Gedenken an die erste Raumstation der Welt


Liebe Leserinnen und Leser,

alle Welt fiebert dem Start von Alexander Gerst entgegen. Das ist wirklich unglaublich, was der für ein Medienstar geworden ist. Gut ist vor allem, dass hier der Sinn einer Raumstation, wie der ISS mal der breiten Öffentlichkeit vermittelt wird.

Auch ich fiebere mit und hoffe inständig, dass alles beim Start klappt. So ein Start ist kein Spaziergang und bleibt immer ein Risiko.

Wie immer, werde ich hier nicht wiederholen, was andere über diese bevorstehende Mission schon geschrieben oder gesagt haben, bzw. noch werden. Ich schreibe dann über die ISS, wenn alle anderen darüber schweigen.

Unser Kontrastprogramm führt uns vierzig Jahre in die Vergangenheit. Zu dieser Zeit befand sich auch eine Raumstation im All. Es war die erste überhaupt. Um sie, soll es heute mal gehen.

Die Quellen, aus denen ich hierzu schöpfe, sind Wikipedia, mein eigenes Buch und das Buch „Die Sonne, der Stern von dem wir leben – den Geheimnissen der Sonne auf der Spur“ von Prof. Rudolf Kippenhahn.

Wie ich die Mission als Kind erlebte:

Im Gegensatz zur Mondlandung, war ich zu dieser Zeit schon auf der Welt, und habe vor allem den medienwirksamen Absturz der Skylab, so war ihr Name, erlebt.

Kurz bevor Skylab, die erste Raumstation der Welt, am 11. Juli 1979 nach sechs Jahren im Weltall wieder in die Erdatmosphäre eintrat und abstürzte, war es nachts möglich, sie bei guten Bedingungen zu sehen. Meine Mutter, von Beruf Hausfrau, bemühte sich sehr, eine solche Nacht nicht zu verpassen, und erzählte mir davon. Sie hatte ein natürliches, angeborenes Interesse an derlei Vorkommnissen. Sie arbeitete sich rasch in neue Technologien ein, war dafür begeisterungsfähig und hätte, wenn sie noch leben würde, sicherlich auch am Internet und Smartphone ihre Freude. (Siehe Blind zu den Sternen, Astronomische Erlebnisse, S. 24)
In der Zeit des bevorstehenden Absturzes der Raumstation bekam ich deutlich mit, dass dieses Ereignis immer wieder im Radio angesprochen wurde. Es schien wirklich wichtig zu sein. Auch im Pausenhof und Internat war das Thema stets präsent.

So intensiv erlebte ich dieses bevorstehende Ereignis, dass es dem nahe kam, wie intensiv ich die Entführung von Hans-Martin Schleyer erlebte. Ich weiß, das ist irgendwie ein komischer Vergleich, aber als Kind unterscheidet man da vielleicht nicht so.

Planung und Bau

Lasst uns nun auch dieser ersten Raumstation gedenken. Sie wurde alleine von den USA betrieben und bestand quasi aus dem Rest, was von den Apollo-Missionen zum Mond übrig geblieben war.

Die ersten Ideen zu einer Raumstation gehen bis 1965 zurück. Dort wurde sogar ein Saturn-Apollo-Office der NASA gegründet.

Man wollte damit weitere Anwendungsgebiete für die Apollo-Hardware, wie z. B. Raketen, Raumkapsel etc. finden, um das Knowhow der Ingeniere zu erhalten.

Heute nennt man so etwas Nachhaltigkeit.

Ja, die Apollo-Raketen waren schon eine extreme Materialschlacht. Somit kam man auf die Idee, eine dritte Brennstufe einer Saturn-V-Rakete quasi auszuhölen, um darin eine Raumstation einzurichten. Dort, wo sich normalerweise der Wasserstoff- und der Sauerstofftank befanden, arbeiteten, wohnten und schliefen nun die Astronauten.
In die Raketenwand wurden Fenster eingesetzt, so dass man auch nach draußen sehen konnte.
Die Skylab war für drei Astronauten ausgelegt, wobei auf der ISS sieben gleichzeitig leben können. Dies ist der Tatsache geschuldet, dass zur Rückkehr die Apollo-Kapseln verwendet wurden, die ebenfalls nur drei Astronauten aufnehmen konnten.
So entschloss man sich schließlich 1965 für den Plan, die Raumstation zu bauen und dann, wie eine normale Apollo-Mission zu starten. Allerdings trugen hier nur die beiden unteren Brennstufen zum Antrieb bei, weil ja in der dritten Brennstufe die Raumstation und kaum Treibstoff war.
Es wurden zwei Versionen der Skylab hergestellt. Eine blieb als Trainings-Simulator auf der Erde.

Aufbau der Station:

Ich schrieb schon, dass der Behälter für das Raumlabor aus einer ausgebeinten dritten Brennstufe einer Saturn-Rakete bestand.
Die Besatzung wohnte und arbeitete im Wasserstofftank mit einem nutzbaren Innenvolumen von 275 m³. Der Sauerstofftank wurde mit einer Schleuse ausgestattet und als Abfallgrube genutzt. Im hinteren Teil der Brennstufe befanden sich die Ausrüstung, alle Essensvorräte, die gesamten Wasservorräte und die Drucktanks für den Treibstoff zur Lageregelung. Neben den Wohn-, Schlaf- und Sanitätsräumen wurden dort auch Experimente durchgeführt, vor allem Erdbeobachtung durch ein Fenster und medizinische Untersuchungen. Es gab auch zwei kleine Schleusen für Experimente auf der der Sonne zu- und abgewandten Seite der Station; erstere wurde für die Reparatur des Thermalschutzes dauerhaft belegt. Das bewohnbare Volumen war mehrfach in Ess- und Ruhezonen sowie individuelle Schlafkabinen unterteilt, insbesondere mit gitterartigen Fußböden, in die sich die Astronauten mit speziellen Schuhen einhaken konnten. Durch den großen Durchmesser war ein Volumen von 280 m³ bewohnbar. Dieses Volumen wurde erst von der Mir in ihrer Endausbaustufe übertroffen.

Also die hatten dort richtig viel Platz. An den Arbeitsraum schloss sich der Instrumentenring der Brennstufe an. Den brauchte man, um den Start zu kontrollieren. Später übernahmen dann die Computer im Inneren der Station.
Nach diesem Teil folgte die 22 t schwere Luftschleuse, das Airlock Module (AM). Sie enthielt eine Luftschleuse zum Ausstieg, riegelte den Wohn- und Arbeitsraum vom Docking-Adapter ab, enthielt die Steuerung der Teleskope und alle Gase für die Station in Drucktanks. Ihre Breite ging von 6,7 auf 3,04 m zurück. Sie hatte eine Länge von 5,2 m und ein Innenvolumen von 17,4 m³.
Es folgte der zylinderförmige Multiple Docking Adapter (MDA). Er war 3,04 m breit, 5,2 m lang und hatte eine Masse von 6260 kg. Er hatte zwei Andockstellen für Apollo-Kommandokapseln: eine seitlich und eine in der Verlängerung der Längsachse. Die seitliche Andockstelle war für eine Notkapsel vorgesehen, die dann gestartet werden sollte, wenn eine Rückkehr mit der ersten Kapsel nicht möglich gewesen wäre,
Zur Sonnenbeobachtung, die ein wichtiges Ziel von Skylab war, verfügte die Raumstation zudem über ein Observatorium, das Apollo Telescope Mount (ATM), das nach dem Erreichen des Orbit in eine Position seitwärts ausgefahren wurde. Es wog 11.066 kg, war 6 m breit und 4,4 m hoch. Seine Sonnenteleskope konnten auf 2,5 Bogensekunden genau ausgerichtet werden. Die Filme für die Kameras, mussten im Rahmen eines Außenbordmanövers (EVA) gewechselt werden.
Die Energieversorgung war mit vier Solarmodulen und zwei weiteren am Hauptmodul geplant. Alleine die Solarpanele des ATM hatten eine Spannweite von 31 m. Das ATM benutzte Komponenten der Mondlandefähre und richtete mit seinen Drallrädern auch die gesamte Station aus.
Drallräder sind Schwungräder. Die sorgen dafür, dass die Raumstation gut ausgerichtet blieb. Viele Raumsonden verfügen bis heute über Drallräder. Wie diese genau funktionieren, sollte ich mal in einem gesonderten Artikel beschreiben. Viele werden noch den Versuch in der Schule kennen, wo man ein Rad eines Fahrrades beschleunigt, und es dann an den Achsen haltend versucht, zu kippen. Es geht nur schwer. Wer das moderne Spielzeug Fidgetspinner kennt, kann das auch ausprobieren. Es ist schwer, das Ding auszulenken, wenn es sich schnell dreht.

Zuletzt gab es noch das angekoppelte Apollo-Raumschiff als Command and Service Module (CSM). Das CSM übernahm die gesamte Kommunikation mit der Erde, da Skylab, abgesehen von seiner Bordtelemetrie, keinen eigenen Sender hatte. Weiterhin mussten die Lebenserhaltungssysteme des CSM einmal pro Monat die Gasreinigung übernehmen, wenn die Molekularsiebe von Skylab ausgeheizt wurden. Das CSM war daher integraler Bestandteil der Station. Das CSM war das, was bei den Apollo-Missionen dann letztlich mit den drei Astronauten wohlbehalten ins Wasser fiel.

Die Masse der Station betrug über 90 Tonnen. Insgesamt war Skylab wesentlich größer als die sowjetische Raumstation Saljut 1, die im April 1971 gestartet worden war. Bei günstigem Sonnenstand war das Skylab mit bloßem Auge als leuchtender Punkt auch am Taghimmel zu beobachten.

Ich muss ganz ehrlich sagen, dass ich mir ohne Modell nicht ganz vorstellen kann, wie hier alles zusammengesetzt ist. Einen Teil kenne ich von meiner Mondrakete, Siehe „Einmal mit Lego auf den Mond und zurück“ in diesem Blog.
Vielleicht wird manches klarer, wenn mein Apollo-Artikel mal fertig ist.

Startund Probleme

Der Start von Skylab erfolgte planmäßig am 14. Mai 1973 vom Startkomplex 39-A in Cape Canaveral.
Die Saturn V SA-513, die für Skylab 1 verwendet wurde, war etwas kürzer als die Modelle, die für die Mondflüge verwendet worden waren. Sie hatte keine Rettungsrakete, kein Apollo-Raumschiff und keinen Adapter für die Mondlandefähre. Außerdem nutzte diese Rakete nur zwei Stufen. An Stelle der dritten Stufe transportierte sie die Raumstation mit einer kegelförmigen Verkleidung an der Spitze.
Auch hier sei nochmal auf den Lego-Artikel verwiesen, dann kann man sich das ganze vielleicht etwas besser vorstellen.

Es gab bei Skylab einige Probleme, so dass ihr Start durchaus unglücklich verlief.
Bereits 63 Sekunden nach dem Start empfing die Bodenstation alarmierende Telemetriesignale. Beim Durchbrechen der Schallgrenze riss innerhalb von nur drei Sekunden der gesamte Mikrometeoritenschutzschild ab, wodurch auch zwei Solarmodulträger beschädigt wurden. Spätere Untersuchungen zeigten, dass der Fehler durch mangelnde Koordination der Konstruktionsabteilungen entstanden war. Die Raumstation erreichte zwar die geplante Umlaufbahn, war aber nicht funktionsfähig. Zwar gelang es der Flugleitung, die vier Solarmodule des Solarobservatoriums auszufahren, doch schien es Probleme mit den beiden anderen Modulen zu geben, so dass insgesamt nur etwa die halbe elektrische Leistung zur Verfügung stand. Der fehlende Meteoritenschutzschild hätte auch als Wärmeschutz dienen sollen, weshalb in der Station die Temperatur stark anstieg, so dass befürchtet werden musste, dass Lebensmittel, Medikamente und Filme verdorben sein würden.
Da man die Station zunächst ohne Mannschaft startete, musste man jetzt die ersten beiden Flüge zur Station so umgestalten, dass die Reparaturen durchgeführt werden konnten.
So führte die hohe Temperatur im inneren der Station
dazu, dass Instrumente, die aus dem Lager geholt wurden, nicht mehr in die dafür vorgesehenen Halterungen passten. Sie mussten erst abkühlen. So mussten spezielle Reparaturpläne, Werkzeuge und vieles mehr entwickelt werden. Die Astronauten mussten lernen, damit umzugehen, was sie im Wassertank simulierten.
Es gelang den Mannschaften während der Missionen Skylab 2 und Skylab 3, die Schäden zu reparieren. Die Station war anschließend voll funktionsfähig.

Ziele der Mission:

Die ersten beiden bemannten Flüge zur Station wurden zur Reparatur der Raumstation benutzt. Danach, als die Station voll einsatzfähig war, kann man die wissenschaftlichen Ziele so zusammenfassen.

Sonnenbeobachtung über das Apollo Telescope Mount (ATM) und Erdbeobachtung sowie Erkenntnisgewinn in den Bereichen Raumphysik, Werkstoffforschung und Biomedizin.
Diese Themen treiben die Forscher auch heute noch um und werden mittels Experimente auf der ISS erkundet.

Nutzung der Station

Drei Besatzungen aus jeweils drei Astronauten verbrachten insgesamt 513 Manntage im All. Da der Start von Skylab als Mission 1 gezählt wurde, beginnen die bemannten Missionen mit der Nummer 2.
Hier ein kurzer Überblick über die Besatzungen und die Dauer der verschiedenen Missionen:
• Skylab 2:
• 25. Mai 1973 – 22. Juni 1973
• Besatzung: Charles Conrad, Paul J. Weitz, Dr. Joseph P. Kerwin
• Skylab 3:
• 28. Juli 1973 – 25. September 1973
• Besatzung: Alan L. Bean, Dr. Owen K. Garriott, Jack R. Lousma
• Skylab 4:
• 16. November 1973 – 8. Februar 1974
• Besatzung: Gerald P. Carr, Dr. Edward G. Gibson, William R. Pogue

