Wieso ist Ostern manchmal so früh und manchmal so spät?


Liebe Leserinnen und leser,
Ansatzweise dürften die meisten von euch wissen, wie sich das Osterfest terminiert. Lasst uns trotzdem mal kurz drauf schauen, wie der Kalender an dieser Stelle funktioniert.
Der Ostersonntag ist in der Regel der erste Sonntag nach dem ersten Vollmond nach dem astronomischen Frühlingsanfang, der Tag-Nacht-Gleiche.
Ostern ist das einzige Fest, das noch primär von astronomischen Gegebenheiten abhängt. Fasching, Muttertag, Chr. Himmelfahrt, Fronleichnam und  Pfingsten leiten sich davon ab.
Bis zum Konzil im Jahre 325 n. Chr. feierten verschiedene Gemeinden das Osterfest an unterschiedlichen Tagen. Dort wurde beschlossen, dass ein einheitlicher Termin gefunden werden muss, an dem alle Brüder und Schwestern der Christenheit gemeinsam das Osterfest, die Auferstehung Jesu, begehen und feiern sollen.
Es fällt ungefähr mit dem Jüdischen Pessach-Fest zusammen.
Ostersonntag ist meistens der Sonntag nach dem ersten Vollmond des astronomischen Frühlingsanfang. Somit kann die Auferstehung Jesu frühestens am 22.03. und spätestens am 26.04. stattfinden. Dieses Datum war Papst Gregor in seinem Kalender zu spät. Deshalb führte er eine Regel ein, die den 25.04. als spätesten Termin erlaubt.
In dem seltenen Fall, wird Ostern einfach eine Woche vorgezogen.

Im Volksmund wird als Frühlingsanfang oft der 21.03. angegeben. Das stimmt nicht ganz. Er kann zwischen dem 19.03. und dem 21.03. variieren, abhängig vom Abstand zum letzten Schaltjahr.
Kalendarisch wird aber immer der 21.03. als Rechengrundlage genommen, was manchmal, z. B. in 2019 zum sog. Osterparadox führt. Ich schrieb darüber in
Fällt Ostern 2019 aus?.

Vierzig Tage von Ostern zurück gerechnet, ergibt
Fasching, da von Aschermittwoch bis Ostersonntag gefastet wird. fünfzig Tage vorwärts ergibt Pfingstmontag.
Das sieht man noch im Italienischen Begriff „Pente Coste“.
Früher wurde zwischen Ostern und Pfingsten noch gefastet. Das bedeutete, dass die Sonntage, an denen nicht gefastet wurde, nicht mitgezählt wurden. So mit war man nach heutiger Rechnung mit den Sonntagen erst bei 43 gültigen Zähltagen. Da es sich um sieben nicht gezählte Sonntage handelt, ergänzen sich diese zu einer weiteren Woche. Das bedeutet, dass Pfingsten, als noch gefastet wurde, eine Kalenderwoche später war, als heute, wo auch die Sonntage gezählt werden und nicht mehr nach Ostern gefastet wird.

Es liegt also auf der Hand, dass die Kirche stets daran interessiert war, das Osterfest und die sich daraus ableitenden Festtage pünktlich zu begehen. Dazu gehört auch, dass man es kalendarisch zuverlässig und genau vorausberechnen kann.
Hier liegt aber genau der Hase im Pfeffer.
Einerseits orientiert sich der heute weltweit akzeptierte Gregorianische Kalender am Sonnenjahr mit seinen 365 Tagen, andererseits hängt Ostern vom ersten Frühlingsvollmond ab. Aus diesem Grunde müssen wir immer einen Mondkalender mit durch unseren Kalender laufen lassen.
Der Islam tut dies sehr konsequent. Deshalb läuft die Islamische Fastenzeit, der Ramadan stets durch das ganze Jahr hindurch. Mal ist er im Sommer, was den Muslimen besonders in heißen Ländern viel abverlangt, da man über Tag nichts trinken darf, mal ist er im Winter.
Genau diesen Effekt wollte man beispielsweise bei unserem Weihnachtsfest nicht haben, weshalb es auf ein Datum unabhängig vom Mond terminiert wurde. Somit rollt Heilig Abend nur durch die Wochentage.

