Was Einstein vor einhundert Jahren weltberühmt machen sollte


Liebe Leserinnen und Leser,

In diesem Jahr jährt sich ein Ereignis zum hundertsten male, das Albert Einstein auf einen Schlag weltberühmt machen sollte.
Am 14.12.1919 brachte die Berliner ilustrierte Zeitung auf ihrer Titelseite das Portrait Albert Einsteins und schrieb:

„Eine neue Größe der Weltgeschichte, Albert Einstein, dessen Forschungen eine völlige Umwälzung unserer Naturbetrachtung bedeutet, und den Erkenntnissen eines Kopernikus, Kepler und Newton gleichwertig sind,“
Dieser Einstein war in das Interesse der Medien gerückt. Schuld daran war eine Sonnenfinsternis. Aber alles der Reihe nach.

Im Zusammenhang mit Schwarzen Löchern und den Gravitationswellen, haben wir uns schon dann und wann mit Einsteins Relativitätstheorie beschäftigt.
Diese Theorie besagt, dass Objekte sich nicht anziehen, sondern den Raum so umgestalten, dass sie sich durch ihre Gravitation aufeinander zu bewegen.
Oft wird, um dieses zu erklären, ein Gummituch als Vergleich herangezogen, das sich, wenn man zwei Kugeln auf das gespannte Tuch legt, so eindrückt, dass die leichtere Kugel auf die schwerere Kugel zurollt.
Das sieht dann so aus, als würden sich die beiden Kugeln anziehen.
Wer schon mal mit jemandem eine Luftmadratze oder ein Wasserbett geteilt hat, weiß, was ich meine.

Ändert sich der Raum, dann ändert sich auch dessen Geometrie. In unserem Alltag ist die Raumgeometrie flach. Das bedeutet, dass ein Dreieck eine Winkelsumme von 180 Grad besitzt.
Auf einer Kugel kann man drei Linien sich rechtwinklig so schneiden lassen, dass man ein Dreieck mit drei rechten Winkeln, also 270 Grad als Winkelsumme bekommt.
Stellt euch z. B. einen Globus mit seinem Äquator vor. Nun wählen wir uns einen Längengrad, z. B. den Null-Meridian. Wir führen ihn auf dem Globus weiter, bis sich die Linie schließt. Nun nehmen wir einen weiteren Längengrad, der an den Polen mit dem ersten einen Winkel von 90 Grad bildet. Das tuen die beiden Längengrade mit dem Äquator auch,
Und siehe da. Wir haben Dreiecke mit drei rechten winkeln.
Ein Dreieck auf einer quasi negativ gewölbten Oberfläche, z. B. einem Sattel, hat eine Winkelsumme, die kleiner als 180 Grad ist.
Im flachen Vakuum breitet sich Licht geradlinig mit der bekannten Lichtgeschwindigkeit (C =300000 km/s) aus. Ist der Raum geometrisch anders gekrümmt, muss sich auch das Licht auf gekrümmten Linien bewegen. Ein Weg von A nach B wird dann von einer Gerade zu einer Geodäten.
Wir empfinden das zwar nicht so, aber ein ewig langer Highway ist keine Gerade, weil er auf die gekrümmte Erdkugel gespannt ist.
Ein auf ihm fahrendes Auto muss dieser Krümmung folgen.

Wenn es stimmt, dass große Massen den Raum, bzw. die Raumzeit krümmen, sollte sich das anhand von Licht in der Nähe großer Massen, nachweisen lassen.
Gesucht wurde ein Objekt, das eine große Masse besitzt, aber entweder selbst nicht leuchtet, bzw. dessen Licht durch etwas anderes verdeckt wird.
Eine Sonnenfinsternis schien dazu geeignet, weil die Sonne eine große Masse besitzt und der mond manchmal dazu in der Lage ist, ihren alles überstrahlenden Lichterglanz abzudecken, damit zum Vorschein kommt, was in ihrer unmittelbaren Umgebung leuchtet und normalerweise durch ihren Glanz nicht sichtbar ist. Das sind die Korona und die Sterne am Taghimmel.
Ihr eigenes Licht wird zum Zeitpunkt der Totalität komplett vom Mond verdeckt. Aber ihre im Vergleich zur Erde riesige Masse, sollte das Sternenlicht, das in ihrer Nähe vorbei geht, leicht verzerren, weil in ihrer Nähe durch ihre Masse die Raumzeit oder auch der Raum gekrümmt werden sollte.

Einstein schlug diese Idee des Nachweises vor und gab sogar eine Grad-Zahl an, um wie viel Bruchteile einer Bogensekunde die Sterne zu ihrer sonstigen Position verschoben sein sollten. Er gab zunächst 0,875 Bogensekunden an. Betrachtete man ein Eurostück aus einer Entfernung von fünf Kilometern, betrüge sein Winkel von Rand zu Rand ungefähr diesen Wert.
Dieser Wert entsprach ungefähr dem, welchen man auch mit Newtons Himmelsmechanik berechnen konnte.

Das Schwerkraft Lichtstrahlen krümmen könnte, wurde schon 200 Jahre vor Einstein von dem Englischen gelehrten und Priester John Mitchell, vermutet.
Nachweisen konnte er aber seine Vermutung noch nicht.
Mitchell ging sogar noch weiter. Er rechnete mit Newtons Gravitationsgesetzen herum und schrieb im Jahre 1783 an den Physiker Henry Cavendish:
„Wenn der Halbmesser einer Kugel, welche die gleiche Dichte hat, wie die Sonne, fünfhundert mal so groß ist, wie der Halbmesser der Sonne, dann wird ein Körper, der aus unendlicher Höhe auf sie fallen würde, an ihrer Oberfläche eine Geschwindigkeit besitzen, die größer, als die des Lichtes ist.“
Na, wenn das nicht schon leicht nach einem schwarzen Loch riecht…

Die Idee, dass Licht durch Massen abgelenkt werden könnte, passte auch hervorragend zu Newtons Vorstellung der Beschaffenheit des Lichts. Er dachte, dass Licht aus winzigen farbigen Teilchen bestünde, die man ob ihrer Kleinheit und Schnelligkeit nicht einzeln wahrzunehmen im Stande sei. Diese sollten dann aber auch eine gewisse Masse haben und somit auch von anderen großen Massen auf ihrem geraden Wege, abgelenkt werden.
Auch Newton konnte seine Idee weder beweisen, noch berechnen, weil er nicht wusste, was seine Lichtteilchen wögen und ihm Möglichkeiten fehlten seine Vorstellung wenigstens experimentell zu beweisen.

Soweit also die Idee, die Ablenkung des Lichtes durch große Massen mittels einer Sonnenfinsternis nachweisen zu wollen.
Ob das Licht nun durch große Massen deshalb abgelenkt wird, weil seine Teilchen nach Newton auch Masse tragen, oder durch Einsteins Idee mit der Raumkrümmung in Anwesenheit großer Massen, funktionieren sollte diese Idee mit dem Nachweis durch eine Sonnenfinsternis so oder so, unabhängig davon, welche Vorstellung man zugrunde legt

Diese Beobachtung würde aber noch nicht beweisen, ob Newton, oder Einstein mit ihren Ideen als Grund, richtig lagen.

Die erste Möglichkeit der Beobachtung einer Sonnenfinsternis, ergab sich 1912 in Brasilien. Diese viel aber wegen Wolken und Regen ins Wasser.

Die nächste war am 21.08.1914 in Russland. Doch drei Wochen zuvor brach der erste Weltkrieg aus. Die deutschen Astronomen, die mit ihrem Gerät bereits in Russland waren, wurden interniert und deren Geräte beschlagnahmt.

1915 hatte Albert Einstein seine relativitätstheorie vervollkommnet und bemerkt, dass die Ablenkung ungefähr doppelt so hoch sein könnte.

Die Möglichkeit einer Überprüfung, einsteins neuestem Werts ergab sich am 29.03.1919 von der Insel Principe vor der Küste spanisch Guineas aus.
Wenn man bedenkt, dass der deutsche Einstein für die Engländer ein Feind war, ist es um so bemerkenswerter, dass sie diese Expedition vorbereiteten und durchführten.
Unter der Leitung des großen britischen Astronomen Athur Edington, wurde das Sternenfeld, in welchem die Finsternis stattfinden würde, bereits ein halbes Jahr vor dem Ereignis fotografiert, als es noch am Nachthimmel zu sehen war, um Vergleichsaufnahmen für die während der Finsternis gemachten Bilder zu haben.

Eine weitere englische Expedition beobachtete das Ereignis von Brasilien aus.

Beide Expeditionen fanden die Ablenkung des Sternenlichts und somit Einsteins Theorie bestätigt.
Und so war spätestens im November 1919 Einstein ein berühmter Mann geworden, dass sogar die Newyork Times über seine Entdeckung berichtete.

Heute, wo wir über wesentlich empfindlichere und bessere Teleskope verfügen, ist auch an anderer Stelle nachgewiesen worden, dass Einstein recht hatte. Muss beispielsweise das Licht einer Galaxie durch eine andere, vor ihr liegenden hindurch, ehe es zu uns gelangt, so krümmt die riesige Masse dieser Galaxie das Licht der dahinter liegenden derart, dass sie wie eine Linse wirkt, und diese heller und verzerrter erscheinen lässt. Das kann sich so stark auswirken, dass sogar Mehrfachbilder davon entstehen können.
Dieser Effekt wird deshalb auch Gravitationslinseneffekt genannt. Der spielt in der Astronomie eine große Rolle.

Um den Kreis zum Eingangszitat zu schließen sei bemerkt, dass Einstein in England und den USA längst schon berühmt war, bis sich deutsche Journalisten endlich herabließen ihn gleichermaßen zu würdigen.

Und damit verabschiede ich mich für heute.
Bis zum nächsten mal
euer Blindnerd.

Beitrag zur Blogparade Wie Technik mein Leben verändert


Seid herzlich gegrüßt,

Zu diesem Thema läuft derzeit eine hoch interessante Blogparade auf dem Blog Anders und doch gleich . An einer Blog-Parade beteiligt man sich, indem man ein zum Thema passenden Artikel auf seinem Blog veröffentlicht, dann auf die Parade verlinkt und dort in der Kommentarfunktion auf den Artikel aufmerksam macht.
Nach der Parade fasst der Veranstalter dann alles zusammen, verlinkt alles und veröffentlicht das Ergebnis.
Das soll dazu führen, dass Blogger sich kennen lernen und dass man eventuell noch mehr interessierte Folger findet. Außerdem fasst so eine Parade die gesammelten Aspekte zum Thema zusammen und hilft beim Netzwerken.

Dieses Thema spricht mich im höchstmaße an, weil Technik, vor allem Hilfstechnologie mein Leben als Mensch mit Blindheit in meinen fünfzig Lebensjahren, vor allem in den letzten dreißig, extrem verändert und gewandelt hat.

Würde ich hier alle Aspekte ansprechen, wo in meinem Leben Hilfstechnologie zum Einsatz kommt, sprengte dieses jeden Blog. Man könnte damit Bücher füllen.
Und außerdem. Die anderen, die sich an der Parade beteiligen, sollen ja auch noch Themen für sich finden.

Ein naheliegendes Blindnerd-Thema ist der Zugang zu Bildung und Wissenschaft.
Schon als Kind, war ich ein kleines wissensdurstiges Wesen. Gerne schnappte ich aus Rundfunk und Fernsehen alles auf, was irgendwie mit Technik und Wissenschaft zu tun hatte. Vor allem Tier-Dokumentationen und der Weltraum sowieso faszinierten mich schon immer. Oft trieb ich Personen meines Umfeldes in Verzweiflung, weil ich sie mit Fragen löcherte.

Leider gab es über Wissenschaft, vor allem über den Weltraum und Astronomie quasi keine Bücher in Punktschrift, die ich mir in den Blindenbüchereien hätte ausleihen können. Bis heute sind diese Themen in der Punktschriftliteratur absolut unterrepräsentiert. Das hängt damit zusammen, dass die Produktion eines Punktschriftbuches sehr kosten- und zeitintensiv ist. Somit muss schon im Vorfeld selektiert werden, was sich lohnt, in Punktschrift aufzubereiten. Da nimmt man dann verständlicherweise Themen, die größere Mehrheiten ansprechen, als blinde Nerds.
Etwas besser sah es in unseren Hörbüchereien aus. Ein Buch aufzulesen ist deutlich einfacher, als es in Punktschrift zu produzieren.
Aber auch hier war für mich bald alles abgegrast.
Ein weiterer Notstand zur inklusiven Teilhabe an Bildungs-Themen war der mangelnde Zugang zu Zeitungen.
Es blieben mir im wesentlichen bis auf wenige Hörzeitschriften oder die vorselektierte Zusammenstellung von Artikeln aus Stern und Zeit in Punktschrift nur Rundfunk und Fernsehen.
Somit war es im Grunde genommen nicht möglich, sich umfassend und gleichberechtigt zu informieren.
Eine Tageszeitung in Blindenschrift oder als Audio aufzubereiten ist zu zeitaufwändig und wäre somit nie aktuell.
Somit war die Situation so.
Man nahm, was man kriegte. Man las und hörte, was andere für einen zusammenstellten und somit auch für gut befanden. Anderes las man nicht, weil gewisse Gruppen meinten, das bräuchten blinde Menschen nicht, bzw. man solle uns doch vor diesem oder jenem bewahren, anderes wurde uns vorenthalten, bzw. war einfach nicht umsetzbar.
Dies änderte sich für mich vor ungefähr fünfundzwanzig Jahren mit einem Schlag und verbessert sich bis heute durch neue Technologien mehr und mehr.

1995 erhielt ich mein erstes Vorlesesystem, mit dem man ein Buch einscannen und sich anschließend per Sprachausgabe vorlesen lassen konnte. Dafür opferte ich ein ganzes Studiensemester, in welchem ich täglich viele Stunden vor diesem Gerät verbrachte und manchmal mehrmals wöchentlich Kunde der Stadtbibliothek war. In diesem halben Jahr las ich quasi nur. Es war, als stünde ich am Brunnen des Wassers des Lebens. Tröpfelte bisher nur wenig Literatur durch unsere Hörbüchereien und noch viel weniger in Blindenschrift zu mir, so ergoss sich nun dieser unerschöpfliche Quell. Ich konnte lesen, was ich wollte. Das war eine Befreiung.
Das machte mich selbstständiger, und deutlich mündiger.

Ich hatte nun Zugriff auf meine Themen. Es gab jetzt nicht mehr ein oder zwei Weltraumbücher in Punktschrift, bzw. vielleicht 20 auf Casette gelesene, sondern gefühlt hunderte.
Lediglich Bilder und Mathematik können derartige Systeme bis heute nicht beschreiben oder vorlesen.

Einen Computer mit Sprachausgabe und Braillezeile hatte ich Anfang der 90er Jahre auch schon. Mit dessen Hilfe konnte ich überhaupt erst studieren, denn die Studienliteratur wurde mir vom Studienzentrum für Sehgeschädigte (SZS) des Karlsruher Institutes für Technologie (KIT) elektronisch umgesetzt.
An diesem Institut bin ich nunmehr seit zwanzig Jahren beschäftigt.

Das Internet verbesserte dann den Zugang noch mehr und tut das bis heute. Ich informiere mich auf den Seiten von Zeitungen, lese und abonniere Blogs und bin begeisterter Hörer von Podcasts.
Besonders Podcasts sind ein wunderbarer Zugang zu Bildung und wissenschaft, weil sie zunächst ohne Bilder auskommen. Alles muss beschrieben werden, was für uns einen enormen Vorteil bietet.

Ich schrieb darüber in Podcasts ein inklusives Tor zu Bildung, Wissen und der Welt.

Aktuell ist die Situation so, dass die großen „Datenkraken“ sogar schon versuchen, Bildmaterial automatisch zu beschreiben. Das funktioniert manchmal schon erstaunlich gut und stellt vor allem in sozialen Netzwerken manchmal schon einen großen Mehrwert dar.

Durch moderne Technologien, wie 3D-Druck, Lasercutter, graphikfähige Braille-Drucker und in balder Zukunft hoffentlich auch durch flächige taktile Displays, verbessert sich der Zugang zu Wissenschaft und Bildung mehr und mehr.

Ich habe großes Glück, am SZS zu arbeiten, denn dort halten wir derartige Technologie vor, erforschen und entwickeln sie weiter und setzen sie für unsere Studierenden mit Sehbeeinträchtigung ein.

Insbesondere meine Vorträge, Seminare und Freizeiten zu Themen der Astronomie haben durch derlei Entwicklungen viel an Wert und Qualität gewonnen.
So nutze ich beispielsweise mein Smartphone, um mich mit dem sprechenden Handplanetarium Universe2Go gemeinsam mit sehenden Astros zu orientieren. Ich hab jetzt quasi auch mein eigenes Instrument und kann bei Teleskop-Treffen inklusiv mit dabei sein.
In meinem Buch, „Blind zu den Sternen“ habe ich dem Thema, welche neuen Möglichkeiten neue Technologien für den Zugang zu Astronomie bieten, ein ganzes historisches Kapitel gewidmet.
Das gibt es als Papierversion, Ebook und ist über die Blinden-Hörbüchereien als Daisy-Buch ausleihbar.

So, dann denke ich, dass ich die wesentlichen Punkte beschrieben habe, was den Zugang zu Wissenschaft und Bildung betrifft und wie technologische Entwicklungen diesen stets verbessern und mein Leben verändern und bereichern.
Schaut doch mal auf der Blogparade vorbei. Dort gibt es weitere Artikel zum Thema. Außerdem sind dort alle Informationen, wie Frau oder Mann sich auch an der Blogparade beteiligen können.

Vielen Dank an die Betreiberin dieses Blogs für diese schöne Einladung, mich dort beteiligen zu dürfen. Es war mir eine große Ehre und Freude.

Wie schnell sind wir?


Meine lieben,
schon länger hatte ich mit Freunden eine Diskussion darüber, wie schnell wir uns eigentlich durch den Weltall bewegen.
Gerne teile ich meine Gedanken darüber mit euch und wünsche viel Freude beim lesen.
Damit die Mail nicht zu lange wird, befassen wir uns heute mit dem Phänomen der Geschwindigkeit allgemein und werden dann in einer weiteren Folge der Frage nachgehen, wie man Geschwindigkeiten messen kann.
Tja, wie schnell sind wir?

Diese Frage ist gar nicht so einfach zu beantworten.
Geschwindigkeit ist irgendwie relativ. Man kann nur eine Geschwindigkeit relativ zu etwas anderem haben.
Wenn wir schreiben, dass wir 100 km/H schnell auf der Autobahn fahren, dann gehen wir stillschweigend davon aus, dass die Erde ruht.
Geschwindigkeit gibt es nur dort, wo wir uns auf ein anderes System, z. B. auf die ruhende Straße, die Bahngleise etc. beziehen können.
Haben wir kein weiteres System, z. B. unsere Sonne, die uns Tag und Nacht, also die Erddrehung anzeigt, können wir nicht sagen, wie schnell das von uns aus gesehene ruhende System selbst ist.
Tatsächlich scheint es Ruhe im engeren Sinne in unserem Universum überhaupt nicht zu geben.
Wir wissen nicht, mit welcher Geschwindigkeit sich unser Universum bewegt, weil wir kein anderes haben, mit welchem wir vergleichen könnten.

Diese Bewegung, das sich umeinander drehen, das Fallen etc. wird metaphysisch oft mit dem kosmischen Tanz verglichen.

Aber alles der Reihe nach.

Nun liegt der größte Teil des Äquators im Meer, aber bei Schiffen, deren Geschwindigkeiten in Knoten angegeben wurden oder noch werden, was ich momentan nicht genau weiß, denken wir auch das Meer wäre in Ruhe.
Welch eine Wohltat für all jene, die gerne mal seekrank werden, zu denen ich leider auch gehöre.
Warum spreche ich vom Äquator?

Die Erde dreht sich in 24 Stunden einmal um sich selbst.
Das bedeutet, dass wir diese Drehung mitmachen müssen, ob wir wollen, oder nicht.
Wer am Äquator wohnt, bewegt sich am schnellsten, nämlich ungefähr 40.000 (vierzigtausend) Kilometer in 24 Stunden = ein Tag.
Die 40.000 Km sind der Erdumfang.

Wer am geographischen, nicht am magnetischen Nordpol oder Südpol wohnt, dreht sich um sich selbst, ohne dass ihm schwindelig wird.
Physikalisch gesehen, gibt es an den Achsenpunkten einer sich drehenden Kugel überhaupt keine Geschwindigkeit auf einem unendlich kleinen Punkt.
Da aber alles eine gewisse Ausdehnung hat…

Die Erde dreht sich links herum von West nach Ost.
Unser gedachter Äquatorianer bewegt sich somit immer mit einer Geschwindigkeit von ungefähr 1660 km/H in Richtung Ost.
Fährt er gerade auf einem Highway, der gerade am Äquator verläuft mit 150 Km in Richtung osten, dann addieren sich die beiden Geschwindigkeiten. Im andern Fall subtrahieren sie sich.
Denken wir uns nun um einen der beiden geographischen Pole einen Kreis mit einem Durchmesser von einem Kilometer, so wird ein Bewohner auf dessen Rand in einem Tag nur ungefähr 3,14 km/Tag =3,14 km /24 H ungefähr 0,130 km/h Das sind keine 200 m Pro Stunde sich bewegen.
Und trotzdem überholt der Äquatorianer den Polaner nicht, weil sie durch die gemeinsame Erdkugel quasi starr miteinander verbunden sind.
Denkt man sich nun die Erde in ein Netz gepackt, wie die Kartographen das taten, indem sie die Erde in Längen- und Breitengrade einteilten, dann bewegen sich alle Objekte desselben Breitengrades mit der selben Geschwindigkeit, die am Äquator die größte und an den Polen die niedrigste ist, und alle Objekte auf einem Längengrad zumindest vom Pol bis zum Äquator und vom Äquator bis zum anderen Pol mit einer anderen Geschwindigkeit, ohne sich zu überholen.
Somit gibt es zu jedem Punkt auf der Nordhalbkugel einen zweiten auf der Südhalbkugel, der sich mit derselben Geschwindigkeit bewegt.
Ich deutete oben schon an, dass sich Geschwindigkeiten immer auf ein Bezugssystem beziehen und sich in gleicher Richtung addieren und in Gegenrichtung subtrahieren. Mit einfachen mathematischen Formeln aus der Geometrie lassen sich auch die resultierenden Geschwindigkeiten für alle anderen Winkel ausrechnen.
Das ersparen wir uns jetzt, denn ich will, dass auch diejenigen hier weiterlesen, die eher mit der Mathematik und der Geometrie auf dem Kriegsfuß stehen. Lassen wir diese unangenehmen Schulerinnerungen also ruhn.

Wir spüren nichts von dieser Geschwindigkeit, die aus der Erddrehung resultiert, weil sich alle Gegenstände um uns herum auch mit dieser Geschwindigkeit bewegen.
Geschwindigkeit nehmen wir nur dann wahr, wenn sie nicht gleichförmig ist. Es drückt uns in den Sitz, wenn wir im Sportwagen aufs Gas treten, weil die Geschwindigkeit pro Zeiteinheit zunimmt. Ebenso haut es uns nach vorne, wenn wir scharf abbremsen müssen. Diese zeitliche Veränderung der Geschwindigkeit nennen die Physiker Beschleunigung. In diesem Sinne ist Bremsen dann eine negative Beschleunigung. Dieses wird bildlich oft im Leben Entschleunigung genannt.
Dass es uns in den Sitz drückt, bzw. nach vorne haut, liegt daran, dass unser Körper sich eigentlich mit der zuvor eingenommenen Geschwindigkeit weiterbewegen möchte. Diesen Willen nennt man Trägheit. Er hat mit der Masse des Körpers zu tun. Obwohl sich die Masse eines Gegenstandes hier auf Erden durch das Gewicht des Gegenstandes bemerkbar macht, wäre es falsch, wenn ich hier Gewicht anstelle von Masse schreiben würde, denn das mit der Beschleunigung funktioniert auch im Weltall, wo kein Schwerefeld herrscht.
Aber auch hier nehme ich auf diejenigen Rücksicht, die es nicht so mit der Physik haben, und gehe nicht weiter darauf ein.

Das ist aber nicht die einzige Geschwindigkeit, der wir ausgesetzt sind.
Die Erde ist ungefähr 150 Mio Kilometer von der Sonne entfernt.
Diese denken wir uns jetzt mal als Punkt, denn mir ist nicht klar, ob hier der Rand der Sonne, bzw. deren Mittelpunkt gemeint ist.
Da die Sonne ein Gasball ist, dürfte es nicht ganz leicht sein, genau zu definieren, wo sie exakt ihre Oberfläche hat.
Man könnte die Oberfläche von Gas-Körpern dort definieren, wo ihr Gasdruck dem hier auf der Erde entspricht.
Für uns sind nur die 150 Mio Kilometer wichtig.
Uns soll im folgenden auch nicht stören, dass die Erde, wie alle anderen Himmelskörper auch, sich in einer elyptischen Bahn und nicht auf einer Kreisbahn um die Sonne oder ihre Muttersterne bewegen.
Der Kreis ist sozusagen eine Ausnahme unter den Elypsen, bei der die beiden Brennpunkte auf dem gemeinsamen Mittelpunkt liegen.
Was viertausend Jahre gut und billig war, kann uns hier nur recht sein.
Die Erde dreht sich nahezu auf einer Kreisbahn um die Sonne. Der Kreis hat einen Durchmesser von ungefähr 150 Mio Kilometer.
Von der Sonne aus gesehen dreht sich die Erde links um sie herum.
Das kann man sehen, wie sie durch die Sternbilder zieht.
Somit legt die Erde mit allem drum und dran, sogar mit dem Mond pro Jahr eine Strecke von ungefähr einer Milliarde Kilometern pro Jahr zurück.
1.000.000.000 km /365 Tage /24 Stunden ist dann das ganze in km/h. Wer mag, darf das selbst ausrechnen.

Betrachten wir nun diese beiden Geschwindigkeiten, die der Erddrehung und die des Jahreslaufes, dann können wir uns überlegen, ob es eine resultierende Geschwindigkeit der beiden gibt.
Es gibt zu jedem Zeitpunkt der Messung eine, aber die ist leider nicht konstant, da es sich um Kreisbahnen handelt von denen die eine nichteinmal innerhalb der anderen verläuft.
Denken wir uns die Richtung der Erddrehung als Pfeil.
Dann kommt es vor, dass sich ein Punkt quasi von hinten vor bewegt. Dann zeigt dieser Pfeil ungefähr in die Richtung, in welcher auch die Erde um die Sonne läuft.
Ist unser Pfeil nun im Begriffe, sich wieder hinter der Erde zu verstecken, dann zeigen die beiden Pfeile sogar in Gegenrichtung.
Auch alle Zwischenrichtungen kommen hier vor. Das bedeutet, dass die Absolutgeschwindigkeit bezogen auf Erddrehung und Jahreslauf sich jeden Tag einmal adieren und einmal subtrahieren.

Somit kann es sein, dass es für einen Beobachter auf einer Kreisbahn so aussieht, dass etwas auf einer anderen Kreisbahn ihn überholt, ein kleines Stückchen Rückwärts läuft, um dann wieder in den normalen Tritt zu kommen.
Dieser perspektivische Effekt bereitete den Griechen in der Berechnung der Planetenbahnen großes Kopfzerbrechen. Das konnte man erst befriedigend dadurch lösen, dass man die Sonne in die Mitte der damals bekannten Himmelskörper setzte.
Dieser Effekt tritt ein, wenn sich zwei Planeten auf ihren Bahnen gegenüber stehen. Im einen Fall können sie auf der gleichen Seite der Sonne gegenüber stehen und im anderen Fall mit der Sonne dazwischen. Das sind dann die verwirrenden Konstellationen, wo man denken könnte, dass alles aus dem Ruder läuft, dass der eine den anderen überholt und dass der eine mit einem mal rückwärts läuft.

Das sind grob die Geschwindigkeiten, die für unser Leben die ausschlaggebensten sind.
Es gibt noch weitere, auf die ich nun aber nicht in der Ausführlichkeit eingehen werde.

Unsere Sonne bewegt sich, wie alle anderen Sterne unserer Galaxis um einen Mittelpunkt, um das Schwarze Loch in ihrem Zentrum,  herum. Weiß man den Durchmesser unserer Galaxis und die Umlaufzeit für eine Umrundung, so kann man näherungsweise wieder mit der Kreisformel berechnen, wie schnell die Sonne mit allem drum und Dran, mit Merkur, Venus, Erde, Mars, Jupiter, Saturn, Uranus, Neptun und allen Monden, dem einen unseren, Deimon und Fobos des Mars, den vier galileischen Monden des Jupiter, und und und, sich um unsere Galaxis bewegt.
Hier wird die Zahl in km/H so unhandlich, dass man sich besser mit einer größeren Maßeinheit behilft.
Das Messen von Geschwindigkeiten soll aber Thema einer nächsten Folge werden.
Was für die Resultierende Geschwindigkeit von Erdentag und Sonnenjahr gilt, muss selbstverständlich auch geometrisch für den Sonnentag (Drehung der Sonne um sich selbst) und das Galaxisjahr (Drehung der Sonne um die Galaxie) gelten.
Unsere Galaxis dreht sich mit einigen anderen Galaxien auch um einen gewissen Schwerpunkt herum. und all diese Systeme bewegen sich momentan, als wären sie in einem Strudel, auf einen Punkt zu, den man den großen Attraktor nennt.
Somit gibt es nichts, was keine Geschwindigkeit hat und auch nichts, das immer eine eindeutige gleichbleibende Geschwindigkeit hat.

Wie oben schon erwähnt, ist Ruhe nur dann Ruhe, solange wir uns auf etwas beziehen, das sich mit derselben Geschwindigkeit bewegt, wie wir.