Ergänzungen zu Gravitation und Gravitationswellen


Es wird unseren Alltag nicht verändern. Wir können nicht sagen: „Nichts ist, wie es vorher war“. Ausnahmsweise ist es keine Katastrophe und niemand kam dadurch ums Leben.
Obwohl sich unsere Medien generell eher weniger für physikalisch-astronomische Entdeckungen interessieren, konnte man es von überall her hören, sehen, lesen, oder sonst wie erfahren.
Sie sind nun direkt nachgewiesen worden, die von Albert Einstein vorhergesagten Gravitationswellen.

Eine der vier fundamentalen Kräfte in unserem Universum ist die Gravitation oder Schwerkraft.
Für das Alltagsverständnis und für das, wie wir mit unseren Sinnen die Welt wahrnehmen, reicht die Vorstellung aus, dass diese misteriöse Kraft einfach zwischen allen Gegenständen wirkt. Alle materiellen Dinge ziehen sich an. Das war die Vorstellung von Gravitation von Johannes Kepler und Isaac Newton, der diese Vorstellung mathematisch fundamentierte.

Man ging davon aus, dass Wirkungen der Schwerkraft sich unmittelbar zeigen, will sagen, sie benötigen keine Zeit zu ihrer Ausbreitung.
Kannte man doch diese Erfahrung vom Licht her. Zündet man eine Lampe an, dann scheint  es sofort und unmittelbar im ganzen Raum hell auf einen Schlag zu werden.
Wir erleben Licht, als benötigte es keine Zeit zu seiner Ausbreitung.

Im Jahr 1676 stellte Ole Rømer, ein Astronom, fest, dass die Zeiten zu welchen der Mond IO seinen Planeten, Jupiter, verdeckt, je nach der Position der Erde zum Jupiter bis zu mehreren Minuten variiert.
Daraus schloss er, dass das Licht eine endliche Geschwindigkeit haben muss,
wenn die Verzögerungen vom Abstand zwischen Jupiter und der Erde abhängig sind.,

Der von Roemer ermittelte Wert für die Geschwindigkeit des Lichtes wich nur um 30 % vom tatsächlichen Wert ab. Die Messmethoden zur Bestimmung der Lichtgeschwindigkeit wurden in der Folgezeit immer genauer.

In einem Artikel über das Vakuum berichtete ich, wie Michelson und Morlay zu beweisen versuchten, dass das Vakuum von einem Äther erfüllt sei.
Wäre dem so, sollte sich das Licht je nach dem, wie man sich selbst relativ zu ihm bewegt, sich mit unterschiedlicher Geschwindigkeit ausbreiten, vergleichbar mit Wasserwellen, durch welche ein Schiff pflügt.
Sie fanden aber heraus, dass es keinen Äther geben kann, denn das Licht breitete sich in alle Richtungen mit konstanter Geschwindigkeit aus, mit 300.000 km/s.

So weit, so gut. Licht ist nicht unendlich schnell. Das heißt aber nicht, dass die Ausbreitung von Gravitation nicht unendlich schnell sein kann, oder?

 

Lange schon bemerkten die Astronomen bei der Bahn des Merkurs um die Sonne eine merkwürdige Verdrehung des Perihels, des sonnennächsten Punkt seiner Elypse.
Diese konnte man sich mit der normalen newtonschen Mechanik alleine nicht erklären.
Es musste irgendwie ein Effekt sein, der sich in der Nähe extremer Massen, wie die Sonne eine darstellt, bemerkbar macht.

Erklärbar wurde dieser erst durch Albert Einsteins Relativitätstheorie.
In ihr ziehen sich die materiellen Dinge nicht gegenseitig an, sondern sie verändern den sie umgebenden Raum derart, dass sich die Objekte aufeinander zu bewegen.
Wer schon mal mit jemandem eine Luftmatratze oder ein Wasserbett geteilt hat, wird bemerkt haben, dass die schwerere Person die leichtere quasi zu sich her zieht, indem sie eine Kuhle erzeugt, in welche die leichtere Person hinein rutscht.
Nicht nur der Raum wird um große Massen herum gekrümmt, sondern die Zeit vergeht auch langsamer.
Wenn sich der Raum um große Massen herum stark krümmt, sollte sich das auch auf die gradlinige Bewegungsrichtung von Licht auswirken. Es sollte abgelenkt werden, wenn es an großen Massen vorbei muss, weil es durch ein Gebiet leicht veränderter Raumgeometrie muss.
Genau dieses wurde 19.19 während einer Sonnenfinsternis bestätigt.
Als die Sonne durch den Mond verdeckt war, konnte man Licht dahinter liegender Sterne erkennen, das an der Sonne vorbei muss und normalerweise von ihr überstrahlt wird.
Dieses Licht war in seinem Spektrum leicht verschoben und zwar genau in der Weise, wie man es nach Einsteins Formeln erwartete.

Aus der Endlichkeit der Lichtgeschwindigkeit und dem Einfluss von Gravitation auf Licht, folgerte Einstein, dass die Ausbreitung gravitativer Ereignisse, auch endlich sein sollte.
Das spricht für eine Wellenbewegung.
Somit breitet sich so ein Ereignis mit Lichtgeschwindigkeit wellenartig aus.
Da der Einfluss von Gravitation auf Licht nicht sehr stark ist, sind auch Gravitationswellen schwach und nur schwer nachweisbar.
Ereignisse, bei welchen große Massen im spiel sind und bewegt werden, können nur astronomischer Natur sein, da es größere Masse nirgendwo gibt.
Stoßen beispielsweise zwei Sterne zusammen, verschmelzen zwei schwarze Löcher, explodiert ein schwerer Stern zu einer Supernova, dann werden enorme Massen bewegt und das Ereignis sollte eine Art Schockwelle aus Gravitation mit Lichtgeschwindigkeit durch das All jagen.