Aufgabe und kontrollierter Absturz

Nachdem die Station, wie man oben leicht sehen kann, mehrere Jahre quasi unbeachtet und aufgegeben um die Erde kreiste, weil man wegen der veralteten Technologie keine Verwendung mehr für sie hatte,
Wurde der Kontakt im März 1978 zu Skylab wieder aufgenommen. Offenbar rotierte die Station weitgehend unkontrolliert mit einer Periode von sechs Minuten pro Umdrehung, und die Funkgeräte arbeiteten nur, wenn die Solarmodule im Sonnenlicht waren. Nach einer Woche gelang es, mehrere Batterien ferngesteuert zu laden. Der Zentralcomputer arbeitete noch zufriedenstellend, die Lageregelung war aber durch den Ausfall eines Sternensensors und den Teilausfall eines der drei Drallräder erheblich beeinträchtigt.
Ein Sternsensor ist in der Lage Sternkonstellationen zu erkennen, was die Ausrichtung unterstützt.

Es stellte sich heraus, dass Skylab schneller als berechnet sank. Grund dafür war die durch hohe Sonnenaktivität unerwartet ausgedehnte Hochatmosphäre der Erde und die dadurch erhöhte Abbremsung.
Die Aktivität der Sonne variiert gemeinsam mit dem Auftreten von Sonnenflecken in einem elfjährigen Zyklus. Auch dieses wird mal demnächst behandelt. Es ist längst schon auf meiner Liste, eine Serie über die Sonne zu starten.

Am 19. Dezember 1978 gab die NASA bekannt, dass man Skylab nicht retten könne, man aber alles unternähme, um das Risiko von Absturzschäden zu minimieren. Hierzu arbeitete die NASA eng mit der Überwachungsbehörde North American Aerospace Defense Command (NORAD) zusammen. NASA und NORAD verwendeten unterschiedliche Berechnungsmethoden für den Wiedereintritt und kamen deshalb auf unterschiedliche Ergebnisse für Zeit und Ort des Niedergangs.
Die NASA plante, durch die Ausrichtung der Raumstation die atmosphärische Reibung steuern zu können, um den Absturz zu verzögern oder zu beschleunigen. Durch Fernsteuerung sollte Skylab dann zu einem bestimmten Zeitpunkt in Rotation mit bekannter Aerodynamik versetzt werden. Damit konnte in engen Grenzen die Gefahrenzone verlagert werden.
Der Absturz erfolgte dann am 11. Juli 1979. Der letzte Orbit von Skylab führte größtenteils über Wasserflächen, und die NASA gab das letzte Steuerungskommando, um die Gefahrenzone von Nordamerika weg auf den Atlantik und den Indischen Ozean zu verlagern. Tatsächlich zerbrach die Station erst später als berechnet in mehrere Teile, so dass das Absturzgebiet weiter östlich als geplant lag. Betroffen war die Gegend südöstlich von Perth in West-Australien bei Balladonia, wo Trümmer in den dunklen Morgenstunden niedergingen, ohne jemanden zu verletzen.
Und hier noch eine nette Anekdote dazu:
Die Behörden der australischen Gemeinde Esperance Shire schickten der NASA wegen unerlaubter Abfallentsorgung einen Bußgeldbescheid über 400 Dollar. Die NASA lehnte eine Bezahlung ab; erst 2009 wurde der ausstehende Betrag von einer US-Radiostation beglichen.

Die gesamte Mission kostete etwa 2,6 Milliarden US-Dollar.
Das geht eigentlich, wenn man bedenkt, was mittlerweile das James-Webb-Weltraumteleskop
kosten soll.

Man darf an dieser Stelle gespannt sein, wie man die ISS eines Tages abstürzen lassen möchte. Sie ist deutlich größer und schwerer, als die Skylab. Die bestand im wesentlichen ja nur aus einer Raketenstufe. Die ISS besteht aus vielen dosenförmigen Modulen, die über eine Metallkonstruktion miteinander verbunden sind.
Ich glaube, dass hierzu noch verschiedene Pläne im Rennen sind, wie das ablaufen könnte.

So, das war mal eine Rückbesinnung auf die erste Raumstation der Welt.
Vor uns liegt aber nun der Start von Alexander Gerst und seiner Crew. Ich wünsche Ihnen einen Bilderbuchstart und dass alles glatt gehen möge. Wir dürfen auch gespannt sein, wie Astro-Alex mit seiner fliegenden „Alexa“, dem Roboter Cimon, zurecht kommen wird. Der soll ein richtiges KI-Wunder sein.

Ich beneide all jene, die life beim Start anwesend sein können. Ich freue mich jetzt schon auf die entsprechenden Podcast-Folgen…
Jetzt drücke ich die Daumen und hoffe, dass der Beitrag etwas Freude macht.
Bis zum nächsten Mal grüßt euch
Euer Gerhard.

Ein Gedanke zu „Gedenken an die erste Raumstation der Welt“

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert