freitag, dem 13.juli 2018 ermöglichte mir mein Buchverlag endlich nach drei Jahren eine Lesung in einem Buchladen in der Stadt, in welcher alles begann, in Baden-Baden.
Darüber habe ich mich sehr gefreut, auch wenn es dem dort ebenfalls ansässigen Verlag vielleicht auch etwas früher hätte gelingen können, für mich so eine Lesung zu arrangieren.
Ich bin mir nicht im klaren, wieviel Werbung ein Verlag für seine Autoren machen sollte, aber meine Erfahrung geht eher in die Richtung, künftige Bücher selbst zu verlegen, wenn man die ganze Werbung und alles dann doch letztlich selbst machen muss…
Wie auch immer. Der Vortrag war sehr schön. In Buchläden oder Bibliotheken ist es immer unheimlich gemütlich.
Dem Verlag war es terminlich wichtig, die Lesung an ein astronomisches Ereignis zu knüpfen.

Die treffen aber leider nicht immer dann ein, wenn man sie gerne hätte. Immerhin. am 13.06. fand in der Antarktis eine Sonnenfinsternis statt.
Ich kündigte sie auf Blindnerd an.
Finsternisse 2018

Interessanter Weise begann mein Urlaub in Österreich wie 2017, als es Blindnerd.de noch nicht gab, mit einer Finsternis.
2017 war es die Sonnenfinsternis in den USA. Ich hielt einen kleinen Vortrag darüber für interessierte Miturlauber. Dasselbe tat ich 2018 über die Mondfinsternis. Es war eine kleine und feine Gruppe. Immer wieder finden sich Menschen, die sich für so ein Angebot interessieren, ohne, dass man sich aufdrängen müsste.
Auf jeden Fall darf ich nie in Urlaub fahren, ohne wenigstens ein, zwei taktile Astronomie-Mappen dabei zu haben. Einen BT-Lautsprecher und die Weltraumsounds habe ich sowieso immer dabei.

Am 11. August 2018 fand eine partielle Sonnenfinsternis statt, die leider auch nicht zu sehen war.
Eine der schönsten Beschreibungen einer Sonnenfinsternis findet ihr hier:
Beschreibung einer Sonnenfinsternis von Adalbert Stifter

Das Highlight des Jahres 2018 war zweifels ohne die Einladung zum Kongress der Internationalen Astronomischen Union. Niemals hätte ich mit dieser Ehre gerechnet, und ich wüsste auf Anhieb einige mehr, deren astronomische Inklusionsprojekte ebenso diesen Ruhm verdient hätten, z. B. die barrierearme Sternwarte in St. Andreasberg und deren Verein,
Zu Sternwarte Barrierefrei St. Andreasberg

bzw. das Weltraum-Atelier in Saarbrücken, die auch unglaublich viel zum Thema Inklusion und Astronomie veranstalten.
Zum Weltraum-Atelier

Am 24. August hätte ich eigentlich einen Workshop für Kinder eines Ferienprogramms halten sollen. Die Veranstalter, die Junge Union Bad Schönborn, hatten angefragt. Natürlich lasse ich mich grundsätzlich vor keinen politischen Karren spannen, aber in diesem Fall stand wirklich die Arbeit mit den Kindern und das soziale Engagement der Macher im Vordergrund. Für die AFD hätte ich das allerdings trotz bester Absichten niemals getan, das könnt ihr mir glauben.
Leider ist dieser Workshop mangels Anmeldungen ausgefallen. Das ist mir rätselhaft, weil so etwas Kinder immer anzieht. Ich denke, hier wurde falsch beworben. Ganz unschuldig bin ich vermutlich daran auch nicht. Ich denke, meine Einladung war nicht kindgerecht genug. Ich habe gelernt, dass man Veranstaltern einfach wirklich alles vorgeben muss. Ich habe hier zuviel Freiraum gelassen. Leider ist das sogar meine Erfahrung dann, wenn Pädagogen mit im Boot sind, die eigentlich wissen sollten, was eine kindgerechte Einladung sein soll.
Schade, aber vielleicht machen wir das im nächsten Sommer. Dann weiß ich es besser und mir wird der Workshop nicht absaufen.

Und was den September betrifft, so sind wir wieder bei dem Sprichwort vom Propheten im eigenen Land.
Trotz viel Pressespiegels ist es mir noch nicht gelungen, einen Vortrag am Karlsruher Institut für Technologie (KIT), meinem Arbeitgeber, zu platzieren.
Das wird sich am 16.01.2019 ändern. Im September 2018 erhielt ich eine Anfrage eines Vereins.
Zu Optic Students
Na, die werden sich wundern, wie wenig optisch es hier dann zugehen wird. Vielleicht ist aber genau dieses interessant für sie und sie haben deshalb angefragt.
Ich glaube, sie stießen über einen Artikel auf mich.
Darauf freue ich mich sehr. Der Vortrag soll zwar Englisch gehalten werden, aber ich habe durch Wien eine gute Grundlage. Man kann halt in der Fremdsprache in der Regel nicht ganz so rampensäuisch daher kommen, wie man das gerne täte…
Glücklicherweise kann ich auf die fertige Englische Übersetzung meines Buchtextes zurückgreifen, ohne den ich schon in Wien gnadenlos abgesoffen wäre.

Im Oktober durfte ich nochmal so eine “Familienfreizeit” halten, die eine Familie initiierte und dann kamen viele Freunde dazu. Das war, wie mit Kindern immer, super schön.
Was viele dann doch immer verblüfft ist, dass die Kinder niemals ausnützen, dass ich sie nicht sehe. Ich würde das auch merken, und wenn nicht, dann sind sie darin so gut, dass man auch diese Rafinesse würdigen sollte.
Ich kann mich erinnern, dass meine Nachhilfeschülerin das mal versucht hatte. Ich bestand darauf, dass der Fernseher währent des Unterrichts abgeschaltet wird. OK, dem Wunsch wurde zumindest da hin gehend entsprochen, dass der Apparat verstummte.
Der Lautsprecher schon, nicht aber die Elektronik. Die kann man hören. Bei den Flachfernsehern nicht mehr so eindeutig, wie bei den alten Röhren-Fernsehern, die so entsätzlich pipsten, aber Schaltnetzteile etc. pipsen auch. Um ganz sicher zu gehen und sie auf die Folter zu spannen und in Sicherheit zu wähnen, ob es wohl klappen würde, ließ ich mir bis zum Schluss nichts anmerken. Kurz vor Ende der Stunde stand ich dann ohne Vorwarnung auf, ging zum Fernseher, patschte mit der flachen Hand darauf und fragte meine Schülerin, wieso er denn noch immer warm sei, obwohl er doch schon seit mindestens einer Stunde ausgeschaltet wäre.
Naja, den Rest kann man sich denken. Sie hat in den ganzen Jahren danach nie wieder nur im Ansatz versucht, mich mit so etwas auszutriksen. Wie gesagt. Wer’s schafft ist gut und darf sich meiner Anerkennung gewiss sein…

Der Umzug meines Blogs im Oktober auf meinen eigenen Webspace und mein eigenes WordPress, war ebenfals ein sehr großes Projekt. Manchmal den Tränen nahe und kurz vor dem Aufgeben, kämpfte ich mich durch die Bedienung von WordPress und erlernte mühsam die Bedienung dieses sehr komplexen Systems. Ich weiß längst noch nicht, wie dort alles funktioniert, aber der Anfang ist gemacht, der Knoten geplatzt und ich hege, pflege und liebe meinen Blog sehr. Beharrlichkeit führt eben oft zum Ziel. Auch meiner Arbeitsplatzassistenz brachte dieser steinige Weg sehr viel. Sie lernte sich in mich hinein zu versetzen und versteht jetzt, wie sie mir z. B. einen Bildschirmaufbau oder Bedienkonzepte erklären kann, damit ich es mit meiner Hilfstechnologie verstehen und benutzen kann.

