Wie das Virus zu seinem astronomischen Namen kam


Liebe Leserinnen und Leser,

wir alle sind in den Maßnahmen wegen der Pandemie gefangen und müssen damit klar kommen.
Dies wird kein Artikel werden, der über weitere Möglichkeiten, sich zu schützen etc. berichten wird. Dafür gibt es andere Profis.
Ich möchte aber es trotz aller Widrigkeiten nicht unterlassen, weiterhin hier auf Blindnerd.de zu veröffentlichen. Gerade jetzt, kann die Astronomie eine Möglichkeit sein, mal etwas aus der Bedrücktheit der Situation zu fliehen.
Es wird nur einen Artikel von mir geben, in welchem das Wort Coronavirus vorkommen wird.

Heute geht es darum, wie das Ding zu seinem astronomischen Namen kam.

Wie ich mir das Virus vorstellte

Es ist ja offensichtlich, dass in Corona irgendwie die Krone steckt. Und so stellte ich mir das Virus auch vor, wie ein kleines Krönchen.
Kurz vor der Verbannung in das Homeoffice wegen Corona, druckte mir mein Arbeitskollege im Labor ein 3D-Modell des Virus aus. Ich war beeindruckt, wie schön es sich anfühlte, obwohl es solchen Schaden bringt.
Leider habe ich davon momentan kein Foto, weil uns dann die Maßnahmen zur Eindämmung der Pandemie überraschten, und keine Zeit mehr blieb, eines zu schießen. Das wird nachgereicht, wenn alles überstanden ist. Dann muss das Teil sich auch nicht mehr in der Öffentlichkeit schämen, sich zu zeigen.

Und so fühlt es sich an:

Viele von euch kennen diese Igel-Bälle zur Hand-Massage etc. So ähnlich fühlt sich das Modell an. Nur, dass die Stacheln zu ihrem Ende hin dicker und nicht dünner werden.
OK, Igelball also, aber wo bleibt die Krone? Ich konnte keine ertasten, und da war auch keine.
Also fragte ich auf Twitter nach, wieso man das Virus Corona nennt. Schaut man von oben mit dem Elektronenmikroskop auf das Virus, dann ähnelt es am Rand etwas, das man durchaus mit einer Krone vergleichen kann, und das heute Gegenstand dieses Artikels sein wird.
Tja, was soll ich sagen. Auch ein Ding, mit derart schlimmen Eigenschaften, kann uns zur Astronomie führen.

Nun zu dem, was dem Virus seinen Namen gab:

Wenn die Sonne sich am Tage verfinstert, weil sich unser Mond vor die Sonnenscheibe schiebt, bekommen wir etwas von der Sonne zu sehen, was den Augen normalerweise verborgen bleibt, weil dieses etwas von der Sonne immer völlig überstrahlt wird.
Nur Astronomen mit speziellen Filtern, Spektrographen und Teleskopen bleibt dieses wunderschöne Geheimnis auch am Tage nicht verborgen.
Wenn sich also bei einer totalen Sonnenfinsternis der Mond zur totalen Verfinsterung vor die Sonne geschoben hat, erscheint plötzlich um die verdeckte Sonne herum ein schöner fahler Strahlenkranz, durchsetzt von roten Flammenzungen.
Dieser Strahlenkranz erinnert an eine Krone. Deshalb nennt man sie die Korona.
In Deutsch schreibt man sie mit K, aber ursprünglich schon mit C.
Die Korona besteht aus sehr heißem Sonnenpplasma. Die Oberfläche der Sonne hat eine Temperatur von etwa 6000 Grad. Die Korona hingegen ist deutlich heißer. Ihre ionisierten Teilchen sind um zwei Millionen Grad heiß. Allerdings ist die Korona sehr dünn, will sagen, sie hat eine deutlich geringere Dichte, als die Sonne und ihre sonstige Atmosphäre.
Nach außen hin geht die Korona in den Sonnenwind über. Außerdem ist die Korona von starken Magnetfeldern durchzogen. Die roten Flammenzungen bestehen aus empor gerissenen kühlerem Sonnenplasma. Diese Prodtuberanzen und Filamente stehen quasi wie Blätter senkrecht auf der Oberfläche der Sonne und können bei Tage ohne Hilfsmittel nicht beobachtet werden.
Diese Plasma-Blätter hängen quasi in ihren Magnetfeldlinien, wie Wäsche auf der Leine. Sie entstehen und vergehen. Auch die Korona verändert sich stetig. In Zeiten hoher Sonnenaktivität mit vielen Sonnenflecken, dehnt sie sich mit unter über mehrere Sonnenradien aus.

Die Energie der Korona

Woher die Korona die Energie erhält, dass ihre Teilchen derart heiß sein können, ist bis heute noch nicht restlos erforscht. Ein Grund ist, wie schon erwähnt, dass sich hier die Energie auf wenige Teilchen pro Volumeneinheit verteilt. Da bekommt dann eben jedes einzelne Teilchen etwas mehr davon ab. Beobachtet man die Sonne durch gewisse Filter, so sieht man Materieströme nach oben in Richtung der Korona schießen. Das sieht aus, als wäre die Sonne mit Hecken oder Gras überzogen. Auch diese Halme schießen nach oben und vergehen und entstehen neu. Der italienische Astronom, der sie entdeckte, nannte sie daher Spiculen.
Aber auch dieser Energietransport dürfte nicht ausreichen, um die Korona mit Materie und Energie immer wieder neu aufzufüllen. Stoßwellen, also quasi Schall, der Klang der Sonne, könnte auch einen Teil dazu beitragen. Es gibt da noch weitere Vermutungen, die ich aber selbst nicht richtig verstehe, und bevor ich hier etwas falsches sage…

Woraus besteht sie?

Natürlich interessierte die Astronomen brennend, woraus die Korona besteht. In anderen Artikeln beschrieb ich schon kurz, dass eines der wichtigsten Werkzeuge der Astronomen die Spektralanalyse darstellt. Fächert man das Licht einer Flamme mittels eines Prissmas auf, kann man an den farbigen Linien genau erkennen, was da gerade leuchtet oder verbrennt. Jedes chemische Element erzeugt sein charakteristisches eigenes Licht. Wie ein eindeutiger Fingerabdruck erscheinen je nach Element andere farbige Linien des Regenbogens und andere Linien bleiben dunkel.
Als man nun das Spektrum der Korona betrachtete, fiel eine grüne Linie auf, die keinem Element auf der Erde zuzuordnen war. Die naheliegendste Annahme war, dass es sich eben um ein Element handele, das es definitiv vielleicht nur auf der Sonne geben könnte. Schließlich war zu dieser Zeit sowieso noch nicht klar, wie das Sonnenfeuer wirklich funktioniert. Somit gab man dem Element den Namen Coronium.

Mittlerweile, zwei Jahrhunderte später wissen wir, dass es leider dieses Element Coronium nicht gibt.
Ich sprach oben schon öffters von Plasma. Das ist neben fest, flüssig und gasförmig ein vierter Zustand, in welchem Materie geraten kann, wenn man sie stark erhitzt. Dabei gehen die Atome kaputt. Sie verlieren einige Elektronen und sind somit ionisiert. Die Elektronen bewegen sich frei durch das Plasma und finden nicht mehr zurück zu ihren Atomkernen.

Dieser vierte Aggregatzustand, das Plasma, ist auf jeden Fall mal ein eigener Artikel wert, weil sich 99 % der sichtbaren oder auch barionisch genannten Materie im Universum in diesem Zustand befindet.

Nun fand man also heraus, dass das Coronium durchaus auf Erden zu finden ist, allerdings nicht als Plasma, sondern meistens fest.
Es handelt sich um Eisenatome, die so stark aufgeheizt sind, dass deren Atomkerne dreizehn Elektronen fehlen. Normalerweise sollte es 26 Elektronen besitzen. Davon fehlen ihm nun die Hälfte. Ganz schön kaputt, möchte ich sagen. Nur so kaputt oder entartet, kann Eisen diese grüne Linie erzeugen, von der man glaubte, dass sie nicht zu einem irdischen Element gehört.

Und noch ein Sonnenstoff

Das ist übrigens nicht das erste mal, dass man einen speziellen Sonnenstoff vermutete. Sicherlich ließ ich im ein oder anderen Artikel schon fallen, dass die Sonne ihre wesentliche Energie so erzeugt, indem sie aus vier Wasserstoff-Atomen in ihrem Kern ein Atom des Edelgases Helium verschmilzt. Aber auch dem Kraftwerk der Sonne müssen wir uns durchaus nochmal extra zuwenden. Die Lateiner*in oder Altgriechler*in erkennt, dass im Wort Helium die Sonne, der Sonnengott, Helios, steckt. Auch dieses Element konnte man zunächst auf Erden nicht finden. Es ist sehr selten und entfleucht ob seines geringen Gewichtes direkt durch unsere Atmosphäre ins All. Außerdem reagiert es als Edelgas chemisch quasi mit nichts, was zur damaligen Zeit den Nachweis deutlich erschwerte. Das Helium, was wir hier auf Erden finden, und womit wir unsere Ballone mit den Glückwunschkarten füllen, oder, womit wir sprechen können, wie die Micky Maus, wenn wir es einatmen, stammt nicht von der Sonne. Es entsteht in der Erde durch den radioaktiven Zerfall von anderen Elementen.

Es ist schon erstaunlich. Das Helium ist neben dem Wasserstoff das zweithäufigste Element im Universum, denn es entsteht in allen Sternen, und dennoch ist es hier auf erden so selten, dass es relativ teuer ist. Es könnte sogar ernstlich knapp werden, denn wir kühlen immer mehr komplexe Dinge mit Helium.

So, nun wisst ihr, wie das Virus zu seinem schönen Namen kam.

Jetzt wünsche ich uns allen, dass wir gut durch die Krise kommen. Ich denke, dass es momentan sehr vernünftig ist, dass wir diese ganzen Einschränkungen akzeptieren und einhalten

Passt gut auf euch auf.
Euer Blindnerd.

Der Sonne entgegen – Der Aufbruch


Liebe Leserinnen und Leser,
wie die meisten von euch wissen, wurde am 10.02.2020 die Sonde Solar Orbiter gestartet. Sie wird in wenigen Jahren mit zehn verschiedenen Instrumenten die Sonne erforschen.
Die Riffreporter und @Astrozwerge berichteten ganz wunderbar darüber.
Somit kann ich mir den Solar Orbiter für den Moment sparen und mich anderen Sonnenthemen widmen.
„Der Sonne entgegen“ soll eine kleine Serie werden, mit welcher ich euch das Warten, bis der Solar Orbiter an seinem Ziel ist, etwas versüßen möchte.

Der Anfang

Aus physikalischen und theoretischen Überlegungen heraus war schon klar, dass die Sonne auch Strahlung in Wellenlängen senden sollte, die wegen der Atmosphäre den Erdboden nicht erreichen können. Das ist auch gut so, denn ihre Röntgenstrahlung wäre äußerst Gefährlich für jegliches Leben.
Die Ozonschicht die vor allem durch ihr wachsendes Loch in den 80ern des letzten Jahrhunderts von sich reden machte, schützt uns vor Krebs erregender UV-Strahlung.
Diese Entschlossenheit, mit der man es schaffte, in verhältnismäßig kurzer Zeit die FCKWs, die für dieses Ozonloch verantwortlich zeigten, aus unseren Kühlschränken und Sprüh-Dosen zu verbannen, könnten wir z. B. für die Bremsung des Klimawandels heutzutage mal wieder gebrauchen; aber zurück zum Thema.

Den Tag, als man sich anschickte, zur Sonne aufzubrechen, wissen wir genau. Am 10. Oktober 1946 trug in den USA eine V-2-Rakete aus dem erbeuteten deutschen Kriegsarsenal in der Wüste White Sands in New Mexico Messinstrumente in eine Höhe von 90 Kilometern. Während der kurzen Zeit, welche die Rakete über der Atmosphäre blieb, wurde der extrem kurzwellige Ultraviolettbereich des Sonnenspektrums aufgenommen.
Diese Strahlung wird von den obersten Luftschichten verschluckt.
In neunzig Kilometern über dem Meeresspiegel ist zwar
unsere Atmosphäre noch nicht zu Ende, doch liegt nur ein Millionstel
der Luftmassen der Erde darüber. Es gelang damals tatsächlich, die
Strahlung zu messen, die die Erdoberfläche nie erreicht.
Später verwendete man für derlei Messungen dann andere modernere Raketen.

Trotzdem stand bei jedem Schuss nur die
kurze Zeit zur Verfügung, die die Rakete in der Nähe des Gipfels ihrer
Bahn fliegen konnte.

Man brauchte mehr Zeit, um nicht nur in Form von Schnappschüssen, beobachten zu können.

Das Observatorium in der Ballon-Gondel

Der Sonnenforscher mag seine Fernrohre auf Inseln, auf hohe Berge
setzen, er mag von weiß gestrichenen Türmen beobachten, die aus den
Schichten der Bodenturbulenz herausragen, ganz wird er den Ärger
mit der Erdatmosphäre nie los. Das merkte auch Martin Schwarzschild (31. Mai 1912 in Potsdam; † 10. April 1997 in Langhorne, Pennsylvania) Professor an der Universität von Princeton an der Ostküste der USA,
der 1953 begonnen hatte, auf dem Mount Wilson in Kalifornien die
Granulation der Sonne zu studieren, jene sich ständig ändernde Feinstruktur, die von der Bewegung der äußeren Schichten der Sonne herrührt.
Teure Raketen wollte man für die Erforschung der Granulen nicht opfern, da man diese auch im sichtbaren Teil der Sonnenstrahlung beobachten kann. Schon dem Mönch und Astronomen Christoph Scheiner viel vor etwa 500 Jahren die scheinbar gekörnte Oberfläche der Sonne auf.
Bis dato konnte man nur schlecht Beobachtungen in der Zeit machen. Meistens wurde ein Foto von der gerade herrschenden Situation auf der Sonnenoberfläche geschossen und danach wieder eines…

So entstand in Princeton der Plan, der Sonne entgegen zu gehen, Messinstrumente im Ballon in die obersten Schichten der Atmosphäre zu bringen, und von dort aus die Granulation der Sonne zu
untersuchen.

Die beste Fotografie der Granulation war selbst im Jahre 1957
noch eine aus dem letzten Jahrhundert.
Am 1. April 1894 hatte ein französischer Pionier der Sonnenbeobachtung, Jules Janssen
mit einem Spiegelteleskop von nur
13 cm Durchmesser ein Bild der Sonne gewonnen, das bis Mitte des vorigen Jahrhunderts an Schärfe von keiner anderen Aufnahme übertroffen
worden ist. janssen hatte damals noch eine nasse Kollodiumplatte
benutzt. Seine Belichtungszeit lag bei 1/3000 Sekunde. Erst später, als
man von möglichst hohen Bergen aus die Sonne fotografierte und
unter Tausenden von Aufnahmen suchte, um eine zu finden, bei der
zufällig die Luft während der Belichtungszeit nahezu in Ruhe war,
konnte man sich mit den janssenschen Aufnahmen messen. Somit wollte Martin
Schwarzschild die Luftunruhe überlisten und vom Ballon aus
fotografieren.

Der Vorteil eines Ballons ist auch, dass man stundenlang beobachten kann. Die Überlegungen zum Projekt STRATOSCOPE, wie man es nannte, stammten
von den beiden Princetoner Astronomen Martin Schwarzschild und
Lyman Spitzer. Schwarzschild übernahm das Ballonprojekt, Spitzer begann damals bereits mit anderen Plänen, die schließlich 15 Jahre
später im Forschungssatelliten KOPERNIKUS gipfeln sollten, einem
der ersten astronomischen Observatorien in einer Umlaufbahn. Ein aktuelles Weltraumteleskop ist nach zweiterem benannt.
Mitte der fünfziger Jahre flossen überall in der Welt die Mittel für
astronomische Programme nur spärlich, selbst in den USA. Trotzdem
gelang es Schwarzschild im September 1957 im US-Bundesstaat Minnesota, den ersten Ballon aufsteigen zu lassen. Er erreichte eine Höhe von
25 Kilometern. Die Gondel trug Geräte zur Fotografie der Sonnenoberfläche. Da die STRATOSCOPE-Flüge unbemannt waren, musste der
gesamte Ablauf der Beobachtung, wie das Ausrichten des Teleskops
nach der Sonne und die Belichtungszeit, im voraus programmiert werden.
Einmal gestartet, waren die Instrumente sich selbst überlassen.

Das ist in der Raumfahrt an sich bis heute Normalität. Sonden sind zu weit entfernt, als dass man sie in Echtzeit steuern könnte.
Schwarzschilds Team konnte nur noch vom Boden aus den Ballon mit
dem Feldstecher verfolgen,
ihm mit dem jeep nachfahren und hoffen,
dass die Instrumente, wo immer der Wind den Ballon auch blasen würde, die Landung
unbeschadet überstünden. Als im Oktober 1957 der sowjetische SPUTNIK pipsend um den
Erdball flog und die USA sich danach langsam von dem „Sputnik-Schock“ erholten, flossen die Mittel für das Projekt STRATOSCOPE wieder reichlicher.
Mehr Gelder waren für das Projekt nötig, denn ein einfacher Ballonflug in der
notwendigen Höhe kostete damals an die 20000 US-Dollar, bei einem
aufwendigeren Flug musste man mit einer Million Dollar rechnen.
Wesentlich teurer jedoch als der Ballonflug war die Reparatur der
Geräte nach jeder Landung, die man nicht kontrollieren konnte.

Schwarzschild rüstete seinen Ballon mit einer Fernsehkamera aus,
deren Bilder zum Erdboden übertragen wurden. So konnte er am Fernsehschirm durch das Teleskop im Ballon zur Sonne blikken und die ferngesteuerten Apparate an Bord bedienen.

Ergebnisse der Stratoscope-Mission

Zum Team waren inzwischen mehrere Wissenschaftler gestoßen. Man beschränkte sich nicht nur auf das Studium der Granulation.
Robert Danielson (1931-1976) beobachtete Sonnenflecken, vor allem
die Penumbra,
john B. Rogerson untersuchte Erscheinungen am Sonnenrand.
Diese Sonden lieferten die bis dahin besten Bilder der Sonnengranulation. Zeigte janssens Fotografie Granulationselemente mit Durchmessern von 800 bis 1600 Kilometern, so bewiesen die STRATOSCOPE-Aufnahmen, dass es auch viel kleinere gibt. Man konnte sogar solche
mit Durchmessern von nur 160 Kilometern erkennen.
Man sah auch, dass die auf- und absteigenden Gasballen eine eckige Umrandung hatten. Das ist bei Blasen kochender Flüssigkeiten zumindest im Laborversuch auf erden auch so. Meist sind sie sechseckig.

Fazit

Die Beobachtungen vom Ballon aus waren eine ideale Vorübung für
die Arbeiten mit Raumsonden. Allerdings lernte man zur Zeit von
STRATOSCOPE 1 und 2gerade erst langsam, den Weltraum von Raketen aus zu untersuchen. Dabei erhielt man u. A. die ersten Bilder der Sonne im Röntgenlicht.
Die Röntgen-Sonne ist aber ein weiteres so spannendes Thema, dass ich mir diese für einen weiteren Beitrag aufhebe.

Pluto wird neunzig


Liebe Leserinnen und Leser,
Ein guter Freund machte mich darauf aufmerksam, dass Pluto am 18.02.1930 entdeckt worden war. Dabei stellte er mir die Frage, wieso er heute kein Planet mehr sein darf.
Zum Glück schrieb ich zu anderer Gelegenheit mal darüber, so dass ich Recyceln konnte.
Hier nun, wieso Pluto kein Planet mehr ist:

Die Entdeckung vor 90 Jahren

Pluto ist mit bloßem Auge nicht sichtbar. Man braucht ein gutes Teleskop, um ihn zu sehen. Entdeckt wurde er vor 90 Jahren aber ganz anders.
Der Deutschlandfunk widmete in seiner heutigen Sternzeit-folge sich der Entdeckung des Pluto.

Was wir noch in der Schule lernten

Ins Gerede ist die IAU im August 2006 gekommen, als sie auf ihrem Kongress in Prag den Entschluss fasste, dass Pluto künftig kein Planet mehr sein darf, sondern nur noch ein Zwergplanet ist.
Ach, wie mühsam haben wir noch in der Schule die Namen der neun Planeten uns eingepaukt. Eine große Hilfe hierbei war der Satz:
“Mein Vater erklärt mir jeden Sonntag unsere neun Planeten”.
Die Anfangsbuchstaben der Planetnamen entsprechen denen, der Wörter dieses Satzes:
“Merkur, Venus, Erde, Mars, Jupiter, Saturn, Uranus, Neptun und Pluto”.
Und Pluto darf jetzt nicht mehr mitmachen? Dann wissen wir ja gar nicht mehr, was für neun Objekte unser Vater all sonntäglich erklärt.
Naja, jetzt musste man den Satz auf die verbleibenden acht Planeten reduzieren.
Er heißt nun:
“Mein Vater erklärt mir jeden Sonntag unseren Nachthimmel.”
Auch schön, denn dort gibt es noch deutlich mehr erklärenswertes, als nur unsere acht Planeten, von denen höchstens sechse, einschließlich der Erde  mit bloßem Auge zu sehen sind.

Wie es früher war

Eine berechtigte Frage in diesem Zusammenhang ist die, wie so denn plötzlich Zweifel hochkochen, was denn nun ein Planet sein soll, und was nicht.
Das hat sich doch schon seit den alten Griechen und noch davor nicht mehr geändert. Es kam halt lediglich immer mal wieder ein neuer Planet hinzu. Merkur, Venus, Mars, Jupiter und Saturn sind mit bloßem Auge sichtbar. Zu alter Zeit sowieso, als es noch keine Lichtverschmutzung gab. Für die Entdeckung des Uranus, der am 13. März 1781 von William Herschel und vermutlich mit Unterstützung seiner Schwester Lucrezia, entdeckt worden war, brauchte man schon ein starkes Spiegelteleskop. Sterne sind so weit weg, dass sie selbst im Teleskop zwar heller, aber letztlich doch nur als nadelstichartige Punkte zu sehen sind. Ein Planet hingegen präsentiert sich als Scheibchen, das über einige Beobachtungsnächte hinweg, seine Position am Sternenhimmel verändert. Außerdem bildet das Scheibchen keinen Schweif aus, so dass mit der Zeit ein Komet ausgeschlossen werden kann.
Planeten funkeln auch nicht.
Durch die Veränderung der Position stellte Herschel sehr bald fest, dass es sich hier um einen bis dato unsichtbaren Planeten handeln muss, der unsere Sonne umkreist.
Die beiden letzten Planeten, Neptun und damals noch Pluto, wurden nicht durch Sicht entdeckt. Sie verrieten sich, indem sie durch ihre Schwerkraft die anderen sichtbaren Planeten in ihren Bahnen leicht störten.
Heutzutage sind die Teleskope natürlich so stark, dass man auch diese beiden letzten  bei guten Bedingungen als Scheibchen wahrnehmen kann. Heutige Teleskope lösen sogar ferne Galaxien, Nebel und Sternhaufen in ihre einzelnen Sterne auf, und es gibt weitere Verfahren, mehr über ihre Beschaffenheit und Oberflächen zu erfahren.
Trotzdem. Wieso plötzlich diese Aufregung um den Planetenstatus des Pluto?

Wer ist jetzt Planet, und wer nicht

Außer Kometen, die plötzlich mit ihren prächtigen Schweifen scheinbar aus dem Nichts auftauchten, nahezu geradlinig durch die Sternbilder zogen und wieder verschwanden, gab es nichts weiter außer den Planeten mit ihren Monden in unserem Sonnensystem. Das änderte sich jedoch mit der Entwicklung immer stärkerer Messinstrumente. Da waren plötzlich unzählige Asteroiden zwischen Mars und Jupiter zu sehen. Diese bilden den Asteroidengürtel und stellen quasi die Schneegrenze in unserem Sonnensystem dar, weil es jenseits von ihnen eisige Planeten gibt, wobei weiter innen die Steinplaneten Merkur, Venus, Erde und Mars ihre Bahnen um die Sonne ziehen. Und damit nicht genug. Es wurde auch ein weiterer Asteroidengürtel jenseits des Neptun entdeckt, der Kuiper-Gürtel, benannt nach dem Astronomen Gerard Peter Kuiper (1905–1973). Bei so vielen neu gefundenen Objekten, musste man sich ernsthaft überlegen, was denn nun ein Planet, was ein Zwergplanet und was schließlich nur einer unter vielen Asteroiden sein soll.
Auslöser für diese Diskussion war die Tatsache, dass man zunehmend Himmelskörper im oder am Rand unseres Sonnensystems fand, die Pluto durchaus ebenbürdig in Form und Größe sind. Da gibt es beispielsweise das Kuiper-Objekt Xena, das größer als Pluto ist.
Außerdem war Pluto sowieso etwas seltsam.
Da haben wir von innen nach außen vier Steinplaneten, Merkur, Venus, Erde und Mars. Dann kommen die vier Gasplaneten Jupiter, Saturn, Uranus und Neptun. Und jetzt kommt noch so ein Winzling, kleiner als unser Mond, bestehend aus Eis und Stein, der sich zudem noch auf einer sehr exzentrischen Bahn bewegt, dessen Bahn zudem noch gegen die Ekliptik ziemlich gekippt ist und der quasi auf seiner Bahn entlang rollt, weil seine Achse derart gegen  seine Umlaufbahn geneigt ist.
Und so traf sich 2006 im August die IAU zu ihrem Kongress in Prag, um diese Frage ein für allemal zu klären.

Die Entscheidungsfindung

Zunächst einmal wurde von einer ausgewählten Expertenrunde ein erster Entwurf zur Abstimmung vorgelegt. Doch der wurde sehr kritisiert.
Nach diesem Entwurf sind Planeten Himmelskörper, die folgendes erfüllen müssen:
1. so viel Masse haben, dass sie durch Eigengravitation in eine runde Form gezwungen wurden. Was leichter ist, hat eher eine Kartoffelform und ist auf jeden Fall nicht rund.
2. einen Stern umkreisen, ohne selbst Sterne oder Monde, also Trabanten anderer Planeten zu sein. Ohne Monde haben wir Merkur und Venus. Auf diese beiden trifft aber Teil eins der Definition zu. Sie sind schwer genug, um Rund zu sein.

Nach dieser Definition hätte Pluto seinen Status als Planet behalten, es wären aber noch zahlreiche andere Himmelskörper in Frage gekommen, zum Beispiel Ceres und Xena.  Es wäre äußerst unpraktisch, müssten wir vielleicht gar dutzende oder mehr Planetennamen auswendig lernen. Wie lang wäre dann die Eselsbrücke, der Merksatz?
Innerhalb der vollwertigen Planeten sollte in zwei Gruppen aufgeteilt werden: die klassischen Planeten von Merkur bis Uranus und die Zwergplaneten wie Pluto, Ceres oder Xena.
Für diesen Entwurf einer Definition, ließ sich keine Mehrheit finden.
Stattdessen einigte man sich auf folgende neue Definition von Planeten:
1. Diese Planetendefinition gilt nur für unser Sonnensystem.
Das ist schade, dass man nichts fand, was für alle Sternsysteme gelten könnte. Vielleicht wird das im Zuge der Neuentdeckung von Planeten, die um andere Sterne kreisen, nochmal irgendwann neu aufgerollt werden müssen.
Das ist halt Astro-Politik.
2. Ein Planet soll ab jetzt nur noch ein Körper sein, dessen Masse der Gesamtmasse aller anderen Körper in seinem Bahnbereich übertrifft. Will sagen, der auf seiner Bahn zumindest einigermaßen aufgeräumt hat.
Gerade letzteres trifft auf den Pluto nicht zu. Er bewegt sich im Kuiper-Gürtel mit zahlreichen anderen Himmelskörpern.
In unserem Sonnensystem gibt es also nur noch die acht klassischen Planeten Merkur, Venus, Erde, Mars Jupiter, Saturn, Uranus und Neptun, sowie Zwergplaneten, Monde und Kleinkörper. Pluto, Ceres und Himmelsobjekt Xena sind Zwergplaneten und damit keine Planeten.
Als Kleinkörper gelten Asteroiden, Kometen und andere Objekte geringer Größe, die keine Monde sind und die Sonne umkreisen.
Bis heute entfacht die Diskussion um diese Definition immer mal wieder. Die Degradierung Plutos zum Zwergplaneten dürfte vor allem die Amerikaner tief getroffen haben, denn Pluto war der einzige Planet, der von einem Amerikaner entdeckt worden war.
Es standen noch andere Definitionen zur Auswahl, die bis heute immer mal wieder in Erwägung gezogen werden.

Fazit

Ich denke, es ist schade, dass Pluto nicht mehr dabei sein kann, aber die Zeiten ändern sich und durch die verbesserten Instrumente auch die Grundvoraussetzungen, die eventuell alte lieb gewonnene Definitionen in Frage stellen.
Wie oft wurde, was für uns viel folgenschwerer war, der Mensch von seinem Platz im Universum vertrieben.
Vom Mittelpunkt des Sonnensystems an den Rand, Dann war unsere Sonne nur noch ein Stern unter vielen, Wir waren kein Mittelpunkt im Universum mehr, und fristen unser Dasein am Rand einer Galaxie unter milliarden anderer.
Im Zusammenhang der Mission New Horizons schrieb ich einen weiteren Artikel darüber, wie spannend unser Zwergplanet ist.

Die Weihnachts-Mondfahrt

Prolog

Seid herzlich gegrüßt,
heute berichtet der Sternenonkel, wie mich manche Kinder nennen, von einem Weihnachtsereignis das sich um den 24. Dezember 1968 zugetragen hat. Es geht um eine Mondreise und um den ersten Gottesdienst im Weltall. Bevor wir aber dazu kommen, soll hier noch ein vielen bekannter Autor gewürdigt werden, der ein maßgeblicher Vordenker des Mond-Programms und ein Inspirator von Generationen von Astronomen, Physikern, Ingenieuren und Astronauten war.
Oft gehen großen Taten lange vorher gedachte und ersponnene Ideen voraus.

Von der Erde zum Mond, von Jules Verne

Vernes Roman, Von der Erde zum Mond, fasziniert mich bis heute.
euch nicht auch? Also mich mindestens ebenso, wie
20.000 Meilen unter dem Meer, oder
die Reise zum Mittelpunkt der Erde.
Es ist ganz erstaunlich, wie nahe Vernes Roman tatsächlich am Ablauf der Apollo8-Mission dran ist.

  • In beiden Fällen gibt es drei Mondreisende. Verne nennt sie Ardan, Barbicane und Nicholl, was unheimlich ähnlich klingt wie Anders, Borman und Lovell.
  • Im Jahr 1865 starten sie von Tampa, etwa 185 Kilometer vom Raumhafen Cape Canaveral entfernt. Ihre Reise dauert zehn an Stelle von sechs Tagen bei Apollo 8 und sie landen im Pazifik, um von einem Marineschiff geborgen zu werden.
  • Und damit der Parallelen nicht genug:
    Wie wäre es mit der Tatsache, dass das von Verne beschriebene Raumschiff etwa die gleichen Abmessungen wie das Befehls- und Servicemodul von Apollo 8 besitzt,
    etwa das gleiche Gewicht hat
    und ebenfalls aus Aluminium gefertigt ist?
  • Beide Schiffe sind mit Filtern zum Absaugen von Kohlendioxid aus der Luft und speziellen Liegen ausgestattet, um den Astronauten beim Abheben die Belastungen durch die sehr hohe Gravitation beim Start zu erleichtern.
  • selbst die Kosten des von Verne geschätzten Programms entsprechen den 14 Milliarden US-Dollar, die bis zur Mission Apollo 8 ausgegeben wurden.

Der Roman basiert vollständig auf den neuesten wissenschaftlichen Erkenntnissen. Die ersten Ausgaben enthielten sogar ein zusätzliches Kapitel mit Mondfakten, Formeln und Berechnungen! Verne kombinierte und extrapolierte diese Fakten und verfolgte zwangsläufig eine ähnliche Denkweise wie die NASA-Ingenieure hundert Jahre später.

  • Wie sie dachte er darüber nach, dass an einem Startplatz in der Nähe des Äquators, d.h. in Florida, die Erdrotation zusätzliche Geschwindigkeit bringen würde und dass die Landung im Meerwasser weicher ablaufen würde.
  • Und genau wie Verne wandten die NASA-Ingenieure die Gesetze von Newton und Kepler an, um die Fluchtgeschwindigkeit von der Erde auf etwa 11 km/s zu berechnen. Alles, das langsamer fliegt, kann das Schwerefeld der Erde nicht verlassen.
  • Auch die Gravitation beim Start, oder die des Mondes und die Schwerelosigkeit dazwischen, mussten berechnet, oder zumindest irgendwie abgeschätzt und bedacht werden.

Es gab aber auch Dinge, wo Verne nicht ganz richtig lag.

Vernes Irrtümer

  • Vernes dachte, dass seine Mondreisenden nur am Lagrange-Punkt I zwischen Mond und Erde schweben würden, an dem die Schwerkraft der Erde und des Mondes sich gegenseitig ausgleichen.
  • Er ließ seine Protagonisten während ihrer Reise zum Mond aus dem Fenster schauen und kümmerte sich nicht um Fallschirme, um ihren Rückfall zur Erde zu bremsen.
  • Die auffälligste Abweichung vom Plan der NASA, zum Mond zu gelangen, ist jedoch die riesige Mondkanone.
    In Verne’s Buch holt der Baltimore Gun Club 60.000 Tonnen Eisen aus dem Boden, um das Columbiad, die Abschusskanone für die Kapsel, zubauen.
    Sie war ein 274 Meter langer Riese von Kanone mit zwei Meter dicken Wänden, die der Explosion von 200 Tonnen Schießpulver widerstehen sollten.

    Glücklicherweise folgten die Apollo-Ingenieure diesem Teil von Vernes Skript nicht, denn ganz offensichtlich würde die Beschleunigung eines Geschosses von Null auf 11 km/s über die Länge des Kanonenrohrs die Piloten zerquetschen, woraufhin sie durch die Luftreibung zu Asche verbrannt würden.

    Verne war sich dieses Problems bewusst, er lässt sogar einen seiner Protagonisten darüber diskutieren

    aber so etwas wie die Saturn V, eine 111 Meter hohe Rakete mit rund 2.700 Tonnen hochexplosivem Treibstoff, zu entwickeln, übertraf selbst Vernes extrem lebhafte Vorstellungskraft.

Viele Ingenieure bezeichnen Jules Verne als ihre Inspiration – trotz des offensichtlichen Versagens mit der Kanone. Im Gegenteil, die Raketenpioniere Konstantin Ziolkowski (Denker des Weltraumaufzuges) und Hermann Oberth sowie die Raumfahrer Juri Gagarin und Neil Armstrong gaben alle zu, dass sie von Jules Vernes Geschichte stark beeinflusst worden waren. Die Besatzung der Apollo 11 nannte ihr Führungs- und Servicemodul sogar „Columbia“ zu Ehren von Vernes riesiger Kanone.
Schließlich, nach einhundert Jahren, war es der Menschheit, den Ingenieuren und allen, die auf den Spuren von Vernes Traum wandelten gelungen, den Mond zu erreichen.
Kommen wir nun also zur Weihnachtsmondfahrt

Die Weihnachtsmondfahrt

Vor 55 Jahren wurde also Jules Vernes Roman „Von der Erde zum Mond“ Realität:
Der Flug der Apollo 8 um den Mond war bis dato die kühnste Mission des gesamten Mondprogramms, weil sich noch keine Apollo aus dem Erdorbit gewagt hatte.

Das Mondprogramm der NASA war ein gut durchdachter, schrittweiser Ansatz, bei dem jede Mission des Merkur-, Gemini- und Apollo-Programms um eine weitere Fähigkeit ergänzt wurde, die für die Landung auf dem Mond erforderlich sein würde.

Da war der Start überhaupt,
das An- und Abkoppeln zweier Raumschiffe,
der Mensch im Weltraum,
das Verlassen des Orbits und vieles mehr.

Die ursprüngliche Mission von Apollo 8 sollte darin bestehen, die Mondlandefähre im Erdorbit zu testen.
Ein vernünftiges Ziel, wenn man bedenkt, dass dies der allererste bemannte Flug der mächtigen Saturn V sein würde, der größten und mächtigsten Rakete, die je gebaut wurde.
Auch das Raumschiff Apollo an der Spitze war ziemlich neu: Nur eine Crew hatte es zuvor geflogen.

Die Montage der Mondlandefähre war jedoch weit hinter dem Zeitplan zurückgeblieben und die NASA stand unter enormem Druck.
Im September 1968 hatten die Sowjets zwei Schildkröten und ein paar Mehlwürmer um den Mond geschickt und sicher auf die Erde zurück gebracht.
Die Befürchtung, die Soviets würden das nun auch zuerst mit Menschen schaffen, war durchaus berechtigt.
Aus diesem Grunde mussten die Missionsplaner das Ziel für Borman, Lovell und Anders leicht ändern: Sie sollten nicht im Erdorbit bleiben, sondern den Weg zum Mond wagen, ihn umkreisen, und wieder sicher auf der Erde wassern.
Die Entscheidung war unglaublich mutig, wenn man bedenkt, dass kein Raumschiff des Mondprogramms jemals die Umlaufbahn der Erde verlassen hatte.

Apollo 6, ein unbemannter Testflug mit Saturn V, sollte um den Mond herumfliegen, aber die dritte Stufe versagte. Sie zündete ihre Triebwerke für die „Trans Lunar Injection“ leider nicht.
Und somit war das Ziel der Mission verloren und sie wurde abgebrochen.

Als Borman, Lovell und Anders am 21. Dezember 1968 an der Küste Floridas vom Pad 39 A des John F. Kennedy Space Centre abflogen, waren sie die ersten Menschen, die die relative Sicherheit der Erdumlaufbahn verließen und 400.000 Kilometer ins Ungewisse wagten.
Als nun die drei Astronauten den Mond erreichten, taten sie etwas, womit wohl niemand gerechnet hatte.

Der erste Gottesdienst im All

Die Astronauten von Apollo 8, waren gebeten worden, die ersten Live-Bilder vom Mond mit etwas „Angemessenem“ zu kommentieren – schließlich würde etwa ein Sechstel der Menschheit das Ereignis an ihren Fernsehern mit verfolgen.

Was könnte passender sein, um die vorbeiziehende Mondlandschaft unten zu begleiten, als die ersten Verse des Buches Genesis über Licht und Dunkelheit zu zitieren?

Bei Martin Luther liest sich das in der neuesten Übersetzung, im ersten Buch Mose, Genesis, wie folgt:
Aus Genesis, Kapitel 1
1. Am Anfang schuf Gott Himmel und Erde.
2. und die Erde war wüst und leer, und es war finster auf der Tiefe; und der Geist Gottes schwebte auf dem Wasser.
3. Und Gott sprach: Es werde Licht! Und es ward Licht.
4. Und Gott sah, dass das Licht gut war. Da schied Gott das Licht von der Finsternis
5. und nannte das Licht Tag und die Finsternis Nacht. Da ward aus Abend und Morgen der erste Tag.
6. Und Gott sprach: Es werde eine Feste zwischen den Wassern, die da scheide zwischen den Wassern.
7. Da machte Gott die Feste und schied das Wasser unter der Feste von dem Wasser über der Feste. Und es geschah so.
8. Und Gott nannte die Feste Himmel. Da ward aus Abend und Morgen der zweite Tag.
9. Und Gott sprach: Es sammle sich das Wasser unter dem Himmel an besondere Orte, dass man das Trockene sehe. Und es geschah so.
10. Und Gott nannte das Trockene Erde, und die Sammlung der Wasser nannte er Meer. Und Gott sah, dass es gut war.
Bei Apollo8 klingt das so:
https://www.youtube.com/watch?v=AEEpHmC1jzo

Schon klar. Der Anfang der Schöpfungsgeschichte aus dem Buch Genesis des Alten Testaments unserer Bibel ist nicht unbedingt das, was wir als Weihnachtsgeschichte bezeichnen würden. Aber mal ganz ehrlich. Hätte die Geschichte vom Kindlein im Stall zu der Situation gepasst, dass die drei Astronauten, Frank Bormann, Jim Lovell und Bill Anders, damals am Heiligen Abend 1968 die ersten Menschen in einer Umlaufbahn um den Mond waren?
Ich denke, so etwas existenzielleres, wie die Schöpfungsgeschichte, war schon geeigneter.
Einige kritisierten den religiösen Charakter der Sendung zwar, aber jedem, der sich so weit hinaus wagt, sollte erlaubt sein,, dass Mensch sich seines Glaubens erinnert, egal, wie intensiv man ihn auch sonst im Alltag leben mag.

Alleine im All

Am 24. Dezember 1968, verschwand Apollo 8 hinter dem Mond. Kein Mensch hatte jemals die andere Seite des Mondes direkt beobachtet.
Oft wird diese, der Erde abgewandte Seite des Mondes die dunkle Seite oder auch Dark Side genannt. Dunkel ist sie durchaus nicht. Wenn wir Neumond haben, ist diese Seite voll der Sonne ausgesetzt, so dass sie sich auf mehrere 100 Grad Celsius aufheizt.
Leider hatte die Crew nur wenig Zeit, es zu genießen.

Im Mondschatten zu sein bedeutet, im Funkloch zu sein. Durch den Mond hindurch ist kein Funkkontakt zur Erde möglich. Die drei waren also völlig auf sich alleine gestellt.
Völlig heimatlos.
Sie würden nicht mal durch die Gravitation der Erde wieder angezogen, sollten sie mit ihrem Schiff mit ausgefallenen systemen durch das All trudeln.
Selbst bei einem Absturz auf den Mond, wäre keine Rettung möglich. So lange konnte man im Apollo-Schiff nicht überleben, wie es gedauert hätte, eine Rettungsmission zusammen zu stellen, und außerdem hatte man derlei noch nie vorher geprobt.

Sie mussten die Zündung der Triebwerke selbst berechnen, einleiten und kontrollieren.
Zündete das Triebwerk zu kurz, und Apollo 8 würde ins All geschleudert,
zu lang, und sie würde ein weiterer Krater auf dem Mond werden.
Für die Astronauten fühlten sich die vier Minuten und sieben Sekunden, während derer das Triebwerk arbeitete, um sie auf die richtige Bahn zu blasen, wie eine Ewigkeit an.

Einmal im Orbit, gab es wenig zu tun, außer die Bibel zu lesen und Hunderte von Fotos zu machen – darunter das legendäre Bild der fernen Erde, die über dem kargen Mond steht.

Nach 20 Stunden im Orbit war es Zeit zu gehen. Eine weitere kritische Zündung des Triebwerkes, und Borman, Lovell und Anders waren auf dem Weg zurück auf die „gute Erde“.

Am 27. Dezember öffneten sich drei riesige Fallschirme über dem Nordpazifik südlich von Hawaii. Die Apollo 8 wasserte sicher im Meer, und wurde von einem Flugzeugträger aufgenommen.

Epilog

Was für ein Abenteuer, was für eine Geschichte. Eine Geschichte, die bereits hundert Jahre zuvor von dem gewissen Jules Verne erzählt worden war. Die NASA, so schien es, folgte nur seinem Skript.

Ich muss immer an die Frauen und Familien der drei Astronauten denken. Was für ein von Sorgen überschattetes Weihnachtsfest muss das für sie gewesen sein. Und ehrlich gesagt, ist mein Weihnachtsfest leider auch von Sorge getrübt ob all dem, was momentan auf und mit unserer Erde geschieht. Aber das ist es eben, weshalb wir Weihnachten feiern. Wir feiern die Geburt unseres Erlösers. Und das ist neben seiner Auferstehung, was uns Christen Hoffnung, Glaube, Zuversicht und Trost gibt.
Das wünsche ich für uns alle.

Die Herkunft des Goldes auf Erden


Die Herkunft des Goldes

Seid weihnachtlich gegrüßt,

Einleitung

Weihnachtszeit bedeutet Lichtertzeit.
Da gibt es Goldengel,
in goldenes Stanniol eingepackte Schokoladentaler,
goldenes Lametta,
Goldstaub,
goldene Sterne und vieles goldene mehr.
Nicht zuletzt beschenkt man sich gerne auch mal zu Weihnachten mit Goldschmuck.
Gold steht für Glanz, für Licht, für Reinheit und für hohen Wert.
Letzteres deshalb, weil Gold so selten hier auf Erden ist. Es macht viel Mühe, es zu finden und aus der Erde zu holen.
Astro-Geologisch betrachtet, gehört das Gold eigentlich gar nicht hier auf die Erde, und dennoch haben wir, wenn auch nicht viel, genug davon, um uns daran zu erfreuen.
Zumindest gehört es deshalb nicht hier her, weil es definitiv nicht in unserem Sonnensystem entstanden ist, was wir noch sehen werden.
Aber alles der Reihe nach.

Der Anfang

Kurz nach dem Urknall, als das Universum entstand, gab es im Wesentlichen nur das Element Wasserstoff, einen kleinen Anteil Helium und etwas Lithium.
Das dem so war, verrät uns das Sternenlicht sehr alter und zumindest teilweise bereits längst vergangener Sterne und gute Simulationen am Computer.

Da das Universum am Anfang noch deutlich kleiner war, als heute, standen die Sterne viel näher beieinander. Außerdem bildeten sich aus diesem Wasserstoff und Helium oft sehr große Sterne, die das zehnfache oder hundertfache unserer Sonne wiegen.
Somit waren die ersten Sterne aus der ersten Generation, die Astronomen nennen sie die dritte, sehr rein und bestanden fast nur aus reinem Wasserstoff, den sie langsam in ihren Kernen zu Helium verschmolzen.

So rechnen die Astronomen von der Gegenwart in die Vergangenheit und summieren die Generationen auf. Aus der Sicht des Universums und seines Lebens, ist die dritte Generation die älteste und erste, und die erste ist die neueste und jüngste im Jetzt.
Welcher Generation ein Stern angehört,
das verrät uns sein Licht. Älteres Licht als das, der Sterne der vom Universum aus gesehenen, aber aus unserer Sicht gesehenen dritten oder ersten Generation, gibt es quasi im Universum nicht.

was unser Sonnenfeuer schürt

Die Kernverschmelzung von Wasserstoff zu Helium, ist der Prozess, aus welchem wir unsere Sonnenwärme, ihr Licht etc. empfangen.
Vier Wasserstoff-Atome bestehend aus jeweils einem Proton im Kern und einem das Proton „umkreisenden“ Elektron werden zu einem Helium-Aton mit zwei Protonen und zwei Neutronen im Kern, und zwei Elektronen, die diesen „umkreisen“ verschmolzen.
Das Helium-Atom wiegt etwas weniger, als vier Wasserstoffatome,
Diese kleine Massendifferenz wird als Energie in Form von Neutrinos und dem, was wir letztlich als Sonnenwärme empfangen, davon getragen.
Alle Sterne funktionieren in derselben Weise.
Deshalb ist für Astronomen häufig der Rest der Chemie gar nicht so wichtig. Sie sagen, es gibt Wasserstoff und Helium, und der Rest ist Metall. Ein Astronom soll einmal gesagt haben, dass ein Stern einfacher funktioniere, als eine Eintagsfliege. Damit hat er vermutlich sogar recht.
Das ist aber genau die Genialität des Aufbaus und der Funktion von Sternen. Wären sie komplizierter, könnten sie nicht Milliarden von Jahren alt werden…
Wir gehen aber hier einen Schritt weiter, und spüren am Beispiel der Goldsuche dem Rest der Chemie nach, die letztlich unser Leben auf Erden ermöglichte.

Viel Brennstoff und nur ein kurzes Leben

Den ersten alten Riesigen Wasserstoff-Gasbällen der für Astronomen der dritten Generation angehörenden Riesensterne, war kein langes Leben beschieden. Desto größer ein Stern ist, desto schneller verbraucht er seinen Wasserstoff-Vorrat, weil er durch seine enorme Masse die Atome in seinem Inneren näher zueinander bringt, so dass es öfter passiert, dass welche miteinander zu schwereren Elementen verschmelzen können.
Wie er allerdings endet, hängt ganz davon ab, wie schwer er war.
Das hat jetzt aber nichts damit zu tun, wie die Menschheit mit Übergewicht und den damit verbundenen Risiken zu kämpfen hat.

Als unsere Sonne vor etwa viereinhalb Milliarden Jahren ihren Wasserstoff „zündete“, in Anführungszeichen, weil es sich hierbei um kein Feuer handelt, sondern um eine Kernfusion, waren die riesigen Wasserstoff-Sterne schon vergangen und haben ihre Asche, die chemischen Elemente ins Weltall geblasen.
Jedes chemische Element, das eine Vorläufer-Gaswolke, die ein Kandidat für einen Stern sein könnte, eingefangen hat, und das nun in ihm enthalten ist, verrät sich durch sein ganz charakteristisches Licht, sobald er seine Lampe, die Kernfusion in seinem Inneren, eingeschaltet hat. Somit hat jeder Stern, zumindest derselben Generation oder Entstehungsortes, einen quasi eigenen Fingerabdruck, denn Sterne entstehen oft gemeinsam in Gebieten mit den selben chemischen Eigenschaften.
Viele dürften noch aus der Schule wissen, dass verschiedene chemische Elemente Flammen unterschiedlich färben. Deshalb sind Feuerwerke so bunt und schön.