Ostern läuft niemals durch das ganze Jahr, weil seine Berechnungsgrundlage der erste Frühlingsvollmond ist.
Genau hier ist Ostern gefangen. Das Fest hängt am Bendel des Frühlingsanfanges.

Um dieses Problem, der Berechnung des Ostertages zu lösen, gab der Mathematiker und Jesuitenpater Christophorus Clavius im 16. Jahrhundert eine Rechenvorschrift heraus, die allerdings noch sehr unhandlich war.
Der Mathematiker und Astronom Karl-Friedrich Gauß griff diese Rechenvorschrift auf und verfasste im Jahre 1800 eine vereinfachtere Lösung, um den Ostertermin zuverlässig im voraus bestimmen zu können. Es ist ein textlich verfasster Algorithmus und keine geschlossene Formel, wie z. B. R-Quadrat mal Pi ($R^2 \cdot \pi$) die Kreisfläche für einen vorgegebenen Radius R, berechnet.

Für heutige Computer gibt es diese Rechenvorschrift als Programm, so dass sie dieses „verdauen“ können.
Ich erspare uns jetzt, wie dieser Algorithmus genau funktioniert. In Wikipedia ist er schön anschaulich beschrieben.
Beschreibung der Osterformel
Hier nur einige Randbedingungen, die berüchsichtigt werden müssen, um zu veranschaulichen, dass die Sache nicht ganz trivial ist.

  • Ein Mondumlauf benötigt etwas mehr als 29 Tage. Dieser Fehler schaukelt sich auf, wenn man ihn vernachlässigt.
  • Wir haben Monate mit 28, 29, 30 und 31 Tagen. Vor allem das Schaltjahr muss berüchsichtigt werden.
  • Im Gregorianischen Kalender gibt es die Jahrhundert-Regel, so dass nicht alle vollen Hunderter, obwohl durch vier teilbar, Schaltjahre sind.
  • Alle 400 Jahre muss ein weiterer Schalttag eingefügt werden.

Vor Clavius und Gauss musste das Osterfest von Astronomen händisch mittels Tabellen berechnet werden. Das bedeutete, dass man von Mondphase zu Mondphase, von Jahr zu Jahr etc. schritt für schritt springen musste.
Ja, der schlaue Gauß. Diese sog. Osterformel, ist nur ein ganz kleiner Teil, seines Schaffens. Ich denke, er wird mal ein eigener Artikel werden.
Ich erinnere mich noch, dass wir diese Formel mal im Studium in einer Rechnerübung programmieren mussten. Keine Ahnung mehr, ob ich es damals schaffte, aber ich denke schon.

Jetzt wünsche ich euch allen ein frohes und erfülltes Osterfest.

Es grüßt euch ganz herzlich

Euer Blindnerd.

 

Gedenken an Stephen Hawking


seid herzlich gegrüßt,

Endlich ist er fertig, mein Artikel zum Gedenken an

Stephen Hawking.

 

 

Ein großer Astronom ist von uns gegangen. Jeder wird das vernommen haben, dass am 14.03.2018 der große Physiker, Stephen Hawking, verstarb.

Er wurde auf den Tag genau 300 Jahre nach Galileo Galilei geboren. Er bekleidete denselben Professorenstuhl, wie Isaac Newton.

Und sein Todestag fällt mit dem Geburtstag von Albert Einstein zusammen.

 

Für mich stellt sich jetzt als Blogger die Frage, was ich über ihn schreiben möchte, das nicht schon in den letzten Tagen geschrieben wurde.

Sein Lebenslauf und alles ist an anderen Stellen schön nachzulesen. Aus diesem Grunde habe ich mich entschlossen, ganz einfach darüber zu schreiben, wie ich ihn erlebt und wahrgenommen habe und welche astronomische Fragestellung mich bei ihm bis heute fasziniert.

Auf jeden Fall werde ich sicher nicht über seine Einschränkung berichten, denn damit würde ich einen der größten Physiker auf seine Behinderung reduzieren.

Über diese Reduktion, muss ich aber kurz schreiben.

Das erste Mal kam ich mit den Schriften Hawkings 1992 in Berührung. Damals hatte er gerade mit seinem Buch „Eine Kurze Geschichte der Zeit“ einen enormen Durchbruch. Es gab auch einen Kinofilm dazu.

 

Oft wurde ich von verschiedensten Personen gefragt, ob ich Stephen Hawking kenne. Und das war wirklich eine merkwürdige Erfahrung. Ich wurde weniger danach gefragt, weil mich interessieren könnte, was er schreibt, sondern eher, weil er eben diese schwere Einschränkung hatte.

Und das bildete ich mir nicht ein, denn die Frager waren erstaunt, dass ich ihn nicht kenne. Sie gingen davon aus, dass uns alleine schon verbinden sollte, dass wir beide eine Einschränkung haben. Das tut es nicht. Es kennen sich nicht alle Menschen mit Beeinträchtigung untereinander, und wir haben uns auch nicht alle zwangsläufig ganz lieb.

Was er zu tun fähig war, ist so grenzenlos außergewöhnlich, dass er für mich als Mensch mit Beeinträchtigung kein Vorbild sein kann. Das ist auch ohne, Behinderung für fast alle Menschen unerreichbar, was er leistete.

Außerdem sind funktionierende Gliedmaßen keine Grundvoraussetzung, ein guter Physiker zu sein.

Aber es stimmt schon. Wenn er mit seiner Computerstimme sprach, dann klang das schon irgendwie, wie ein Orakel, vor allem, weil Schwarze Löcher etc. für uns etwas ungreifbares vielleicht sogar etwas mysteriöses und jenseitiges sind.

Mit der Sprachausgabe, die er benutzte, Modell Dectalk, , habe ich früher auch gearbeitet. Die konnte man sogar singen lassen.

 

Wie auch immer. Jetzt würdigen wir sein Lebenswerk an einem Beispiel.

Wie gesagt, kam ich in den 1990er Jahren mit seinen Büchern in Kontakt. Es war gar nicht so einfach, sie zu lesen, weil sie noch nicht als Hörbücher verfügbar und die Scanner und Texterkennung auch noch nicht so gut waren.

Ich ging dennoch zur Stadtbücherei und lieh mir das Buch, „Eine Kurze Geschichte der Zeit“, aus. Mit meinen Mitstudenten machten wir eine Art Wettbewerb daraus, wer ehrlich mit Hand auf dem Herzen bis zu welcher Seite kam, bevor das Verständnis abbrach.

Ich meine mich zu erinnern, dass ich im guten Mittelfeld lag. Irgendwann musste ich schon deshalb aussteigen, weil meine Texterkennung mit den wenigen mathematischen Formeln überhaupt nichts anfangen wollte.

 

Sicher. Für Astronomie, Weltraumtechnik und alles, interessierte ich mich schon immer. Aber Hawking war auf jeden Fall ein Türöffner zu den Schwarzen Löchern und dem Urknall für mich, wie Rudolf Kippenhahn und Isaac Asimov ein Zugang zur Funktionsweise von Sternen und zu unserem Sonnensystem waren.

Es gab auch noch weitere Wegbegleiter für mich, die ich mir jetzt erspare, weil heute nur der eine gefeiert wird.

 

Die meisten von euch werden wissen, was ein schwarzes Loch ungefähr ist, weshalb ich mich hier kurzfassen kann.

Der Tod eines Sternes, dessen Verlauf und was er danach ist, hängt im wesentlichen von seiner Masse ab. Ich schrieb schon über die Möglichkeit, des Neutronensterns.

Sie wiegen wenige Sonnenmassen und sind aber so kompakt, dass sie nur vielleicht 15 km Durchmesser besitzen. Ihre Atome sind zerquetscht, so dass sie nur noch fast aus Neutronen bestehen.

Ein Fingerhut voll dieses Materials wiegt milliarden Tonnen.

Der Physiker Oppenheimer und andere stellten sich nun die Frage, was geschieht, wenn Sterne kolabieren, die noch deutlich schwerer sind. Er fand heraus, dass irgendwann der Druck auf das Neutroniun so hoch sein könnte, dass es der Gravitation auch nicht mehr Stand halten würde. Der Kollaps ginge dann weiter und weiter. Die Gravitation nähme immer mehr zu und der Sternrest wird immer kleiner, bis die Gravitation in einem unendlich kleinen Punkt vielleicht unendlich ist.

Dann ist das Schwarze Loch fertig.

 

Jeder Körper, der sich aus dem Gravitationsfeld eines Himmelsobjektes, z. B. Stern, Planet oder Mond bewegen möchte, braucht je nach Masse, des Himmelsobjektes eine Fluchtgeschwindigkeit.

Ich glaube, die eines Raumschiffs, das die Erde verlassen möchte, beträgt 11,2 km/s. Was langsamer ist, bleibt gefangen und schafft es besten Falls in eine stabile Umlaufbahn.

Denkt man sich jetzt immer mehr Gravitation, dann ist die Fluchtgeschwindigkeit irgendwann höher, als die Lichtgeschwindigkeit 300.000 km/s. Das bedeutet, dass in einem so schweren Gebilde, sogar das Licht gefangen bleibt.

Nochmal zur Erinnerung. Das Ding ist vielleicht nur wenige Sonnen schwer, aber es ist sehr klein.

So etwas nennt man dann ein Schwarzes loch, weil es nicht sichtbar ist. Es lässt kein Licht heraus. Es ist ein Loch in der Raumzeit. Es verrät sich nur indirekt, wenn z. B. es von Sternen umkreist wird, oder Materie, die sich aufheizt, in es hinein fällt.

Eigentlich ist das erbärmlich. Obwohl ein Schwarzes Loch ein so seltsames Objekt ist,

können wir, was wir besten Falles von ihm wissen, in drei schlichte Parameter fassen.

seine Masse, seine Drehung und seine Ladung, Und alles drei verrät es uns nur, wenn es gerade aktiv ist, oder von etwas umkreist wird, das sichtbar ist.
Wir wissen einfach nicht, wie es dort drinnen zugeht.

Irgendwann ist die Gravitation so hoch, dass die Einstein-Gleichungen nicht mehr funktionieren.

Diese Schwarzen löcher waren ein Hauptgegenstand der Arbeit von Stephen Hawking.

Lasst mich ein Thema von ihm herausgreifen, das ihn und seine Gegner mehr als vierzig Jahre beschäftigte, und von dem ich glaube, dass ich es einigermaßen erklären kann.

 

Das Informations-Paradochs

EineHauptfrage  von ihm war, was wohl mit der Information dessen geschieht, was in ein schwarzes Loch fällt, also hinter den Ereignishorizont, von dem es kein Zurück mehr gibt. Der Ereignishorizont ist keine Linie, wie zwischen Erde und Himmel, sondern eine Kugelsphäre, die das ganze  schwarze Loch umgibt. Was hier hinein fällt, kann nicht mehr zurück. Welchen Radius der Ereignishorizont eines schwarzen Loches besitzt, hängt von seiner Masse ab. Er wird Schwarzschild-Radius genannt und kann berechnet werden.

 

Mit Information ist hier gemeint, ob man etwas aus einem schwarzen loch theoretisch wieder retten könnte, oder nicht. Man kann sich das vorstellen, wie wenn man einen Würfelzucker in den Kaffee wirft. Der Zucker löst sich auf und vermischt sich gleichmäßig mit dem Kaffee. Dass wir den Zucker nicht mehr herausholen können, liegt nur daran, dass wir nicht wissen, wie es geht. Aber grundsätzlich ist der Zucker mit allem, was zu seiner Information gehört, Geschmack, Klebrigkeit, Farbe und chemie, noch da.

Das ist eine Grundfeste der Physik, der Termodynamik, dass Information niemals verloren gehen darf. Jede Mischung strebt dem maximalen Durcheinander, also der besten Durchdringung, entgegen.

Ein Maß für das Durcheinander in der Physik ist die Entropie.

 

Das ganze hat dann auch mit Temperatur zu tun. Schüttet man warmes und kaltes Wasser zusammen, dann durchdringt es sich so lange, bis alle Moleküle, die beider Wässer, dieselbe Temperatur haben.

Daraus folgt dann, dass, wo die Information absolut verloren geht, da gibt es dann auch keine Temperatur mehr. Das ist aber physikalisch unmöglich.

Stephen Hawking vertrat über Jahrzehnte die Meinung, dass schwarze Löcher mit dem es umgebenden Vakuum über virtuelle Teilchen interagieren können und langsam verdampfen (Hawkingstrahlung) würde, und dass die Information verloren ginge, weil diese Strahlung rein termischer Natur sei, und daher keine Information transportiere, die etwas über die Entstehungsgeschichte des Loches erzählen könnte. Würde die Strahlung die Information dessen, was dereinst hinein fiel, enthalten, dann liefe die Entstehungsgeschichte des Loches rückwärts ab.

Sein härtester Gegner dürfte der Physiker Leonard Susskind gewesen sein. Er entwickelte eine Theorie, die den Informationsgehalt von allem, was in das schwarze Loch fällt, an den Rand, den Ereignishorizont projeziert, ähnlich, wie ein Projektor ein Dia an eine Leinwand.

Er hat ein Buch über diesen Disput mit Hawking geschrieben. Außerdem war Hawking auch jemand, der gerne mal wettete. Es lief wohl eine Wette darüber, wer diesen „War of Black Wholes“ gewinnen würde.

2004 kapitulierte Hawking, indem er einräumte, dass Information vielleicht doch nicht verloren geht im schwarzen Loch.

Er lies seine damalige Zuhörerschaft, wenn mich nicht alles täuscht, mit einem „aber“ zurück, weil er eine Theorie mit Wurmlöchern und weißen Löchern in anderen Universen postulierte. Durch die Wurmlöcher diffundiert die Information des schwarzen Lochs und kommt am anderen Ende, in einem anderen Universum aus einem weißen Loch wieder zum Vorschein. Ob es weitere Universen gibt, ist zwar wahrscheinlich, aber durchaus nicht sicher. Das und die weißen Löcher lässt sich vermutlich nie oder nur schwer beweisen.

 

Ich hoffe, dass meine Ausführungen jetzt nicht zu populärwissenschaftlich formuliert waren, dass sie falsch sind.

Die Sprache, in der man sich normalerweise über derlei unterhält, heißt Mathematik, und die kann ich nicht.

Ich denke, dieses Beispiel ist eine schöne Würdigung seines Lebenswerkes und hoffe, dass ihr das auch so seht.

 

Bis zum nächsten Mal grüßt euch

euer Gerhard.

 

Zum Weltfrauentag, 08.03.2018- Große Frauen in Astronomie und Wissenschafft


Seid herzlich gegrüßt,

Morgen ist der 08.03., Welt-Frauentag. Was liegt näher, so einen Tag zu begehen, als dass ich mir Gedanken über große Frauen in Astronomie und Wissenschaft mache.

Bis heute sind Frauen in naturwissenschaftlich-technischen Berufen leider noch immer unterrepräsentiert. Die Statistiken sprechen hier eine sehr deutliche Sprache. Trotz Frauenbewegung, Emanzipation, Erziehungsurlaub auch für Männer, gesetzliche Gleichberechtigung und dafür aufgeschlossene Männern, ist es noch nicht gelungen, diesen Missstand in den Griff zu bekommen.

Dennoch hat es immer wieder Frauen gegeben, die trotz Benachteiligung, Unterdrückung, Bildungsverbot und Leben in einer streng patriarchaisch dominierten Gesellschaft, großartiges in Wissenschaft, z. B. der Astronomie, geleistet haben. Sie setzten sich in einer harten Männerwelt durch und waren vielleicht sogar öfter, als man denkt, die schlaueren Köpfe. Zumindest zeugen einige Dokumente davon, dass viele starke kluge Frauen die Fäden ihrer Professoren-Männer in Händen hielten…

Bis in biblische Zeiten hinein, kann man diese Phänomene beobachten. Somit scheint der Satz „Der Mann kann noch so viele Dinge bauen – Es steht und fällt ein Volk mit seinen Frauen“ mehr Wahrheitsgehalt zu haben, als manchen lieb ist.

So lasst uns den Weltfrauentag 2018 damit begehen, indem wir die Person und das Lebenswerk von Caroline Lucretia Herschel würdigen. Die Daten zu diesem Artikel habe ich von Wikipedia und dem Buch Die Planeten von  Dava Sobel und Thorsten Schmidt, ISBN: 9783827002679.

 

Caroline Lucretia Herschel wurde am 16. März 1750 in Hannover geboren.
und verstarb am 9. Januar 1848 ebenda.
Sie war eine deutsche Astronomin.
Zu Beginn ihrer wissenschaftlichen Karriere unterstützte sie ihren Bruder Wilhelm Herschel bei seinen Forschungen, glänzte aber bald durch ihre eigenen astronomischen Erfolge. Ihre wichtigsten Beiträge zur Astronomie waren die Entdeckung mehrerer Kometen, die Berechnung genauer astronomischer Reduktionen und der Zonenkatalog hunderter Sternhaufen und Nebel.

Sie wuchs mit vier Brüdern und einer Schwester, die allerdings schon als Kind verstarb, im Hause des Militärmusikers Isaak Herschel und seiner Frau Anna Ilse Herschel in Hannover auf. Als Musiker wollte der Vater seinen Kindern eine musikalische Ausbildung ermöglichen. Bei den Herschels wurde nicht nur viel musiziert, sondern auch philosophiert und Astronomie getrieben. Neben Wilhelm war auch ihr Bruder Alexander als Musiker und Astronom tätig.

Caroline schrieb darüber:
„Mein Vater war ein großer Bewunderer der Astronomie und besaß einige Kenntnisse in der Wissenschaft. Ich erinnere mich, dass er mich in einer kalten Nacht auf die Straße führte, um mich mit einigen unserer schönsten Sternbilder bekannt zu machen, nachdem wir vorher einen Kometen, der eben sichtbar war, beobachtet hatten.“

Man stelle sich vor. Da geht ein Vater mit seiner Tochter einfach vor die Tür, um Sterne zu schauen. Undenkbar, bei unseren heute so lichtverschmutzten Städten.

 

Sie hatte, was für ein Mädchen durchaus nicht üblich war, die möglichkeit, gemeinsam mit ihren Brüdern die Garnisonsschule täglich für einige Stunden zu besuchen.

Viele Stunden des Tages verbrachte sie jedoch gegen ihren Willen mit Stricken, Sticken und allerlei Haushaltstätigkeiten. Die Mutter meinte, dass sie ein „roher Klotz sein und bleiben sollte, allerdings ein nützlicher“.
Sie wollte ein Leben führen, das auch geistige Anforderungen bereit hielt. Daher folgte sie dem Wunsch des Vaters, und ließ sich zur Konzertsängerin ausbilden.

1772 folgte sie als 22-Jährige ihrem zwölf Jahre älteren Bruder Friedrich Wilhelm Herschel nach England, der als Organist und Konzertleiter im vornehmen Bath tätig war. Er brauchte sie als Haushälterin, wollte ihr aber auch Gelegenheit geben, sich musikalisch weiterzubilden und als Solistin in seinen Konzerten mitzuwirken. Schon bald stieg sie zur ersten Sängerin bei den von ihrem Bruder aufgeführten Oratorien auf, erreichte dadurch einen gewissen Ruf und übernahm Leitungsfunktionen im Chor.

 

Caroline widmete sich nun neben dem Haushalt und ihren Auftritten auch der Astronomie. Zum Beispiel half sie Wilhelm beim Anfertigen von Spiegelteleskopen. Ihre Hauptaufgabe bestand darin, die Spiegel zu polieren und zu schleifen. Bei dieser Tätigkeit kam es auf absolute Genauigkeit an. Daneben befasste sie sich mit astronomischer Theorie. Sie erlernte die mathematischen Formeln für Berechnungen und Reduktionen als Grundlage für das Beobachten und Durchmustern des Himmels.

Im Jahr 1781 entdeckte Wilhelm den Planeten Uranus, was ihn über die Landesgrenzen hinaus bekannt machte. Neben zahlreichen Ehrungen bekam er eine Stelle in der Stadt Slough als Astronom von König Georg III. angeboten, die er dankbar annahm. Nun konnte er sich ganz seiner wahren Leidenschaft widmen.

Sie musste sich entscheiden, als Sängerin in Bath ihre erfolgreiche Karriere fortzusetzen oder ihrem Bruder als wissenschaftliche Assistentin zu folgen. Sie entschied sich für letzteres und bekam vom Hof eine Anstellung als Gehilfin ihres Bruders mit einem Gehalt von 50 Pfund im Jahr. Nun begann Caroline mit der eigenen Erforschung des Sternenhimmels. Sie widmete sich mit einem kleinen Spiegelteleskop der Kometensuche. Dabei entdeckte sie 1783 drei bemerkenswerte Nebel und zwischen 1786 und 1797 acht Kometen, darunter den Enckeschen Kometen.

Nächte lang verbrachten die beiden am Teleskop, wo sie die Sternpositionen notierte,
die er ihr vom anderen Ende des von ihnen selbst gebauten riesigen Fernrohrs zurief, wertete die nächtlichen Aufzeichnungen aus und rechnete sie nach, schrieb Abhandlungen für die Philosophical Transactions, entdeckte vierzehn Nebel, berechnete Hunderte von ihnen und begann einen Katalog für Sternhaufen und Nebelflecke, die heute Deep-Sky-Objekte genannt werden, anzufertigen. Des Weiteren verfasste sie einen Ergänzungskatalog zu Flamsteeds Sternenatlas, der 561 Sterne umfasste, sowie ein Gesamtregister dazu.
Für diese Arbeit wurde ihr allerhöchste Anerkennung zuteil, unter anderem von Carl Friedrich Gauß und Johann Franz Encke. Trotzdem blieb sie die bescheidene Frau, die sie immer gewesen war. Ihre Biographin Renate Feyl bemerkt dazu:
„Bis an das Ende ihres Lebens versucht sie jeglichen Hinweis auf eine eigene Leistung lediglich als das Verdienst ihres berühmten Bruders herauszustellen. Sie wagt zu wissen, will aber dieses Wagnis nicht öffentlich eingestehen. Immer wieder betont sie, wie nichtsnutzig, wie unfähig, wie untauglich sie sei. Dies ist ihre lebenslängliche Demutsgeste und Entschuldigung dafür, dass sie sich erkühnt, leise, aber nachhaltig auf ihre Weise zu nehmen, was einem menschlichen Wesen zusteht: das Recht auf Erkenntnis.“
1822 starb ihr geliebter Bruder Wilhelm. Nun hielt sie nichts mehr in England. Wenige Wochen nach seinem Tod zog sie wieder in ihre Heimatstadt Hannover, die sie fast fünfzig Jahre zuvor als junge Frau verlassen hatte. Hier setzte sie ihre astronomischen Studien fort und ordnete die Aufzeichnungen, welche sie beide anfertigten und die Hinterlassenschafft ihres Bruders.

 

So ermöglichte sie auch ihrem Neffen John Herschel, die Arbeit seines Vaters systematisch fortzusetzen und auf den südlichen Sternenhimmel auszudehnen.

Die bedeutendsten Gelehrten suchten sie in ihrem einfachen Haus in der Marktstraße auf, um sie ihrer Gunst und Wertschätzung zu versichern. Selbst zum königlichen Hof hatte sie Kontakt. Zahlreiche Auszeichnungen wurden ihr verliehen – 1828 unter anderem die Goldmedaille der Royal Astronomical Society, zu deren Ehrenmitglied sie 1835 ernannt wurde. Sie war die erste Frau, der Anerkennungen dieser Art zuteilwurden. Anlass dazu war ihr sogenannter Zonenkatalog, den sie zum Andenken an ihren Bruder erstellt hatte. Er enthielt die reduzierten Beobachtungen sämtlicher von Wilhelm Herschel entdeckten Nebel und Sternhaufen. 1838 ernannte die Königliche Irische Akademie der Wissenschaften in Dublin die 88-jährige Caroline Herschel zu ihrem Mitglied. 1846 erhielt sie im Alter von 96 Jahren im Auftrag des Königs von Preußen die goldene Medaille der Preußischen Akademie der Wissenschaften.
Noch an ihrem 97. Geburtstag wurde sie vom Kronprinzenpaar empfangen, unterhielt sich einige Stunden lebhaft mit ihnen und sang ihnen abschließend ein Lied vor, das ihr Bruder siebzig Jahre zuvor komponiert hatte. Caroline Herschel starb am 9. Januar 1848. Sie erreichte das hohe Alter von 97 Jahren und wurde auf dem Gartenfriedhof in Hannover beerdigt, wo sich ihr Grab auch jetzt noch befindet.

 

So viele Dinge wurden nach ihr benannt, dass der Name jedem Menschen irgendwann mal begegnet ist, bzw. wird.
Der Komet 35P/Herschel-Rigollet, der Mondkrater C. Herschel im Sinus Iridum (Regenbogenbucht) und der Planetoid (281) Lucretia, aus dem Sonnensystem.
In Braunschweig, Bremen, Darmstadt, Lübeck, München, Ottobrunn, Peine und Wennigsen sind Straßen, nach ihr benannt.

in Berlin-Friedrichshain der Caroline-Herschel-Platz, In Hannover die Volkssternwarte Hannover e.V. Geschwister Herschel, benannt.

Schulen, Schwimmbäder und andere Einrichtungen, tragen ihren Namen.

Sogar in die bildende Kunst des 20. Jahrhunderts fand sie Eingang. Die feministische Künstlerin Judy Chicago widmete ihr in ihrer Arbeit The Dinner Party eines der 39 Gedecke am Tisch.
Inhaltlich zurecht, trägt Ein Programm der Gottfried Wilhelm Leibniz Universität Hannover zur Förderung des weiblichen wissenschaftlichen Nachwuchses, ihren Namen.

Google veröffentlichte anlässlich ihres 266. Geburtstages am 16. März 2016 ein Google Doodle.
Sir John Franklin benannte eine Insel in der Nordwestpassage nach den Geschwistern Herschel.

Nicht zuletzt ist 2012 eine Mission zuende gegangen, deren eine Raumsonde Herschel und die andere nach Max Plank benannt wurde.

Nun hoffe ich, dass euch diese schöne Geschichte einer großartigen Frau und deren Lebenswerk, etwas gefallen hat.
Bleibt weiterhin astronomisch.

Bis zum nächsten mal,

Euer Gerhard.

Welcher Frühlingsbeginn ist der richtige?


Meine lieben Leserinnen und Leser,

Nach dem letzten schwer verdaulichen Artikel über das Vakuum und die Quantenphysik, möchte ich mich mit einem bodenständigen und greifbaren thema wieder bei euch gut stellen…

 

wer heute, am 01.03., eine Zeitung, fast egal, welche aufschlägt, trifft sicher irgendwo auf den Hinweis, dass heute meteorologischer Frühlingsanfang sei. Schon immer wollte ich mal wissen, was das überhaupt sein soll. Um es vorweg zu nehmen. Ich weiß es auch jetzt, nach meiner Recherche, nicht. Im Netz findet man, dass er am 01.03. eines jeden Jahres stattfindet. Außerdem findet man auch noch, wann er von welcher meteorologischen Gemeinschaft, eingeführt wurde. Der Grund und den Sinn dahinter kennt nicht mal das Internet. Wenn dem so ist, dann scheint mir der meteorologische Frühlingsanfang irgendwie unsinnig zu sein. Ich lasse mich gerne eines besseren belehren, sollte jemand mir plausibel erklären können, wellch ein Sinn dieser Definition inne wohnt. Bis dem so ist, existiert für mich nur der astronomische Frühling um den 20.03. oder 21.03. herum. Das ist die Tag-Nacht-Gleiche. Der Tag ist ebenso lang, wie die Nacht. Das hat mit der Neigung der Erdachse zu tun. Von da an sind dann die Tage bis zur Sommersonnenwende im Juni stets länger, als die Nächte. Das kehrt sich dann bis zum Gegenstück im Herbst, der anderen Tag-Nacht-Gleiche wieder um. Von da an sind dann bis zum nächsten Frühlingsanfang, dem Astronomischen natürlich, die Tage kürzer, als die Nächte. Dazwischen liegt die Wintersonnenwende mit dem kürzesten Tag. So definiert man zuverlässig Jahreszeiten… Es gibt auch noch eine dritte Art des Frühlingsanfangs. Der nennt sich phäntologischer Frühlingsbegin. Er definiert den Frühling an dem, wie weit sich bestimmte Pflanzen entwickelt haben. Wie genau, weiß ich nicht. Man könnte z. B. die Obstblühte nehmen. Dieser Frühlingsbeginn mag für Biologen interessant sein, ist aber für Kalender eher unpraktisch, weil er von der Witterung abhängt und sich daher nicht auf ein Datum legen lässt. Es mag sein, dass der meteorologische Frühlingsbeginn für die Statistiken für Wetterdaten nützlich ist. Wobei ich den astronomischen Frühlingsbeginn für ebenso nützlich halte. Der verschiebt sich nur manchmal um einen Tag wegen des Schalttages, aber den hat man ja dann auch durch den 29.02. in der Rechnung.

Wie auch immer.

 

Lasst uns einfach die Tatsache genießen, dass die Tage bereits wieder länger werden, und der für mich einzig wahre Frühlingsanfang nicht mehr fern ist.
Bis zum nächsten mal
euer Gerhard.