Solch eine Welle verändert auf ihrem Weg, dort, wo sie vorbei kommt, für kurze Zeit und sehr schwach die Raumkrümmung. Das bedeutet, dass sich ganz kurz die Geometrie verändert. Sehr lange Wegstrecken verkürzen sich kurzfristig ganz leicht, um sich nachher wieder auf ihre ursprüngliche Länge zurück zu dehnen.
Das macht auf mehrere Kilometer Länge aber weniger, als ein Atomdurchmesser des Wasserstoffs aus, aber es ist mehr als nichts.

Diese Tatsache machte sich das Messgerät zu nutze, mit welchem die Gravitationswellen im September 2015direkt gemessen wurden.

Es war ein Verbund von Messgeräten (LIGO-Cooperation).
Eines dieser Geräte besteht im wesentlichen aus zwei rechtwinklig verlaufenden Röhren, von denen jede vier Kilometer lang ist. Im rechten Winkel dieser beiden Röhren steht der Detektor.
Nun wird ein Laserstrahl ausgesendet und so aufgefächert, dass in jede Röhre ein Laserstrahl fällt.
Diese rasen nun in ihren luftleer gepumpten Röhren entlang, werden an hochpräzisionsspiegeln an den Enden reflektiert und zurück geworfen.
Am Detektor wird dieses Licht empfangen und beobachtet.
Streift nun eine Gravitationswelle eine unserer Röhren, dann verändert sich kurzfristig ihre Länge. Dieses wiederum führt dazu, dass das Licht sich auch etwas verändert. Diese Interferenz genannte Veränderung kann man messen.

Und das wurde auch gemessen.
Man registrierte, dass eine der beiden Röhren für kurze Zeit um weniger als den Durchmessers eines Wasserstoffatoms kürzer war als die andere. Die Wellen beider Strahlen trafen anders aufeinander.
Das finde ich unglaublich.

Die ESA wird in wenigen Jahrzehnten drei Satelliten ins All starten, die ihrerseits dann ein Dreieck aufspannen mit Kantenlängen von mehreren Mio Kilometern. Dieses große Instrument hat auf Erden keinen Platz. Vakuumröhren benötigt man hier nicht, denn das All ist ein Vakuum.

Ein Vakuum benötigt man dazu, denn ansonsten würde das Licht in alle Richtungen an den Luftteilchen gestreut. Für unser Alltagsleben ist das praktisch, denn nur so ist es tagsüber in alle Richtungen hell.

Indirekt entdeckt wurden Gravitationswellen aber schon deutlich früher. Es gab Mitte der 90er Jahre sogar einen Nobelpreis dafür.
Im Zusammenhang mit meinen Ausführungen über sterbende Sterne, Supernovae, erklärte ich Radiopulsare. Sie sind die präzisesten Taktgeber im Weltall. Man kann sich auf ihre Signale verlassen.
Sie spielten die Hauptrolle im indirekten Nachweis von Gravitationswellen.

Ein indirekter Nachweis von Gravitationswellen gelang Russell Hulse und Joseph Taylor von der Princeton University. Die beiden Physiker konnten durch mehrjährige Beobachtung des 1974 entdeckten Doppelpulsars PSR 1913+16 nachweisen, dass die Umlaufbahnen dieses Systems einander umkreisender Massen im Laufe der Zeit immer enger werden und das System somit Energie verliert.
Wohin verschwindet die Energie?
Sie wird als Gravitationswelle davon getragen.
Sieht man mal von den Gezeiten, Ebbe und Flut, hier auf der Erde ab, dann würde sich mit der Zeit die Umlaufzeiten des Mondes auch ändern, da ganz wenig Energie als Gravitationswelle fort getragen wird.
Die gravitative Bremswirkung des bewegten flüssigen Wassers, den Gezeiten, ist aber deutlich höher.

Ganz ähnliche Nachweise konnten bei einem System zweier sich umkreisender Schwarzer Löcher und einem Doppelzwerg-System in den letzten Jahren gewonnen werden.
Aber eben. das waren halt nur indirekte Nachweise. Man wollte aber den Effekt direkt erleben
und sich nicht von jemandem oder etwas anderem davon erzählen lassen.

Nun ist es endlich gelungen, durch obigen Versuchsaufbau Gravitationswellen direkt nachzuweisen.
Künftig wird man durch größere Detektoren direkt „zuhören“ können, wenn ein Stern explodiert, wenn schwere Massen ineinander stürzen oder wenn ein schwarzes Loch schmatzend einen Stern verspeist.

Es müssen noch Gravitationswellen durch das All vagabundieren, die direkt oder bald nach dem Urknall entstanden sein müssen.
Solten wir einst derartige empfangen, werden sie uns viel Aufschluss über die Entstehung unseres Universums liefern.

Hier ist der Link zur Veröffentlichung des Nachweises.
http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.116.061102
HTML-Version hier:
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102#fulltext
12.02.

 

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert