Wunsch-Steine


Meine lieben,

aus früheren Artikeln wisst ihr schon, dass wir von Mitte Juli bis Mitte August den Meteorstrom der Perseiden passieren. Das sorgt für ordentlich Sternschnuppen, und für viele Wünsche, die hoffentlich in Erfüllung gehen.
Ich schrieb darüber vor einiger Zeit in „Wünsch Dir was“.

Wo es sich bei Sternschnuppen um harmlose Staubteilchen aus dem All handelt, die in unserer Atmosphäre als Leuchtspur verglühen, so gibt es am anderen Ende große Brocken, Asteroide, die uns durchaus gefährlich werden könnten, wenn sie, zum Glück nur selten, die Erde träfen. So zeugt das Nördlinger Ries und auch das Aussterben der Dinos von solchen Katastrophen.
Auch darüber ließ ich mich ausführlich aus in Droht Gefahr durch Astreoiden?

Heute geht es mal um die Bröckchen, von denen noch etwas übrig ist, nachdem sie als Sternschnuppe oder Feuerbälle durch unsere Luft bis zur Erde gezischt sind.

Der erste, der an den Steinregen glaubte

Dass es tatsächlich „Steine“ vom Himmel regnen kann, ist noch gar nicht so lange bekannt und akzeptiert.
Der Wissenschaftler, der als erster die Idee ernsthaft in Erwägung zog, dass Eisen vom Himmel fallen könne, war der deutsche Physiker Ernst Florens Friedrich Chladni. Im Jahr 1794 veröffentlichte Chladni ein Buch mit dem Titel „Über den Ursprung der von Pallas gefundenen und anderer ihr ähnlicher Eisenmassen und über einige damit in Verbindung stehende Naturerscheinungen“, in dem er die Hypothese aufstellte, dass Eisenmassen (Meteoriten) aus dem Weltraum auf die Erde fallen.
Chladnis Hypothese war zu seiner Zeit revolutionär und stieß zunächst auf erhebliche Skepsis und Ablehnung. Die vorherrschende Meinung der damaligen Wissenschaftsgemeinschaft war, dass Steine nicht vom Himmel fallen könnten.

Drei Namen für ein Ding

Fangen wir mit Begriffserklärungen an, denn die Bröckchen, um welches heute geht, ändern vom All bis zu uns mehrfach ihren Namen:
Ich habe hierzu mal die KI befragt:…

ChatGPT, unterscheide mir bitte die Wörter Meteoroid, Meteor und Meteorit.

Ihre Antwort:

Gerne! Die Begriffe Meteorit, Meteor und Meteoroid beziehen sich auf verschiedene Stadien und Zustände von Objekten, die aus dem Weltraum stammen und mit der Erde in Berührung kommen können. Hier sind die Definitionen der einzelnen Begriffe:

  1. Ein Meteoroid ist ein kleines Objekt aus Stein oder Metall, das sich im Weltraum befindet. Meteoroiden sind kleiner als Asteroiden und Planeten. Sie können aus Bruchstücken von Kometen, Asteroiden oder anderen Himmelskörpern bestehen.
  2. Ein Meteor ist das Phänomen, das auftritt, wenn ein Meteoroid in die Erdatmosphäre eintritt und dabei aufgrund der Reibung mit der Luft ionisiert und aufglüht. Dies erzeugt einen leuchtenden Lichtstreifen am Himmel, der oft als „Sternschnuppe“ bezeichnet wird. Ein Meteor existiert nur, solange der Meteoroid durch die Atmosphäre fliegt und verglüht.
  3. Ein Meteorit ist das, was von einem Meteoroid übrig bleibt, wenn es den Eintritt in die Erdatmosphäre überlebt und die Erdoberfläche erreicht. Meteoriten können aus verschiedenen Materialien bestehen, darunter Stein, Metall oder eine Kombination davon. Sie liefern wertvolle Informationen über das Sonnensystem und die Entstehung von Himmelskörpern.

OK, das reicht. Es geht also um Meteoriten.
Und weil die auf ihrem Wege zu uns durch die Luft mal Meteore, also Sternschnuppen, an welchen vielleicht sogar schon Wünsche hängen waren, habe ich dem Artikel die Überschrift „Wunschsteine“ gegeben.
Immer wieder werden welche gefunden. Wird ein großer Meteor als Feuerball gesichtet, machen sich oft Meteoritenjäger auf, um die Bruchstücke davon zu finden. Solche Funde gehören stets demjenigen, der sie entdeckt. Manchmal werden sie auch nie gefunden, wie bei der Tunguska-Explosion am 30. Juni 1908 im sibirischen Gouvernement Jenisseisk, der heutigen Region Krasnojarsk, deren Ursache sich bisher nicht zweifelsfrei klären ließ.
Ein andermal liegen sie irgendwo unentdeckt herum, bis sie nach Jahren oder noch längeren Zeiten meist zufällig gefunden werden. Man kann sich aber auch einfach mal so auf die Suche begeben. Es gibt Orte auf der Erde, z. B. in großflächigen Wüsten oder auf Eisflächen, wo sie durchaus auffallen, wenn sie herum liegen.
Lehnt euch also zurück, und hört euch drei Geschichten zu solchen Entdeckungen vom Sternenonkel an:

Der schwäbische Brocken

1989 hob der Finder Hansjörg Bayer bei Blaubeuren einen Graben zur Verlegung eines Leerrohres aus. In ca. 60 Zentimeter Tiefe stieß er auf einen harten Stein. Da dieser unnatürlich schwer und magnetisch war, wurde er zur Seite gelegt. In den folgenden 26 Jahren lag der Stein als Gestaltungselement im Garten. 2015 wollte Bayer kurzerhand den Stein in einem Bauschuttcontainer entsorgen, holte ihn aber schließlich in sein Haus. Fünf Jahre später (2020) kontaktierte der Finder dann das Deutsche Zentrum für Luft- und Raumfahrt, welches ihn an den Meteoritenexperten des DLR vermittelte. Dieser stellte fest, dass es sich um einen Meteoriten handelt.

An der Universität Arizona in Tucson, USA und am Helmholtz-Zentrum Dresden-Rossendorf wurde durch die Analyse vorhandener langlebiger Radionuklide das terrestrische Alter ermittelt. Demnach schlug Blaubeuren vor etwa 9.200 Jahren während der Mittelsteinzeit auf der Schwäbischen Alb ein.
Vor dem Eindringen in die Erdatmosphäre mit einer Anfluggeschwindigkeit von etwa 20 km/s dürfte er als Meteoroid ungefähr eine Tonne gewogen haben.
Weitere Untersuchungen ergaben, dass er etwa 4,5 Milliarden Jahre alt sein muss. Er entstand somit gemeinsam mit unserem Sonnensystem.

Der Meteorit wurde im Urgeschichtlichen Museum (URMU) in Blaubeuren und im Foyer der Volkssternwarte Laupheim e.V. (Sternwarte und Planetarium) ausgestellt.[5]
Der Blaubeuren-Meteorit gehört zur Gruppe der Steinmeteoriten, genauer gesagt zu den Chondriten. Chondriten sind eine der ältesten und am häufigsten vorkommenden Meteoritengruppen und enthalten kleine kugelförmige Einschlüsse, sogenannte Chondren. Diese Meteoriten bieten wertvolle Einblicke in die Frühgeschichte des Sonnensystems, da sie weitgehend unverändert seit ihrer Entstehung vor etwa 4,5 Milliarden Jahren sind.

Der Tiroler

Das Ski-Paradies Ischgl ging 2020 als ein großer Hotspot zur Verbreitung von Corona durch die Medien. Außer Ski und Pandemie hat dieser Ort aber auch noch einen prächtigen Meteoriten anzubieten.

1976 wurde der Ischgl-Meteorit gefunden,und ist wahrscheinlich aber schon seit 1970 auf der Erde.
Wie bitte? Woher will man denn das wissen, wie lange ein „Stein“ schon irgendwo herum liegt? OK, wenn er sehr alt ist, dann gibt es Verfahren der Altersbestimmung, die mit radioaktivem Zerfall von Elementen zu tun haben, aber für sechs Jahre sind die nicht geeignet.

Nun ja, fragen wir nochmal die künstliche:

Der Ischgl-Meteorit, der 1976 in Österreich gefunden wurde, wird angenommen, seit 1970 auf der Erde zu sein. Diese Annahme beruht auf folgenden Faktoren:

  1. Augenzeugenberichte: Es gibt Berichte von Menschen, die beobachtet haben, dass im Jahr 1970 ein Feuerball am Himmel zu sehen war. Solche Berichte werden oft mit dem Fall eines Meteoriten in Verbindung gebracht.
  2. Korrelation mit anderen Ereignissen: Wenn Meteoriten gefunden werden, versuchen Wissenschaftler, diese Funde mit bekannten Ereignissen von Feuerbällen oder Meteorschauern zu korrelieren. Falls es in der Region oder zu einem bestimmten Zeitpunkt Berichte über Meteorereignisse gibt, wird angenommen, dass der gefundene Meteorit mit diesen Ereignissen zusammenhängen könnte.
  3. Erhaltungszustand des Meteoriten: Der Zustand des Meteoriten kann Hinweise darauf geben, wie lange er bereits auf der Erde liegt. Meteoriten, die über lange Zeiträume der Witterung ausgesetzt sind, zeigen spezifische Verwitterungsmuster oder Veränderungen, die als Indikatoren für die Dauer ihres Aufenthalts auf der Erdoberfläche dienen können.
  4. Forschung und Analysen: Wissenschaftler führen detaillierte Analysen der chemischen und mineralogischen Zusammensetzung des Meteoriten durch. Bestimmte Veränderungen in den Mineralien und Metallen können Hinweise auf die Verweildauer auf der Erde geben. Zudem können Analysen der Oxidationsschichten und anderer Oberflächenveränderungen wertvolle Informationen liefern.

Nun denn. Das kaufe ich ihr so ab. Weiter in der Geschichte:

Im Juni 1976 war der Forstarbeiter Josef Pfefferle nach einem Lawinenabgang mit der Räumung einer Forststraße in mehr als 2000 Metern Seehöhe nordwestlich von Ischgl beschäftigt. Dabei fand ein etwa ein Kilogramm schwerer Stein mit einer mattschwarzen Oberfläche seine Aufmerksamkeit, weil er aus dem Schnee direkt auf die Straße fiel. Er nahm den ungewöhnlichen Stein mit nach Hause, wo er ihn die nächsten dreißig Jahre in einer Kiste aufbewahrte.

Pfefferle erinnerte sich wieder an das Stück, als 2007 in den Medien über den Rechtsstreit um den Meteoritenfall von Neuschwanstein berichtet wurde, von dem die Hauptmasse im Gebiet der Gemeinde Reutte nahe der Grenze gefunden wurde. Wahrscheinlich ging es darum, ob der Meteorit nun einen österreichischen oder einen bayrischen Pass bekommen sollte. An der Universität Innsbruck wurde der Meteorit klassifiziert und schließlich vom Naturhistorischen Museum erworben, wo er in einer gemeinsamen Vitrine mit weiteren sieben österreichischen Meteoriten zu sehen ist.

Mein schönster Fund

So, aller guten Dinge sind drei. Hier kommt die meiner Meinung nach schönste Geschichte eines Meteoritenfundes. Sie stammt von keinem geringeren als Saint Exupery, den wir z. B. aus dem kleinen Prinzen kennen:
Aus dem Buch „Wind, Sand und Sterne“, “ In der Wüste“:

Ich beschritt völlig jungfräulichen Boden. Als erster Mensch ließ ich
den Muschelstaub wie edles Gold von einer Hand in die andere gleiten.
Als erster störte ich das Schweigen dieses Ortes. Auf diesem Block, der
wie eine Eisscholle, solange er steht, keinen Grashalm hervorgebracht
hat, war ich wie ein vom Winde verwehtes Samenkorn, der erste Zeuge des
Lebens.
Schon leuchtete ein Stern, und ich sah ihn an. Ich dachte, wie die weiße
Fläche, auf der ich mich befand, seit Hunderttausenden von Jahren nur
den Sternen dargeboten war, ein fleckenloses Tuch unter den reinen
Himmel gebreitet.
Da durchfuhr es mich wie einen Forscher im Augenblick einer großen
Entdeckung:
Ich sah auf diesem Tuch kaum zwanzig Meter von mir einen schwarzen Kiesel…
Mit klopfendem Herzen hob ich meinen Fund auf: ein harter, schwarzer
Stein von Faustgröße, schwer wie Metall und tropfenförmig.
Auf ein Tuch, das man unter einen Apfelbaum breitet, fallen Äpfel – ein
Tuch unter den Sternen kann nur den Staub von Gestirnen erhalten. Kein
Meteor hatte je so eindeutig seine Herkunft dargetan wie dieser schwarze
Stein…
Das Wunderbarste war aber doch, dass auf dem runden Rücken unseres
Sterns zwischen diesem magnetischen Tuch und den Gestirnen ein
menschliches Bewusstsein lebte, in dem dieser Regen sich spiegeln
konnte.

Lasst mich diesen Artikel mit folgendem beschließen.
Als ich obiges Zitat von Saint Exupery vor zehn Jahren einem guten Freunde schickte, der auch hier mit liest, schrieb er mir sehr schön zurück, was ich jetzt mit euch gerne teile:

Lieber Gerhard,
danke für dieses wundervolle Zitat.
Die gewaltigen Zeiträume der Sterne, die schon nach Ewigkeit schmecken,
die vergehende Zeit des rieselnden Muschelstaubes, der Moment der Gegenwart in dem erwachenden Bewusstsein und auftauchenden Forschergeist, das Gespür für das Bedeutsame, das die Newtonsche Beobachtung des fallenden Apfels ganz ernst nimmt und zugleich der Physik die Perspektive der sich entwickelnden, entfaltenden, verwandelnden Zeit erst schenkt und das Hier und Jetzt öffnet für das Wunder des lebendig seins, das alles ist Poesie, die nach Weisheit duftet.

Dreiundzwanzigster Dezember des Blindnerd-Adventskalenders 2023

So, meine lieben, das vorletzte Türchen ist erreicht, in welchem eine einzelne Frau vorgestellt wird. Morgen gibt es natürlich auch Frauen, aber lasst euch überraschen.

Edith Clarke: Pionierin der Elektroingenieurinnen

Edith Clarke, geboren am 10. Februar 1883 in Howard County, Maryland, USA, war eine herausragende Elektroingenieurin und Pionierin auf ihrem Gebiet. Ihr Beitrag zur Elektroingenieurwissenschaft und ihre bahnbrechenden Arbeiten in einer von Männern dominierten Branche haben ihren Platz in der Geschichte der Technik fest verankert.
Clarke studierte Mathematik und Astronomie am Vassar College und schloss ihr Studium 1908 ab. Anschließend unterrichtete sie Mathematik, bevor sie sich entschied, eine Karriere in der Elektroingenieurwissenschaft zu verfolgen. Sie schrieb sich am Massachusetts Institute of Technology (MIT) ein und erlangte 1919 als erste Frau einen Abschluss in Elektroingenieurwissenschaften.
Ihre bedeutendste Leistung war die Entwicklung einer grafischen Methode zur Lösung von Leitungs- und Netzwerkproblemen, die als Clarke-Diagramm bekannt wurde. Dieses Diagramm ermöglichte es Ingenieuren erstmals, komplexe elektrische Netzwerke zu analysieren und zu verstehen. Diese Innovation trug nicht nur dazu bei, die Effizienz von Elektrizitätstransportnetzen zu verbessern, sondern ebnete auch den Weg für die Entwicklung moderner Stromnetze.
Edith Clarke arbeitete einen Großteil ihrer Karriere bei General Electric (GE). Dort leistete sie Pionierarbeit auf dem Gebiet der elektrischen Leitungsübertragung und trug dazu bei, die Effizienz von Stromübertragungssystemen zu optimieren. Ihre

Veröffentlichungen und Patente unterstreichen ihre technische Brillanz und ihre Fähigkeit, innovative Lösungen für komplexe technische Probleme zu finden.

Neben ihren technischen Errungenschaften war Edith Clarke auch eine Wegbereiterin für Frauen in der Elektroingenieurbranche. Sie setzte sich für die Förderung von Frauen in der Wissenschaft ein und ermutigte sie, sich in technischen Disziplinen zu engagieren. Ihre eigene Erfolgsgeschichte diente als Inspiration für zukünftige Generationen von Frauen, die in der Technik Karriere machen wollten.

Edith Clarke erhielt zahlreiche Auszeichnungen für ihre Beiträge zur Elektroingenieurwissenschaft, darunter die Auszeichnung als Fellow des Institute of Electrical and Electronics Engineers (IEEE). Ihr Erbe lebt nicht nur in ihren technischen Innovationen weiter, sondern auch in der Ermutigung von Frauen, sich in den sogenannten MINT-Fächern (Mathematik, Informatik, Naturwissenschaften und Technik) zu engagieren.

Obwohl Edith Clarke 1959 verstarb, bleibt ihr Einfluss auf die Elektroingenieurwissenschaft und die Förderung der Gleichberechtigung in der Technikwelt unbestreitbar. Ihr Lebenswerk ist ein leuchtendes Beispiel für Entschlossenheit, Intelligenz und den Beitrag von Frauen zur technologischen Entwicklung.

Und nun geht es, wie immer auf unsere heutige Blautor-Weihnachtsgeschichte.

Zehnter Dezember des Blindnerd-Adventskalenders, Forschende Frauen

Meine lieben,
auch dies ist ein Türchen, das aus organisatorischen Gründen zu früh erscheint. Ob ihr eure Neugierde zügeln könnt, oder gleich alle heute erschienenen vorproduzierten Türchen aufreißt, liegt bei euch. Mir ist als Kind das Warten bei den Schokoladen-Adventskalendern oft nicht gelungen. Ein Heißhunger nach Schokolade sorgte häufig für eine Plünderung vor der Zeit.
Wie auch immer. Kommen wir zu unserer heutigen Frau:

Lasst uns den zweiten Advent 2023 damit begehen, indem wir die Person und das Lebenswerk von Maria Mitchell betrachten und würdigen.
Ich kam auf Maria Mitchell, weil sie mir vor einigen Jahren in der Adventszeit großes Kopfzerbrechen bereitete, denn sie war in einem Weihnachtsrätsel der @Weltraumreporter so gut versteckt, dass sogar Google zumindest am Anfang völlig nutzlos war, und ChatGPT gab es noch nicht. Ich fand sie dann im Buch „Die Planeten“ von Dava Sobel. In diesem Buch ist ein ganzes Kapitel ihr und Frau Herschel gewidmet, die hier bereits mehrfach geehrt und erwähnt wurde.
Das Kapitel in Dava Sobels Buch ist in einen wunderschönen Briefwechsel zwischen den beiden Astronominnen eingebettet. Leider konnte ich nicht recherchieren, ob es diesen Briefwechsel tatsächlich gab, oder ob es künstlerische Freiheit der Autorin war. Auf jeden Fall ist es ein sehr gelungenes Kapitel.
Und ja, das Buch gibt es bei den Hörbüchereien aufgelesen.
Also, wer war nun Maria Mitchel.
Maria Mitchell (* 1. August 1818 in Nantucket, Massachusetts; † 28. Juni 1889 in Lynn, Massachusetts) war eine US-amerikanische Astronomin und Vorkämpferin für die Frauenrechte.

Maria Mitchell gehörte zu den Frauen, bei denen viele positive Faktoren zusammen kamen, so dass sie zu den wurde, was sie war, und das sie erreichte, was Frauen in der damaligen Zeit eher unzugänglich war.
Eine der ersten Grundvoraussetzungen, die ihr ihre Laufbahn ermöglichten war, dass ihre Eltern Quäker waren.
Diese Religionsgemeinschaft vertritt, dass Frauen dasselbe Recht auf Bildung haben, als Männer.
Ihr Vater, William Mitchell, war Lehrer und Hobbyastronom. Bald schon bemerkte er die naturwissenschaftliche Begabung seiner Tochter und unterrichtete sie in Astronomie und Mathematik.
Er ermunterte sie auch, eigene Untersuchungen anzustellen.

Normalerweise wurden Töchter aus derlei Elternhäusern höchstens in hauswirtschaftlichen Dingen oder den schönen Künsten, wie Musik, unterrichtet.
Somit stellte Maria Mitschel schon bald eine Ausnahme dar.

Ein weiterer Umstand, der sie quasi zwangsläufig zur Astronomie brachte war, dass ihr Wohnort astronomischer nicht sein konnte.
Sie wurde 1818 auf Nantucket geboren, einer kleinen von Seefahrt geprägten und rund 50 Meilen vor der Küste Massachusetts gelegenen Insel. Hier ankerte die weltweit größte Walfangflotte und von hier aus stachen Seefahrer in See, deren Wissen um den Sternenhimmel als Navigationshilfe unabdingbar war.
Somit gab es in allen Haushalten astronomische Instrumente, wie Sextanden, Efimeriden (Sternkarten), Teleskope und Schiffsuhren.
Letztere durfte sie schon mit vierzehn Jahren eichen. Es ist unglaublich wichtig, dass diese Uhren genau geeicht waren, denn man brauchte sie zur Bestimmung des Längengrades auf hoher See.

Man kann davon ausgehen, dass die Bedingungen der Sternbeobachtung von dieser Insel aus all nächtlich prächtig gewesen sein sollte. Die Insel war weit genug vom Festland entfernt, so dass keinerlei Lichtverschmutzung vorhanden gewesen sein dürfte.
Der Name der Insel, Nantucket,bedeutet weit entferntes Land. Klarer, schwarzer stockfinsterer Sternenhimmel also.

Bald schon war Maria in der Bedienung nautischer Instrumente besser, als so mancher Seebär.
Aber auch sonst verlief ihr Leben ereignisreich und sehr ungewöhnlich.

Schon mit 14 Jahren kalibrierte sie Chronometer für Seefahrer oder unterwies sie im Gebrauch von Sextanten. Mit 17 Jahren gründete Maria Mitchell auf Nantucket eine Mädchenschule und unterrichtete Mathematik. Mit 18 Jahren wurde sie zur Leiterin der Bibliothek von Nantucket ernannt. Hier liegt auch die Wiege ihrer Bildung. Fast täglich hielt sie sich in dieser Bibliothek auf, in der auch Frauen willkommen waren – anders als in den meisten anderen Bibliotheken der USA.

Berühmt wurde Maria Mitchell mit 29 Jahren durch die Entdeckung eines Kometen:
Am 01. Oktober 1847 entdeckte sie vom Observatorium ihres Elternhauses aus den später nach ihr benannten Mitchell-Kometen.
Bereits ein Jahr später, 1848, wurde sie als erste Frau in die American Academy of Arts and Sciences aufgenommen sowie 1850 in die American Association for the Advancement of Science.

Sie leitete die Bibliothek von Nantucket, bildete sich mit Hilfe der ihr anvertrauten Bücher weiter, arbeitete gemeinsam mit ihrem Vater an astronomischen Fragestellungen und unterhielt umfangreiche wissenschaftliche Korrespondenz mit den großen amerikanischen Universitäten. Maria Mitchell las Deutsch und Französisch im Original und war der Überzeugung, dass der Zugang zur Astronomie durch Mathematik erfolgt. Sie wurde als Rednerin zu vielen Vorträgen und Konferenzen eingeladen.

1865 eröffnete mit dem Vassar College in Poughkeepsie, New York, eine der ersten amerikanischen Frauen-Universitäten. Maria Mitchell erhielt den Ruf und wurde mit 47 Jahren die erste Astronomieprofessorin Amerikas – ohne jemals selbst eine Universität besucht zu haben.

Sie setzte sich dafür ein, dass Frauen die gleichen Rechte erhielten, wie sie die Männer an den Universitäten Yale und Harvardinne hatten und dass die Frauen auch fachlich gleich zogen.

So verteidigte sie ihre Studentinnen gegen herrschende Konventionen, die beispielsweise Frauen untersagten, nach 22 Uhr vom Observatorium aus zu beobachten.

1873 gründete sie die American Association for the Advancement of Women und wurde zwei Jahre später deren Präsidentin. Nicht nur in Vorträgen, sondern in der täglichen Arbeit als Professorin und Direktorin des Vassar-College-Observatoriums setzte sie sich beständig für die Gleichberechtigung von Frauen ein.

Ein Kredo von ihr war:

We especially need imagination in science. It is not all mathematics, nor all logic, but is somewhat beauty and poetry.

Zu Deutsch:

In der Wissenschaft brauchen wir vor allem Fantasie. Es geht nicht nur um Mathematik oder um Logik, sondern auch ein wenig um Schönheit und Poesie.

Es braucht nicht viel Interpretationsgabe, um das Kredo auch so zu lesen“In der Wissenschaft braucht es auch weibliche Faktoren“.

Mitchell war eine der berühmtesten Wissenschaftlerinnen (Männer und Frauen) in den USA des 19. Jahrhunderts.
Mitchell galt als ausgezeichnete Professorin, die sich für ihre Studentinnen einsetzte und sie dabei unterstützte, wirklich gute Wissenschaftlerinnen zu werden, obwohl sie „nur“ Frauen waren.

Praxiserfahrung war ihr ganz wichtig. Mit der Frage „Did you learn that from a book or did you observe it yourself?“, ging sie in die Analen der amerikanischen Wissenschaft ein.

Maria Mitchell beschäftigte sich auch mit grundlegenden mathematischen Fragen, etwa mit dem ´Großen Fermatschen Satz`. Eine harte Nuss, die im 17. Jahrhundert von Pierre de Fermat formuliert, aber erst 1994 von dem britischen Mathematiker Andrew Wiles bewiesen wurde.

Hier noch einige Ehrungen zum Schluss:
Für die Entdeckung des Mitchell-Kometen wurde sie vom König von Dänemark mit einem Orden ausgezeichnet.

1905 wurde sie in die Hall of Fame for Great Americans aufgenommen.

Nach ihrem Tod wurde zu Ehren Maria Mitchells die Maria Mitchell Astronomical Society gegründet.

Der Hauptgürtelasteroid (1455) Mitchella, den der Heidelberger Astronom Alfred Bohrmann (1904-2000) am 5. Juni 1937 entdeckte, ist nach ihr benannt.

Auch auf dem Mond erhielt sie einen Platz.
Schon im Amateurteleskop kann man auf dem Mond den an den Krater Aristoteles grenzenden Einschlagkrater Mitchell erkennen, der 1935 von der Internationalen Astronomischen Union nach der großen Forscherin und Frauenrechtlerin benannt wurde. Sein Durchmesser beträgt etwa 30 Kilometer. Er zeigt deutliche Erosionsspuren und sein Ringwall ist vom später entstandenen, etwa 80 Kilometer großen Krater Aristoteles teilweise überdeckt.

Sie war eine großartige Wissenschaftlerin und Vordenkerin für Frauenrechte. Einige ihrer Themen sind bis heute Aktuell.
Gerade in der heutigen Zeit, wo Raubbau an Natur, Mensch und sozialen Errungenschaften im Namen des Fortschritts getrieben wird, sollten wir uns derer erinnern, die VorkämpferInnen und VorReiterinnen für viele Menschenrechte waren.

Quellen:
Wikipedia
Die Planeten von Dagmar Sobel
Weihnachtsrätsel 2018 der @Weltraumreporter

Die Chancen stehen gut


Es ist mal wieder so weit. Sternschnuppenzeit im August.
Und diesmal ohne störenden Vollmond und mit besten Wettervoraussagen.
Über dieses Ereignis habe ich zwar schon in der Vergangenheit geschrieben, aber es ist immer wieder einige Worte wert, und ihr glaubt ja gar nicht, wie viel ich von einem mal auf das nächste Ereignis, an den Artikeln schraube. Einfach nur kopieren und nochmal veröffentlichen is nich…
Also dann:
Jedes Jahr im August erreicht der Nachthimmel seinen Höhepunkt an Schönheit und Faszination, wenn die Perseiden, auch bekannt als „Tränen des Laurentius“, über uns hinwegziehen.
Dieser jährliche Meteoroidenschauer ist vermutlich das von Medien und Amateurastronom:innen am meisten erwartete und beobachtete Himmelsereignis in unserem Jahreslauf.

Namensgebung

Der scheinbare Ursprung dieses Stroms, liegt im namensgebenden Sternbild Perseus.
Das Sternbild soll die Gestalt des griechischen Helden Perseus darstellen, der die tödliche Medusa besiegte. Der Stern Algol repräsentiert das abgeschlagene Medusenhaupt, das er in der Hand hält.
Der Name „Perseiden“ leitet sich also von diesem Sternbild ab, aus dem heraus die Meteore zu strömen scheinen.
Tatsächlich stammen die Meteore aber aus den Hinterlassenschaften des Kometen 109P/Swift-Tuttle. .
Sie erscheinen uns aufgrund der Perspektive nur so, als kämen sie aus der Richtung des Sternbildes Perseus.
Da das Erscheinen der Perseiden mit dem Fest des Märtyrers Laurentius am 10. August zusammenfällt, der im Jahre 258 das Martyrium auf einem glühenden Rost erlitt, werden sie im Volksmund auch Laurentiustränen oder Tränen des Laurentius genannt. Kurz vor seinem Tod soll Laurentius der Legende nach seinem Widersacher, dem römischen Kaiser Valerian, die folgenden Worte gesagt haben:

Du armer Mensch, mir ist dieses Feuer eine Kühle, dir aber bringt es ewige Pein.

Hach, wie ist das einfach nett, wenn man in der Astronomie so schön vom Höckchen auf’s Stöckchen kommt.

Beobachtung

Perseus gehört zu den 48 klassischen Sternbildern, die von Ptolemäus beschrieben wurden.
Die erste überlieferte Beobachtung der Perseiden fand vor etwa zwei Jahrtausenden in China statt. Danach gibt es Berichte aus Japan und Korea. In Europa stammt die erste bekannte Beobachtung aus dem Jahr 811.
Bereits im Mittelalter hatten arabische Astronomen die eigenartige Verdunklung des Sterns Algol beobachtet. Der Name leitet sich aus dem arabischen Ras al Ghul ab und bedeutet Haupt des Dämonen.

Vom 17.Juli bis zum 24. August kann jedes Jahr vermehrt mit Sternschnuppen gerechnet werden.
Das Maximum findet immer um den 12. August herum statt.

Am besten beobachtet man die Sternschnuppen an einem möglichst dunklen Ort auf dem Land, wo kein Stadtlicht stört. Man legt sich am besten auf eine Wiese auf den Rücken und wendet nach Mitternacht den Blick gen Osten, also in Richtung Erddrehung. Man dreht sich dann quasi mit der Erde in den Meteorschauer hinein. Das ist dann etwa so, als führe man mit einem Auto schnell durch den Regen. Dann bekommt die Windschutzscheibe ja auch deutlich mehr Regen ab, als die Heckscheibe.
Im Gegensatz zu letztem Jahr haben wir 2023 das Glück, dass der Mond die Beobachtungen nicht durch seine Helligkeit stören wird.
Am besten sichtbar sind die Perseiden auf der Nordhalbkugel.

Was sind nun die Perseiden?

Die Perseiden bestehen aus dem, was der Komet 109P/Swift-Tuttle. bei seinen letzten Besuchen durch erwärmung, schmelzen etc. verloren hat.
Er erscheint ungefähr alle 130 Jahre und entfernt sich dann stets etwas schlanker, als er vorher war. Das nächste Mal wird er um das Jahr 2126 erwartet. Ganz genau kann man das bei Kometen nie sagen, weil ihre Bahn von den Planeten gestört werden können, bzw. sie selbst ihre Bahn ändern, wenn sie aktiv sind. Dann wirkt sich die Aktivität wie kleine Schubdüsen aus.
Die Erde kreuzt auf ihrer Bahn immer um den 12. August die Staubspur, die dieser Komet im All hinterlässt, wenn er vorbei kommt. Die Staubteilchen treffen dabei mit hoher Geschwindigkeit auf die Atmosphäre und bringen die Luftmoleküle zum Leuchten. Die Sternschnuppe ist daher nicht das verglühende Staubkorn selbst, sondern wird durch das Rekombinationsleuchten der ionisierten Luft sichtbar.

Momentan werden die zu erwarteten Sternschnuppen jedes Jahr immer weniger, weil zum einen schon viel in der Erdatmosphäre verglühte und zum anderen sich der Kometenstaub, immer mehr verteilt und somit ausdünnt.
Es wird Zeit, dass er mal wieder vorbei kommt, und seine Bahn für uns mit neuem „Sternenstaub“ auffüllt.
Eines Tages wird der Komet vollständig aufgelöst sein.
Dann wird es die Perseiden nicht mehr geben, weil kein Nachschub an Staub mehr kommt.

Sternschnuppen hören

Hörbar sind die Perseiden zumindest für Amateurfunker, die einen Empfänger und eine passende Antenne besitzen, auch.
Diese Disziplin des Amateurfunks nennt man Meteor Scatter.
Wer einen passenden Empfänger und eine Antenne besitzt, kann das Französische Radar-Signal des Weltraumradars GRAVES benutzen. Dieses französische Radarsystem sendet auf 143,050 MHz einen Dauerträger, Dauerton, der über Phasenarray-Antennen den Himmel “abtastet”. Meteoriten, aber auch andere Objekte (Flugzeuge, Satelliten, die ISS, der Mond) reflektieren das Signal und streuen es in alle Richtungen, und diese Reflexionen können dann in Europa gut empfangen werden. Anhand der Doppler-Abweichung erkennt man dann, welches Objekt das Funksignal reflektiert hat: der Mond oder Flugzeuge bewirken eine sich nur langsam ändernde Dopplerabweichung, bei Objekten in Erdumlaufbahn ändert sich die Abweichung schnell, und bei Meteoriten extrem schnell.
Und wie sich Sternschnuppenanhören findet ihr in
„diesem Link“.

Fazit

Die Perseiden bieten eine großartige Gelegenheit, die Wunder des Universums zu bestaunen und gleichzeitig Einblicke in die faszinierende Welt der Astronomie zu gewinnen. Obwohl wir meist von störendem selbstgemachten Kunstlicht, Lichtverschmutzung, umgeben sind,
welches uns oft von den Schönheiten des Nachthimmels trennt, erinnert uns dieses alljährliche Naturschauspiel daran, wie klein wir im Vergleich zum Universum sind und wie viel es noch zu entdecken gibt. Also schnappt euch eine Decke, sucht euch einen gemütlichen Ort und lasst euch von den Tränen des Laurentius verzaubern.
Und bitte auch das Wünschen nicht vergessen…

Eine alte Kometen-Geschichte

Meine lieben,
Seit März 2015 glaube ich gibt es auf Facebook eine Astro-Gruppe, die zum 25 Jubiläum der Entdeckung des Kometen Hale-Bopp gegründet wurde. Obwohl er unseren Augen und den meisten Teleskopen längst schon wieder entschwunden ist, posten immer noch Astrobegeisterte alte Fotos o. Ä. dort hinein. So auch heute wieder. Da erinnerte ich mich eines alten Textes, mit welchem ich mich damals beteiligte. Damals war mein Blog noch nicht geboren. Ich versorgte lediglich meine „Schöngeister“ über eine Mailingliste. Bevor mir mein Text verloren geht, möchte ich ihn hier verewigen und einige Auszüge mit euch teilen.
Wir würdigen heute miteinander also den Kometen Namens Hale Bopp oder der Katalogbezeichnung )C/1995 O1).

Seine Entdeckung

Wie man an der Katalogbezeichnung sehen kann, wurde er am 23.07.1995 unabhängig von den beiden Astronomen Alan Hale in New Mexico und Thomas Bopp in Arizona, als sie einen Kugelsternhaufen im Sternbild Schütze beobachteten, entdeckt
Vor seiner Entdeckung des Kometen hatte Alan Hale schon mehrere hundert Beobachtungsstunden für eine systematische Suche nach Kometen aufgewandt, jedoch ohne einen neuen entdeckt zu haben. In New Mexico fiel ihm schließlich während seiner Beobachtung bekannter Kometen in der Nähe des Kugelsternhaufens M 70 im Sternbild Schütze der später als Hale-Bopp bekannte Komet auf, der damals eine scheinbare Helligkeit von elf Magnituden hatte.

Zunächst überzeugte sich Hale davon, kein anderes Deep-Sky-Objekt in der Nähe von M 70 zu beobachten und wurde auch in den Katalogen bekannter Kometen nicht fündig.
(Deep-Sky-Objekte sind solche, die definitiv nicht zu unserem Sonnensystem gehören, z. B. alle anderen Galaxien.
Als er schließlich noch eine Bewegung des Objekts relativ zu den Hintergrundsternen feststellte, schickte er eine E-Mail an das für astronomische Entdeckungen zuständige Central Bureau of Astronomical Telegrams der IAU (International Astronomical Union) am Harvard-Smithsonian Center for Astrophysics, um seine mögliche Entdeckung eines neuen Kometen zu melden.

Thomas Bopp hingegen entdeckte den Kometen eher zufällig mit dem Teleskop eines Freundes, während er mit Freunden nahe Stanfield in Arizona unterwegs war, um Sternhaufen und Galaxien zu beobachten. Nachdem er das schwache Objekt entdeckt hatte, nahm er seine Sternatlanten zu Hilfe und stellte wie Alan Hale fest, dass es kein Deep-Sky-Objekt in der Nähe von M 70 gibt. Daraufhin kontaktierte er ebenfalls das Central Bureau of Astronomical Telegrams per Telegramm.

Am nächsten Morgen wurde bestätigt, dass es sich dabei um einen neuen Kometen handelt. Die Entdeckung wurde im Circular 6187 der Internationalen Astronomischen Union bekannt gegeben.
Es stellte sich schnell heraus, dass Hale-Bopp kein gewöhnlicher Komet ist. Als man seinen Orbit berechnete, erhielt man zur Entdeckungszeit eine Entfernung von 7,2 AE von der Sonne, also zwischen Jupiter und Saturn, was bei weitem die größte Entfernung ist, bei der ein Komet entdeckt wurde. Die meisten Kometen sind in dieser Entfernung extrem schwach und zeigen keine wahrnehmbare Aktivität,

Beobachtung

Man vermutete früh, dass er in der Nähe der Sonne sehr hell werden würde. Die Vorhersage bestätigte sich, als er seinen sonnennächsten Punkt, Perihel, am 1. April 1997 durchlief. Hale-Bopp wurde daher auch als Der Große Komet von 1997 bezeichnet. Er war wahrscheinlich der am meisten beobachtete Komet des 20. Jahrhunderts und einer der hellsten für mehrere Jahrzehnte. Der Komet konnte über einen Zeitraum von 18 Monaten mit bloßem Auge ohne Hilfsmittel gesehen werden – doppelt so lange wie der bisherige Rekordhalter Flaugergues (Der Große Komet von 1811).
Hale Bopp läuft auf einer sehr stark gestreckten Ellipse um die Sonne. Spannend ist hier, dass seine Bahn fast rechtwinklig zur Ekliptik steht.

Sein sonnennächster Punkt, Perihel, liegt knapp innerhalb der Erdbahn und sein Aphel ungefähr bei 371 Ae. (1 Ae ist der Abstand Erde-Sonne, ungefähr 149 Mio Kilometer) Der Saturn ist ungefähr 10 Ae entfernt.
Wir müssen uns aber keine Sorgen machen, dass er mit der Erde kolidieren könnte, weil das mit seiner zu uns senkrecht stehenden Bahn quasi unmöglich ist. Jedoch passierte er im März 1996 den Jupiter in einer Entfernung von 0,77 AE, was nah genug war, um die Bahn des Kometen durch Jupiters Gravitationseinfluss deutlich zu verändern. Dadurch verkürzte sich die Umlaufzeit des Kometen von etwa 4200 Jahren auf 2380 Jahre, so dass er um das Jahr 4419 wieder ins innere Sonnensystem gelangen wird. Vor der Begegnung mit Jupiter lag sein Aphel mit 525 AE dementsprechend weiter außen.

Im Februar 1997 erreichte der Komet eine scheinbare Helligkeit von 2m und zeigte zwei wachsende Schweife. Der blaue Gasschweif zeigte direkt von der Sonne weg, während der gelbe Staubschweif in Richtung seines Orbits wies.
Zu seinen hellsten Zeiten, war er selbst in Städten mit ihrer großen Lichtverschmutzung nicht mehr zu übersehen.
Am 9. März erlaubte es eine Sonnenfinsternis in der Mongolei und Ostsibirien, den Kometen auch am Tag zu sehen. Am 22. März 1997 war Hale-Bopp mit 1,315 AE der Erde am nächsten. Die meisten anderen Kometen wären in dieser Entfernung nicht mit bloßem Auge sichtbar. Als der Komet am 1. April 1997 sein Perihel passierte, hatte er sich mit einer scheinbaren Helligkeit von etwa −1m zu einem eindrucksvollen Schauspiel entwickelt.
Er schien heller als jeder Stern außer Sirius und seine zwei Schweife erstreckten sich über einen Winkel von 30 bis 40° über den Himmel. Er war bereits zu sehen, bevor es richtig dunkel wurde, und blieb auf der Nordhalbkugel die ganze Nacht über sichtbar.

Nachdem er sein Perihel erreicht hatte, bewegte sich der Komet hinter den südlichen Horizont und konnte somit von der Nordhalbkugel aus nicht mehr beobachtet werden, so dass dort das Interesse an ihm erlosch. Auf der Südhalbkugel war er wesentlich weniger beeindruckend als auf der Nordhalbkugel, jedoch konnte man von dort aus beobachten, wie er im Sommer und Herbst 1997 allmählich verblasste. Hale-Bopp war 569 Tage lang, vom 20. Mai 1996 bis zum 9. Dezember 1997, mit bloßem Auge sichtbar, also ungefähr 18,5 Monate, und damit mehr als doppelt so lange wie der vorherige Rekordhalter Komet Flaugergues (C/1811 F1) – der Große Komet von 1811 – der für 9 Monate mit bloßem Auge beobachtet wurde. Auch war Hale-Bopp für acht Wochen heller als irgendein anderer Komet der letzten tausend Jahren. Er erzeugte ein weit größeres Aufsehen als der Halleysche Komet 1986. Man kann davon ausgehen, dass kein anderer Komet jemals von so vielen Menschen gesehen wurde wie Hale-Bopp.
Im Januar 2005 befand er sich mit einer Entfernung von 21 AE weiter von der Sonne weg als der Uranus, konnte aber immer noch mit großen Teleskopen ausgemacht werden. Beobachtungen zeigten, dass er zu diesem Zeitpunkt immer noch einen kleinen Schweif besaß.
Astronomen erwarteten, dass er ungefähr bis zum Jahr 2020 beobachtbar ist, wenn er eine scheinbare Helligkeit von 30m erreicht haben wird. Danach wird es sehr schwer, ihn von den Hintergrundgalaxien zu unterscheiden, die eine ähnliche Helligkeit besitzen. Der Komet Hale-Bopp wird ungefähr im Jahr 4419 zurückkehren.

Hinzu kam, dass das sich um 1996 stark verbreitende Internet erheblich zum beispiellosen Interesse an Hale-Bopp beitrug. Auf zahlreichen Websites konnte man den Flug des Kometen mit täglich neuen Bildern verfolgen.

Ihre Herkunft

Kometen kommen von weit her, von jenseits der Pluto-Bahn aus der Oortschen Wolke, oder dem Kuiper-Gürtel.
Diese Wolke umgibt vermutlich kugelförmig das ganze Sonnensystem und beherbergt Milliarden von Kometen.
Sie ist nach dem Niederländischen Astronomen Jan Hendrik Oort benannt, der sie als Ursprungsort aller Kometen postulierte.
Bislang ist diese Wolke als solches noch nicht nachgewiesen worden, aber die Kometenbahnen lassen sich mit dieser Theorie sehr gut erklären und es spricht auch vieles andere für die Existenz dieser Wolke.

Der Kuiper-Gürtel liegt außerhalb der Neptun-Bahn. Der gute alte Pluto ist ein Teil von ihm.

Kometen haben derart gestreckte elliptische Bahnen, dass sogar noch Johannes Kepler vermutete, sie kämen von einem Punkt, durchqueren geradlinig unser Sonnensystem und verschwänden dann für immer.
Die alten Griechen hielten sie für atmosphärische erscheinungen und somit für sehr nahe Objekte. Erst Tycho Brahe räumte damit auf. Er verglich seine auf der Dänischen Insel Ven gesammelten Daten eines erschienenen Kometen mit denen eines Astronomiefreundes aus Prag. Da er keinen Unterschied in den Daten feststellen konnte, schloss Tycho folgerichtig, dass der Komet sehr weit von uns weg sein müsse. So weit, dass die unterschiedlichen Perspektiven und Betrachtungswinkel von Prag und Dänemark aus, mit den damaligen Instrumenten nicht aufgelöst werden konnten. Siehe auch meine Mail „Taugt ein Stern als Navi, um einen Stall zu finden“. Die Leistung Tychos ist nicht hoch genug einzuschätzen, denn er arbeitete noch völlig ohne Teleskop und Fernrohr.

Wissenschaftliche Ergebnisse

Eines der wichtigsten wissenschaftlichen Ergebnisse, das man beobachten konnte war, dass das Verhältnis von Schwerem- zu leichtem Wasser nicht dem, des irdischen Wassers entspricht. Somit sollte es stimmen, dass unser Wasser von Kometen stammt, dann muss es eine andere Sorte von kometen sein, die weniger schweres Wasser enthält. Schweres Wasser ist Wasser, das mit dem Wasserstoff-Isotop Deuterium gebildet ist. Im Gegensatz zu Wasserstoff, der nur ein Proton in seinem Kern besitzt, enthalten Deuteriumkerne noch ein Neutron und sind deshalb doppelt so schwer. Es ist somit nicht H2O, sondern D2O. Chemisch unterscheidet sich Deuterium von Wasserstoff, und damit auch deren Wässer, quasi nicht.

Auch organische Verbindungen konnten auf ihm nachgewiesen werden, die ebenfals Grundvoraussetzung für irdisches Leben sind.

Wieso kein Besuch

Ich persönlich kann mich noch gut an den Wirbel erinnern, der um den Kometen gemacht wurde. Nun kann man sich vielleicht fragen, wieso man nicht eine Sonde zu Hale Bopp geschickt hat, wie 1986 mit Giotto und Halley (Siehe „Blind zu den Sternen“).
Das liegt ganz einfach daran, dass dieser Komet vorher nicht bekannt war und man unter Umständen bis zu 20 Jahren benötigt, um eine Mission zu planen, das Instrument zu bauen und dann noch zu starten.
Nun haben wir aber noch viele hundert Jahre Zeit, um eine Mission vorzubereiten. Gehen wir es an…

Bladventskalender21, 16.12. Sternschnuppen hören

So, und heute verbirgt sich hinter unserem Türchen mal wieder etwas auf die Ohren. Es wird etwas technisch werden, aber das wichtigste ist das Geräusch selbst. Mögen sich auch diejenigen untereuch daran erfreuen, die normalerweise nicht so technisch unterwegs sind.

Ja, ihr habt richtig gelesen. Sternschnuppen kann man auch hören. Und darum geht es in diesem letzten Kalenderblatt, welches von Sternschnuppen handelt.
Hörbar sind Sternschnuppen tatsächlich zumindest für Amateurfunker, die einen Empfänger und eine passende Antenne besitzen. Empfänger plus Antenne istgleich Radio.
Der Sender steht in Frankreich und das Radioprogramm selbst gestalten die Sternschnuppen selbst.

Wer einen passenden Empfänger und eine Antenne besitzt, kann das Französische Radar-Signal des Weltraumradars GRAVES benutzen. Dieses französische Radarsystem sendet auf 143,050 MHz einen Dauerträger, Dauerton, der über Phasenarray-Antennen den Himmel “abtastet”. Meteoriten, aber auch andere Objekte (Flugzeuge, Satelliten, die ISS, der Mond) reflektieren das Signal und streuen es in alle Richtungen, und diese Reflexionen können dann in Europa gut empfangen werden. Anhand der Doppler-Abweichung erkennt man dann, welches Objekt das Funksignal reflektiert hat: der Mond oder Flugzeuge bewirken eine sich nur langsam ändernde Dopplerabweichung, bei Objekten in Erdumlaufbahn ändert sich die Abweichung schnell, und bei Meteoriten extrem schnell.
Diese Disziplin des Amateurfunks nennt man Meteor Scatter.

Als Einstieg in den Empfang von Signalen des GRAVES Radars empfiehlt es sich, den Aufsatz von Rob Hardenberg, mit Rufzeichen PE1ITR, zu lesen.

Dank @dbsv-jugendclub gibt es hier einen Link, wie sich das anhört.
Ich hoffe, der Sound fasziniert euch ebenso, wie mich.
„Sternschnuppen hören“

Bladventskalender21, 15.12. Noch eine Möglichkeit, etwas zu wünschen

Und hier kommt noch ein Strom von Sternschnuppen, der gerne mal vergessen wird. Würdigen wir ihn also weihnachtlich.

Die Ursiden sind ein Meteorstrom, der in der letzten Dezember-Woche beobachtbar ist. Der Ursprung dieses Meteorstromes ist der Komet 8P/Tuttle. Sein Radiant liegt im Sternbild Ursa Minor (Kleiner Bär)
Im Maximum weisen die Ursiden eine Schnuppenhäufigkeit von 10 Meteoren pro Stunde auf. Jedoch wurden vereinzelt auch deutlich höhere Zahlen beobachtet.
Die Ursiden wurden um 1900 von William F. Denning entdeckt, wurden aber erst mal nur wenig beachtet,weil sie eben nicht so viele Sternschnuppen produzierten, wie andere Ströme.
Am 22. Dezember 1945 beobachteten tschechische Astronomen durch Zufall einen kräftigen Ausbruch des Meteorschauers, wobei eine Häufigkeit von über 100 Schnuppen pro Stunde erreicht wurde.
Aufgrund dieser Tatsache, schauten die Astronomen nun etwas genauer hin. Allerdings ließ das Interesse mit der Zeit wieder nach, weil sich diese Ausbrüche scheinbar nicht wiederholen wollten.
Anfang der 1970er Jahre erfolgten weitere Untersuchungen durch britische Amateurastronomen, die zunächst keinen signifikanten Anstieg feststellen konnten.
Durch Radiobeobachtungen wurde jedoch in den Tagesstunden des 22. Dezember 1973 ein kurzer Ausbruch mit einer Schnuppenrate von etwa 30 Meteoren pro Stunde nachgewiesen.
Im Artikel
„Sternschnuppen Sehen und Hören“
beschrieb ich, dass Sternschnuppen ob ihrer Ionisierung auch Radiowellen erzeugen. Das ist dann eine Messmethode, mit der man Sternschnuppen auch am Tag nachweisen kann, wo das Sonnenlicht fast alles andere am Himmel überstrahlt.
Vergleichbar stark traten die Ursiden am 22. Dezember 1979 in Erscheinung, diesmal waren es norwegische Beobachter, die die Meteore am Nachthimmel sichten konnten.
Seit langem war bekannt, dass es sich bei 8P/Tuttle um den Ursprungskometen der Ursiden handelt. Die Umlaufszeit dieses Schweifsterns beträgt 13,5 Jahre. Interessanterweise fielen die beobachteten Ausbrüche der Ursiden in den Jahren 1945, 1973 und 1986 nicht etwa mit der Sonnennähe, sondern mit der Sonnenferne des Kometen zusammen.
Eigentlich sollte es doch so sein, dass mehr Sternschnuppen fallen sollten, wenn der Komet gerade mal wieder bei uns war, und seine Trümmerspur wieder neu aufgefüllt hat.

Zwei Astronomen, Peter Jenniskens und Esko Lyytinen, entwickelten ein Modell, das diese merkwürdigen Ausbrüche durch die Schwerkraftwirkung des Planeten Jupiter zu erklären versuchte, was nicht abwägig wäre.
In der Regel ist Jupiter der Staubsauger unseres Sonnensystems, weil er viele gefährliche Einschläge von uns fern hält, indem er den Gefahren-Brocken aufsaugt, bevor er uns schaden könnte. Die Frage, ob die Erde ohne ihn genügend Ruhe gehabt hätte, dass Leben entstehen könnte, kann man in diesem Zusammenhang durchaus stellen. Es ist hinlänglich bekannt, dass das Aussterben der Dinos wahrscheinlich durch einen großen Asteroideneinschlag und dessen Folgen, verursacht wurde.
Manchmal kann Jupiter uns aber durch seine Schwerkraft auch etwas entgegen schleudern, was in diesem Fall so zu sein scheint.
Dieselben Autoren sagten für den 22. Dezember 2000 – wieder war der Komet in Sonnenferne – einen erneuten Ausbruch der Ursiden voraus.
Die Ergebnisse waren nicht eindeutig. Vor allem Radioechos deuteten auf verstärkte Meteor-Aktivität hin, aber visuelle Beobachtungen verzeichneten keinen nennenswerten Anstieg.
Dass ein Planet einen Kometen oder Asteroiden, der Sternschnuppen produzieren soll, durch seine Schwerkraft beeinflusst, ist durchaus denkbar und auch nachgewiesen.
Dieser, und noch weitere Effekte führen dazu, dass sich Kometen z. B. um wenige Jahre verspäten können.

So schön Sternschnuppen auch sind, so mahnen sie uns stets, dass wir vor größeren Brocken auf der Hut sein müssen. Schön nach zu lesen in
„Droht Gefahr durch Asteroiden aus dem All?“

Bladventskalender21, 14.12. Das Geschenk der Zwillinge am Himmel

Es ist kein Zufall, dass dieses Kalenderblatt gerade heute veröffentlicht wird, denn für heute Nacht sind Sternschnuppen aus dem Strom der Geminiden zu erwarten. Packt euch also warm ein und legt euch auf die Lauer, sofern das Wetter es erlaubt, und vergesst eure Wünsche nicht mit zu nehmen.

Die Geminiden (aus dem Sternbild Zwillinge und die Ursiden (vom kleinen Bären, Ursa Minor) sorgen im Dezember für viele Sternschnuppen.
Diese beiden Funkenregen im Dezember stehen leider etwas im Schatten der Perseiden im August, obwohl hier eigentlich deutlich mehr Sternschnuppen zu erwarten sind. Das hängt einfach mit dem Wetter zusammen. Im August ist es sommerlich warm und oft nicht so bewölkt.
Bis 1983 war nicht klar, woher die Geminiden eigentlich kommen. Sind sie Reste eines zerbrochenen Kometen oder Trümmer eines Asteroiden, z. B. aus dem Asteroidengürtel.
Als Ursprungskörper der Geminiden gilt der 1983 entdeckte kleine Asteroid 1983 TB, welche später den Namen Phaeton erhielt. Seine Bahn um die Sonne ähnelt stark der eines Kometen, wenn man davon absieht, dass er die Sonne in nur 1,4 Jahren umrundet. Derartig kurze Umlaufzeiten kennt man eigentlich nur von Planeten her.
Es wurde verschiedentlich vermutet, dass Phaeton ein “erloschener” Komet ist, der seine flüchtigen Bestandteile (Gas und Staub) bereits vollständig verloren hat. In diesem Fall gäbe es dann keinen Schweif aus Gas mehr und auch keine Koma, die den nun “nackten” Kometenkern einhüllte.
Eine andere Hypothese besagt, das Phaeton ein Bruchstück des Hauptgürtel-Asteroiden Pallas ist, das bei einem Zusammenstoß mit einem anderen Asteroiden abgetrennt wurde. Dabei sollen dann auch die Geminiden entstanden sein. Allerdings könnten die Geminiden auch die Überreste einer Kollision von Phaeton selber mit einem anderen Objekt darstellen.
Für diese Theorie sprechen die Entdeckungen der beiden kleinen Asteroiden 1999 YC und 2005 UD, welche sich auf ähnlichen Bahnen wie Phaeton bewegen und scheinbar ähnlich zusammengesetzt sind.
Nach Beobachtungen mit Raumsonden ist Phaeton ein “Steinkomet”. Da der Asteroid im Perihel (sonnennächster Punkt) dicht an die Sonne heran kommt, könnten durch die Aufheizung Risse im Fels entstehen, wodurch dann Staub und Steinbrocken freigesetzt werden. Tatsächlich wurde bei zwei Perihelpassagen des Asteroiden in 2009 und 2012 eine schweifartige Struktur beobachtet. Es handelt sich hier dann nicht um den vom Sonnenwind verwehten und stets von ihr weg zeigenden Gas-Schweif, sondern um einen aus Staub und Trümmern.