Im Dezember hatte ich einen wunderbaren astronomischen Jahresabschluss. Es erschien ein Artikel über mich in einer Mitarbeiterzeitung des KIT. Die dürfte so eine Auflage von ungefähr 9000 Exemplaren haben.
Besser konnte mein astronomisches Jahr nicht zuende gehen.

Wer frühere Jahresrückblicke von mir gelesen hat wird merken, dass ich mit Vorträgen etc. deutlich ausgedünnt habe. Das hat mir sehr gut getan. Wenn man wie ich, viele Veranstaltungen einschließlich An- und Abreise, ohne Assistenz gestalten muss, dann kommt man doch sehr rasch an seine körperlichen und psychischen Grenzen. Diese habe ich in den Jahren 2015 und 2016 am Ende deutlich gespürt. Das war gesundheitsgefährdend, nicht gut für die Psyche und richtig gefährlich. Nie wieder so. Lieber weniger und dafür besser…

Nun ja, das war mein verspäteter Jahresrückblick. Ich könnte natürlich jetzt mit dem Ausblick auf das noch junge Jahr hier weiter machen, aber das lasse ich lieber, denn ansonsten muss ich am Jahresende zuviel umständlich erklären, was alles vielleicht nicht geklappt hat…

Ich danke euch, die ihr meine Projekte begleitet, für eure Ermutigung und Unterstützung.
Das gibt mir Kraft, Mut, Zuversicht und den Glauben, dass das alles irgendwie einen Sinn macht, was ich da tue.
Gerne dürft ihr natürlich meine Artikel auch mal liken und verteilen, damit auch noch andere von dieser sinnhaftigen Arbeit erfahren dürfen.
Ich schreibe diese Dinge nicht nur für euch, sondern hätte gerne, dass unsere kleine Leserschaft noch anwachsen möge und dass meine Freude daran noch viele weitere Menschen erreicht.

Jetzt wünsche ich uns allen ein erfolgreiches und gutes Jahr 2019. Dass es jedem bringen möge, was am meisten gebraucht wird, auch wenn wir das manchmal nicht gleich erkennen.

Beste Grüße

Euer Gerhard.

Taugt ein Stern als Navi, um einen Stall zu finden?

Seid weihnachtlich gegrüßt,

Vor vielen Jahren, ich glaube, es war 2013, hatte ich einen kleinen Mailwechsel mit einem Freund, der Pfarrer ist und auch hier mit liest, über das Thema, was denn der Stern von Betlehem überhaupt gewesen sein soll.
Und darum geht es:
„Als Jesus zur Zeit des Königs Herodes in Betlehem in Judäa geboren worden war, kamen Sterndeuter aus dem Osten nach Jerusalem und fragten: Wo ist der neugeborene König der Juden? Wir haben seinen Stern aufgehen sehen und sind gekommen, um ihm zu huldigen. … Und der Stern, den sie hatten aufgehen sehen, zog vor ihnen her bis zu dem Ort, wo das Kind war; dort blieb er stehen.“

Daraus ist dann ein kleiner Text mit einigen Betrachtungen zum Stern von Betlehem entstanden, den ich hier gerne nochmal aufwärme und mit euch teile.
Bitte nicht wundern, dass der Text in der dritten Person geschrieben ist. Offenbar habe ich vor fünf Jahren so geschrieben. Das schreibe ich jetzt nicht nochmal um, dokumentiert es doch auch die Entwicklung meines Schreibstils.

Mit diesem Beitrag entlasse ich sie und euch in den wohl verdienten Weihnachtsurlaub. Ich melde mich dann zwischen den Jahren nochmal mit meinem obligatorischen astronomischen Jahresrückblick.
Also, los geht es. Was war er denn nun, der Stern von Betlehem?
Eine Supernova war es nicht, denn ansonsten könnten wir ihre Reste als Nebel wahrnehmen, der dann vielleicht sogar einen Neutronenstern in sich bergen würde. Mit viel Glück würde dieser Neutronenstern sich so geschickt drehen, dass seine Radioimpulse uns als tickendes und tackendes Geräusch erreichen würden, das wir mit Radioteleskopen letztlich auch hören könnten.

Eine Sonnenfinsternis oder etwas ähnliches war es wohl auch nicht, denn sonst wäre er anders beschrieben worden. Es gibt Geschichten in der Bibel, welche besser auf Sonnenfinsternisse passen würden.

Viele Planetarien bieten immer wieder eine Zeitreise zurück um das Jahr null herum an, um zu sehen, ob der Stern eventuell sichtbar wird.
Nun ja, nach heutigem Wissensstand war es kein Stern, sondern vermutlich eine besonders helle Konstellation der Planeten Mars und Venus.
Es geht mir hier nicht darum, das Weihnachtswunder zu widerlegen, aber es muss erlaubt sein, zu fragen, wie es war, wie es funktioniert, und ob es so sein kann, wie es erzählt wird.
Die Geschichte ist auch absolut würdig, unter die Lupe genommen zu werden, denn sie ist die einzige mir bekannte Geschichte der Bibel, in welcher der Sternenhimmel als Navigationshilfe benutzt wird.
Ein Kandidat zur Sternen-Navigation wäre der vierzigjährige Marsch des Volkes Israel durch die Wüste gewesen, aber hier wollte Gott offenbar ganz sicher gehen und führte Moses als Feuersäule und als Wolke auf dem richtigen und direkten Weg nach Kanaan.
Für die Schiffsreisen der Bibel brauchte man kaum Sternen-Navigation, denn sie verliefen meist an Küsten entlang, durch Flüsse, oder über Seen. Das ist alles mit Sichtkontakt als Navigationshilfe machbar. Zur zeitlichen Orientierung reichten Sonne und Mond aus.
Somit ist und bleibt die Ankunft der drei Könige die vermutlich einzige Navi-Geschichte der Bibel.
Da Pfarrer hier mitlesen, die es vielleicht besser wissen, bitte sofort widersprechen, wenn dem nicht so ist.

OK, zurück zum Stern von Betlehem.
Das “Was” bleibt etwas im Nebel der Zeitrechnung verborgen. Für die folgenden Betrachtungen nehmen wir allerdings einen Stern an und nehmen die Geschichte wörtlich.

Wir kommen nun zur Frage, ob ein Stern überhaupt eine derart genaue Navigation ermöglicht, dass es Königen aus dem Morgenland möglich ist, bis ins Abendland, bis in die richtige Stadt, und letztlich punktgenau bis an den richtigen Stall zu navigieren.
Damit wir uns die Sache besser vorstellen können, fangen wir mit der Navigation aus der Nähe an. Es wird nun öfters von Sehen, von Winkeln, von Perspektive etc. die Rede sein. Diese Begriffe sind Begriffe der Sehwelt und für Menschen mit Blindheit eventuell schwer nachvollziehbar.
Sie funktionieren aber auch akustisch. Die zwei Augen werden zu zwei Ohren, eine Sehrichtung mit einem Winkel wird zum Hörerlebnis aus einer Richtung, Nah und Fern bedeuten dann laut und leise, und schließlich wird Helligkeit zur Lautstärke.
Nachdem diese Analogien geklärt sind, kehre ich zu den Begriffen der visuellen Welt zurück.

Navigation hat immer mit Richtung und Entfernung zu tun. Richtung und Entfernung nehmen wir mit unseren Augen wahr. Wohl gemerkt, mit beiden Augen.Die unterschiedliche Sicht beider Augen auf einen Punkt ergeben die Perspektive.

Beispiel:
* Strecken Sie die Hand vor sich aus.
* Halten Sie einen Finger auf Höhe ihres Gesichtsfeldes.
* Bedecken Sie nun abwechselnd ihr linkes und rechtes Auge.
* Nehmen Sie wahr, wie sich ihr Finger, Ihr Punkt gegen den Hintergrund verschiebt.

Mit einem Küchenradio, vor welches Sie sich stellen und den Ohren funktioniert es auch. Verschließen Sie das rechte Ohr, hören Sie das Radio von links, obwohl sie davor stehen und umgekehrt.
Wie auch immer entsteht der Raum durch die unterschiedliche Perspektive beider Organe.

Für Navigation bedeutet das:
Desto näher ein Punkt bei uns ist, desto genauer können wir ihn mit Augen oder Ohren ausmachen und auffinden.

Widerholen Sie das Beispiel z. B. in einer Turnhalle und verlegen ihren Punkt auf die von ihnen gegenüberliegende Wand, werden Sie merken, dass sich ihr akustischer oder vor allem ihr visueller Punkt längst nicht mehr in dem Maße gegen den Hintergrund verschiebt, wie zuvor. Sie sehen ihn zwar noch, nicht aber besonders genau.
seine Position. Verlegen wir den Punkt nach draußen, z. B. dass Sie nachts ein Licht in der Ferne sehen, so können Sie sich sogar leicht drehen, ohne, dass sich ihre Perspektive wesentlich ändert.

Spazieren Sie unter dem Sternenhimmel, so ist die Entfernung so groß, das Sie quasi nicht unter einem Stern, wie unter einer Laterne hindurchlaufen können.
Der Sternenhimmel scheint derselbe zu bleiben. Natürlich ändert sich der Sternenhimmel, indem sich die Erde unter ihm hindurch dreht, aber das lässt sich so nicht direkt erleben.

Sie legen auf ihrem Spazierweg zuwenig Strecke zurück, als dass sich ihre Perspektive zu den Sternen verschieben könnte.
Sie tut es natürlich, aber einen derart kleinen Winkel können Sie mit ihren Augen selbst dann, wenn Sie noch andere Sterne als Referenz zuhilfe nähmen, nicht auflösen.
Meines Wissens nach sind die Insekten diejenigen Wesen mit der besten Winkelauflösung ihrer Augen. Sie können sehen, dass sich die Erde dreht, wenn sie auf einem punkte verharren und in die Sonne schauen.

Das bedeutet, dass es für unser Navi-Problem nicht möglich ist, genau auf einen Stern, oder wenigstens fast genau, zu zu laufen, geschweige denn hinter einem her. Eine Ungenauigkeit sagen wir von ein zwei Kilometern wäre auf freier Fläche vielleicht noch möglich, da man den Stall noch erspähen könnte. Der Blick von einem hohen Berg herab könnte zumindest am Tage, während dessen der Stern von der Sonne überstrahlt worden sein dürfte, die Aussicht zum Stall hinunter ins Tal erleichtern. Wäre der Stern heller als die Sonne, würde ich mir aus astronomischer Sicht langsam Gedanken um unser aller Leib und Leben machen.

Selbst Sonne, Mond und eine gute Kenntnis des Sternenhimmels könnten die Situation nur unwesentlich verbessern.
Durch Himmelskunde könnte man sicherlich das Abendland finden und möglicherweise sogar die ungefähre Breite, auf welcher der Stall liegen soll, aber die Ungenauigkeit wäre dann noch immer so hoch, dass eine Stadt in das Quadrat passen würde, in welchem sich der Stall befinden soll.
Auch Seefahrer lebten mit diesem Dilemma.
Den Weg über den Ozean, von Kontinent zu Kontinent, von Insel zu Insel kann man mit guter nautischer Erfahrung, wozu auch Kenntnisse in Astronomie zählen, noch schaffen.
Nicht selten gingen aber Schiffe verloren. Vor allem funktioniert dieses Navi bei Sturm und Wolken leider nicht.
Auch ein Kompass zeigt nur nach Norden, hilft aber ansonsten nicht weiter.
So setzte die Englische Krone einen sehr hohen Geldbetrag für denjenigen aus, der eine seetaugliche Uhr entwickelte. Dies tat dann Harrison.
Mittels dieser Uhr und dem Sonnenstand konnte man immerhin an der Zeit Englands ausgerichtet den Längengrad bestimmen, auf welchem man sich mit seinem Schiffchen befand.
Zeigte die Uhr nach Englischer Zeit Mittag an und hatte man auf dem Boot dunkle Nacht, so musste man auf der anderen Seite der Erde sein.
Kometen und Meteore rechnete man früher als Erscheinungen der Luft zu, weil sie sich rasch bewegen, mussten sie nahe sein.
Und das muss ein rasches Objekt gewesen sein, denn es zog Laut der Bibel vor ihnen her und blieb dann über dem Stall schließlich stehen.

Erst Tycho Brahe, der wohl größte Beobachter des Himmels des letzten Jahrtausends und Sternbeobachter von Johannes Kepler konnte dies widerlegen.
Er vermaß den Standort eines gut sichtbaren Kometen von seiner dänischen Insel Ven aus. Diese verglich er mit den Daten, die zur gleicher Zeit ein mit ihm befreundeter Astronom in Prag erfasst hatte.
Er wunderte sich, dass die Winkel exakt übereinstimmten, obwohl Prag und Dänemark so weit voneinander entfernd sind. Sollte sich doch die Perspektive entlang einer Kugel auf diese Entfernung doch schon bemerkbar machen.
Daraus schloss Tycho, dass der Komet so weit von uns weg sein müsse, dass der Winkel für die damaligen Messinstrumente nicht auflösbar war.
Schon mit einem verhältnismäßig nahen Kometen wird Navigation derart ungenau, dass man nie ankommen würde. Wie weit müssen denn dann die Sterne entfernt sein?

Ganz ähnliche Versuche wurden im antiken Griechenland gemacht, um den Abstand der Erde zur Sonne zu messen, um ihren Durchmesser zu schätzen und um den Erde-Mond-Abstand zu berechnen. Nicht zuletzt wurde mit dieser Tatsache bewiesen, dass die Erde rund sein muss.

Ich finde es eine ganz wunderbare Geschichte, dass drei Könige unseren Retter besuchen, um ihm zu huldigen.
Sie mögen den Weg mit Gottes Hilfe oder mittels Durchfragen oder sonst wie gefunden haben. Mit Astronomie alleine aber sicherlich nicht.

Ich hoffe, dass sich durch diese für manche vielleicht etwas ketzerisch wirkende Abhandlung dieses Ereignisses, niemand beleidigt fühlt.

Nun hoffe ich, dass euch meine vorweihnachtlich – astronomischen Gedanken etwas Freude bereiten.

Jetzt wünsche ich uns allen eine geruhsame, besinnliche und fröhliche Weihnachtszeit.

Was haben Kerzen mit Astronomie zu tun?

Seid herzlich und weihnachtlich gegrüßt,
im letzten Jahr schrieb ich zur Weihnachtszeit einen Artikel über Feuerchen und Kerzenschein im Weltall im Hinblick auf gewisse Randbedingungen, die die Astronauten auf der ISS haben, die dort Weihnachten verbringen müssen.
Wer das nochmal lesen möchte findet hier den gemeinten Artikel.
Weihnachtsbeitrag 2017
Da eine Kerzenflamme in Schwerelosigkeit einen erbärmlichen Anblick bietet, könnte man meinen, das Thema Kerzen wäre astronomisch uninteressant.
Dennoch wird in der Astronomie der Begriff “Kerze”, genauer, “Standardkerze” verwendet. Im Gegensatz zum Stern von Betlehem, der plötzlich auftaucht und den Retter der Welt ankündigen soll, führt uns die Klärung dieses Begriffes eher an das andere Ende des Lebens eines Sternes.
Kerzen, die  aus dem selben Wachs gemacht sind und
selbe Dicke,
selbe Höhe,
Dochtlänge,
Dochtdicke,
Dochtsorte,
sollten unter gleichen atmosphärischen Bedingungen und auf gleicher Meereshöhe auch gleich hell sein.
So eine Gewissheit ist sehr praktisch, wenn man die Entfernung messen möchte. Sieht man die Kerze, auf deren Helligkeit Verlass ist, kann man Rückschlüsse auf ihre Entfernung schließen und den Abstand berechnen.
Die Astronomen haben bei Messungen genau dieses Problem. Es stellt sich immer die Frage, wieso ein Himmelsobjekt, z. B. eine Galaxie heller leuchtet, als eine andere.
Hat sie mehr Leuchtkraft
Ist sie nur größer?
oder ist sie einfach näher dran, um heller zu erscheinen? So ein Licht, auf das Verlass ist, wäre super hilfreich. Auf das Sternenlicht alleine kann man hier nicht bauen. Die Sterne funktionieren zwar alle ähnlich, unterscheiden sich aber zum einen durch ihre Masse, zum zweiten in ihrer Zusammensetzung und zum dritten durch ihr Alter. All das bewirkt, dass sie sich in Lichtintensität, Temperatur und Größe unterscheiden.
Glücklicherweise gibt es eine Lichtquelle, die hier Sicherheit bietet.
Da Sterne meist in räumlich relativ begrenzten Umgebungen entstehen, finden sie sich oft zu Doppelsternsystemen zusammen.
Die beiden Partner können aber durchaus unterschiedlich sein.
Sie unterscheiden sich vor allem durch ihre Masse.
Es ist so, dass massereiche Sterne mehr futtern und ihren Brennstoff somit verschwenderischer verbrauchen. Somit leben massereiche Sterne deutlich kürzer, als leichtere.
Es kann nun sein, dass bei einem Doppelsternsystem der eine schon zu einem weißen Zwerg geworden ist, während sich der andere noch seiner Jugend erfreut oder zu einem roten Riesen aufgebläht hat. (Über Sternlebensläufe reden wir separat, weil das den Artikel sprengen würde)
Stehen sich die beiden nahe, kann der weiße Zwerg Masse von seinem Partner zu sich herüber ziehen.
Das bedeutet, dass er im Grunde nochmal schwerer wird und sein Leben etwas verlängern kann.
Nimmt er an Masse zu, ist irgendwann der Punkt erreicht, bei dem die Temperatur so hoch wird, dass die Wasserstoff-Kernfusion zünden kann.
Das führt dazu, dass der geklaute Wasserstoff in der Hülle des Zwerges mit einem Schlag so viel Energie erzeugt, dass der Zwerg aufblitzt und die Hülle weggesprengt wird.
Dieses Szenario kann sich innerhalb eines Doppelsternsystems durchaus wiederholen, wenn danach noch was übrig ist.
Das ist eine Nova.
Zur Standardkerze wird das Szenario deshalb, weil ganz genau bekannt ist, bei welcher Masse der Druck ausreicht, den Wasserstoff zu zünden. Außerdem ist genau bekannt, wieviel Energie und Licht dieser Prozess liefert.
Das hat mit Kernphysik zu tun.
Die Masse, die nötig ist, um so etwas auszulösen, ist eine kritische Masse. Es gibt sie auch bei der Kernspaltung. Hat man einen Block aus spaltbarem Uran, der eine gewisse Masse übersteigt, dann reichen statistisch gesehen die spontanen Kernzerfälle in seinem Inneren aus, um die Kettenreaktion anzustoßen, derer wir zwar viel Wärme und Strom in der Vergangenheit zu verdanken hatten, die aber auch Verheerung und Elend in die Welt brachte.
Beobachten Astronomen mit ihren Teleskopen so einen Nova-Ausbruch,  können sie anhand der Lichtintensität ihren Abstand berechnen, weil sie wissen, wie hell dieser Prozess ist und dass die Lichtintensität mit dem Quadrat zum Abstand der Lichtquelle abnimmt.
Es gibt noch weitere Standardkerzen, aber die bewahre ich mir für ein weiteres Weihnachtsfest auf.

Das ist es, was Weihnachten, Sterne und Kerzen miteinander gemein haben.
Ich hoffe, es hat etwas Freude bereitet.
Bis zum nächstem Mal grüßt euch
euer Gerhard.