Wie auch immer. Ich wünsche euch viele Sternschnuppen. Wünsche dafür haben wir gerade in diesen Zeiten alle reichlich.

Bladventskalender21, 11.12., Und so klingt ein Komet

Heute geht es nochmal um meine Begeisterung für Kometen, die ja durchaus als Weihnachtsstern gehandelt werden
Ganz am Schluss meiner heutigen Geschichte werden wir sogar einen Kometen hören, natürlich nicht wirklich, denn im Vakuum des Alls kann man nichts hören, Nun aber erst meine Geschichte:
Die Nacht vom 13. auf den 14. März 1986

Glücklicherweise war am nächsten Tag schulfrei, sonst hätte ich im Fernsehen nicht erleben dürfen, wie die Raumsonde Giotto durch den Kometenschweif des Halleyschen Kometen flog. Hier waren sogar die auftreffenden Partikel zu hören, denn die Sonde hatte einen Sensor dafür hinter ihrem Schutzschild. Bedauerlicherweise erblindete die Kamera leider recht früh, weil ein Partikel den Schutzschild durchschlug. Nichtsdestotrotz gibt es Bilder des Kometenkerns, der Koma und seines Schweifes. Diese Mission war eine Glanzleistung der Europäischen Weltraumorganisation (ESA). Hätte sie nicht funktioniert, böte sich erst wieder das Jahr 2061 an, da der Komet nur alle 76 Jahre erscheint. Sein Auftauchen war durchaus nicht immer willkommen. Im Jahre 1910 fand man mittels Spektralanalyse des Schweifes Blausäure darin. Panikmacher dachten, jetzt würden alle eines Todes durch Blausäure sterben, wenn die Erde durch den Schweif fliegt.
Ein Englischer König wurde gekrönt, als der Komet gut sichtbar am Himmel stand. Es war kein gutes Omen für ihn, denn er verstarb noch im selben Jahr.
Der Fernsehsprecher erklärte sehr ausführlich, wie ein Komet aussieht, in welche Richtung sein Schweif zeigt und dass der Sonnenwind den Kometenschweif stets von der Sonne weg wehen lässt. Bis dahin wusste ich gar nicht, dass es einen Sonnenwind aus geladenen Teilchen gibt. Dieses Wissen hat mich damals sehr bereichert: der Schweif, der einer Fahne gleich im Sonnenwind weht.
Es ist ein schönes Gefühl, an den Sonnenwind zu denken. Die Vorstellung passt gut zur Wärme, die wir von ihr empfangen.

Spannend war für mich natürlich auch, dass bis heute Kometen nicht nur als Unheilsbringer dienen, sondern eventuell Kandidaten dafür sind, wie das Wasser auf die Erde gekommen sein könnte. Es wäre sogar möglich, dass sie die chemischen Formeln auf die Erde brachten, welche letztlich Leben ermöglichten.
Zu dieser Weltraum-Chemie hat Tim Pritlove eine Raumzeit-Folge veröffentlicht, die ich wärmstens empfehle.
In Folge 79 interviewte Tim eine Professorin, die maßgeblich an den Missionen Giotto und der Nachfolgemission Rosetta beteiligt war und viel zum Thema Kosmische Chemie erzählt. Im gleichen Podcast werden in Folge 20 die beiden Missionen Giotto und Rosetta genauer behandelt. Der DLF brachte eine wunderbare Folge in Wissenschaft im Brennpunkt zu Rosetta heraus, die ich aber leider wegen Urheberrechten nicht hier teilen darf.
die @Riffreporter haben in ihren @Astrogeo-Podcast vor einigen Jahren auch maleine Folge mit der Dame aufgenommen. Zu dieser sehr hörenswerten Folge geht es hier lang.

Als nun Rosetta den Kometen 67P erreichte, beobachtete die Sonde mit ihren Messinstrumenten, dass der Komet im Vorgang des Auftauens in Sonnennähe zu schwingen begann. Das kann man sich so vorstellen. Wenn man einen Eiswürfel in ein Getränk wirft, um es zu kühlen, dann knistert der Eiswürfel, weil sich in ihm eingeschlossene Luftbläschen durch die Wärme des Getränks ausdehnen und den Eiswürfel aufreißen. Gerät ein Komet in die Nähe der Sonne, so geschieht mit ihm dasselbe. Er platzt auf, Gas und Teilchen entweichen und bilden die Schweife, und das alles bringt den Kometen dann eben zum Schwingen.
Wie das im Zeitraffer klingt, hört ihr jetzt am Schluss des Artikels.
Singender Komet 67P

Bladventskalender21, 10.12, War der Weihnachtsstern vielleicht ein Komet

Kometen waren stets Bringer, meist von Unheil im weitesten Sinne. Sie erschienen unangekündigt und verschwanden wieder. Man wusste nicht, was sie waren und auf welchen Bahnen sie sich bewegten. Darüber schrieb ich in Kometengeschichten 4.
So begann die christliche Theologie, stark vom Hellenismus und griechischer Metaphysik geprägt, nach dem Stern von Betlehem zu fanden. Origenes, Theologe aus der hellenistischen Schule von Alexandria vertrat dokumentiert als einer der ersten die Meinung, der Stern von Betlehem sei ein Komet gewesen, weil sich große Veränderungen und Ereignisse in der Welt häufig durch Kometen ankündigten.

Seit Beginn des 14. Jahrhunderts stellen Künstler den Stern von Betlehem als Kometen dar: so als einer der ersten Giotto di Bondone aus Florenz, nachdem er 1301 den Halleyschen Kometen beobachtet hatte, von dem schon antike Quellen recht oft berichten. Beeindruckt davon malte er zwei Jahre später diesen auf dem Fresko Anbetung der Könige „in der Scrovegni-Kapelle in Padua als Stern von Betlehem.

Es gibt chinesische und koreanische Hinweise über eine derartige Himmelserscheinung des Jahres vier oder fünf n. Chr.
Heute geht man davon aus, dass der chinesische Bericht einen Datierungsfehler enthalten könnte. Man schreibt deren Ereignis aufgrund anderer Hinweise heute eher einer Nova zu.
Gegen die Kometen-Theorie spricht:

  • Der Halleysche Komet war zwischen Oktober 12 v. Chr. und Februar 11 v. Chr. sichtbar, der Erde am nächsten war er am 29. Dezember 12 v. Chr. nach dem gregorianischen Kalender.[5] Die Geburt Jesu wird dagegen zwischen 7 und 4 v. Chr. (Tod des Herodes) angesetzt.
  • Kometen sind irregulär auftauchende Himmelskörper, die nach dem Volksglauben um Christi Geburt meist mit Unheil, nicht mit Heil, verbunden wurden.
  • Die Weisen aus dem Osten hätten nicht wissen können, dass gerade dieser Komet mit der Geburt eines bestimmten Königs in Israel oder Juda zusammenhängt.
  • Die Erscheinung eines Kometen wäre nicht nur den Weisen, sondern auch vielen anderen aufgefallen. Uns sind aber keine außerbiblischen Überlieferungen bekannt.
  • Ein Komet hätte keinen exakten Ort markiert und wäre nicht an einer bestimmten Stelle stehengeblieben.

Der Stern bleibt also ein Mysterium, ein Weihnachtswunder, an welchem wir uns stets neu erfreuen und darüber staunen dürfen.