Die Elemente entstehen so:

Hat nun beispielsweise ein Stern, der Masse unserer Sonne etwa nach 10 Miliarden Jahren ihren Wasserstoff zu Helium verbacken, dann setzen andere Kernverschmelzungen in diesem Backofen ein.
Hier entsteht dann beispielsweise der Kohlenstoff(C12), der Sauerstoff(O16), Stickstoff(N14), Phosphor und weitere Elemente, die für uns lebensnotwendig sind.
In einem Stern, der mit unserer Sonne vergleichbar ist, kann aber kein schwereres Element, als Eisen entstehen, weil man Energie zuführen müsste, um schwerere Elemente, wie Blei, Wissmut und auch Gold zu erzeugen. Bisher hatten wir immer Glück. Aus Wasserstoff wird Helium und Energie. Daraus wird dann bis zum Eisen hin immer etwas und dazu noch Energie. Ab Eisen wirds dann nicht mehr kostenlos. Will man mehr, muss man Energie hinzu fügen, um schwereres zu bekommen. Die hat unsere Sonne nicht und kann sie sich auch nirgendwo pumpen.

Woher kommt dann das viel schwerere Gold? Wer spendete die Energie dafür?

Dazu müssen wir die alten Riesensterne betrachten, die zwar schon längst vergangen sind, aber deren Licht Milliarden Von Jahren uns von ihrer ehemaligen Existenz kündet.

Ein Riesenstern beendet sein Leben deutlich fulminanter, als es unsere kleine Sonne tun wird. Hat so ein Monster seinen Wasserstoff je nach Größe schon nach einigen Millionen von Jahren verbraten, dann endet er in einer riesigen Explosion, einer Nova oder Supernova. Es gibt verschiedene Szenarien und Typen von Novae, die hier jetzt nicht näher behandelt werden können.
Unsere Sonne ist klüger und geht ob ihres wenigeren Gewichtes gewissenhafter mit ihrem Wasserstoff-Brennstoff um. Sie wird noch mindestens fünf Milliarden Jahre für uns leuchten. Stimmt zeitlich zwar, aber, naja… Ein andermal davon.

Also bei Novae-Explosionen wird so viel Energie frei, dass auch schwerere Elemente über das Eisen hinaus entstehen können.
Es ist allerdings fraglich, ob wirklich alle Elemente so gebacken werden, ob die hier frei werdende Energie dafür ausreicht. Vermutlich nicht. Es sollte also noch einen anderen Mechanismus mit mehr frei werdender Energie geben, der dann das Periodensystem noch mit den schweren fehlenden Elementen, wie Gold anfüllt.
Stets werden alle Elemente, egal wo sie entstehen, mit den Explosionen und somit dem Tot von großen Sternen in den Weltraum verteilt. Das bedeutet, dass die Gaswolken der nächsten Sterngeneration, die zunächst nur aus Helium und Wasserstoff bestanden, nun leicht mit dem Staub, der Asche, der anderen toten Sterne, der schwereren chemischen Elemente, „verunreinigt“ wurden.
Jüngere Sterne sind quasi „schmutzig“, auch unsere Sonne trägt quasi ein Erbe ihrer Vorfahren, das wir heute in unseren Spektrometer an deren Licht erkennen können.
Dazu sei noch angemerkt, dass sich niemals aller Wasserstoff zu schwereren Elementen verbinden wird. Es blieb bisher immer genügend übrig, um die zweite und die dritte Generation zu zünden.

Jezt sag uns doch endlich, Du geschwätziger Astronom, wo es her kommt!!!

Die Steinplaneten, wie Merkur, Venus, Erde und Mars enthalten nun alle Elemente, also auch Gold.
Auch unsere Sonne hat etwas Gold mit bekommen. Man hat es inzwischen in ihrem Licht nachgewiesen. Im Verhältnis zu Wasserstoff und Helium ist das wirklich nur in Spuren dort enthalten, aber würde man das Gold der Sonne auf die Erde bringen, dann purzelten die Goldpreise ins Bodenlose und wir würden unsere Pausenbrote vielleicht in Goldfolie verpacken…

Seit vielleicht zwei Jahren ist uns noch eine andere Weihnachtsbäckerei bekannt, in welcher vermutlich noch viel effektiver Gold, Platin und andere wertvolle schwere Elemente gebacken werden.

Sehr häufig entstehen Sterne, welcher Größe auch immer, nicht alleine, sondern in Paaren.
Unsere Sonne ist alleine. Es gibt durchaus die Vermutung, dass sie ihre Schwester verloren hat. Man sucht tatsächlich nach Sternen, die den gleichen chemischen Fingerabdruck haben, wie unsere Sonne.
Ist nun ein ausgebrannter Sternrest nach seiner Nova noch etwa das anderthalb fache bis zu etwa dem vier fachen der Sonne schwer, endet er nicht wie sie, als weißer Zwerg, der dann langsam auskühlt und verblasst.
Ein Szenario, wie so ein schwerer Stern enden kann, ist ein Neutronenstern. Er ist so dicht, dass die Elektronen der Atome in die Protonen der Kerne gedrückt werden.
Er besteht nun aus entarteter Materie, die es auf Erden nicht gibt.
Dieser Sternenrest hat vielleicht einen Durchmesser von 30 – 40 Kilometern und ist das anderthalb bis das dreifache unserer Sonne schwer, die einen Durchmesser von 1,4 Mio Kilometer besitzt.
Nur am Rande: Noch schwerere Sternreste enden als schwarze Löcher.
Die Neutronensterne sind als Pulsare so interessante Objekte, dass wir uns ihnen unbedingt mal in einem extra Beitrag widmen müssen.
Ich sagte schon, dass Sterne oft zu zweit vorkommen.Somit kann es natürlich auch sein, dass beide, wenn sie ähnlich schwer sind, ihr Leben als Neutronensterne beenden.

Kreisen nun zwei Neutronensterne umeinander, so verliert das System langsam Energie, die in Form von Gravitationswellen davon getragen wird. Diese Wellen sind sehr schwach, aber man kann sie mittlerweile mit riesigen Detektoren messen.
Albert Einstein, der sie postulierte, hätte seine Freude daran, denn er dachte nicht im Traum daran, dass wir sie einst nachweisen können werden.
Über den Nachweis von Gravitationswellen schrieb ich vor einigen Artikeln.

Es ist nun gelungen, die Gravitationswellen eines Zusammenstoßes zweier Neutronensterne zu messen und gleichzeitig mit optischen Teleskopen in diese richtung zu schauen.
Dort fand man, im Lichte des Crashs, , dass diese Bäckerei noch viel effektiver alle chemischen Elemente backen kann, als irgendwelche Novae, seien sie auch noch so heftig.

Die hier frei werdende Energie reicht aus, alle Bausteine des Lebens und des Universums zu erzeugen.
Aus so einem Inferno, wo zwei Neutronensterne zusammenkrachen, entstehen ungefähr drei Erdmassen reinen Goldes. Das scheint viel, ist es aber nicht. Bedenken wir, dass jeder am Crash beteiligter Neutronensterne deutlich mehr, als unsere Sonne wiegt. Und bedenken wir dann auch, dass es sich hier nicht um einen Goldklumpen handelt, der jetzt am Stück durch das Weltall vagabundiert, sondern um Gold-Ionen, oder ganz feinen Goldstaub, der in alle Richtungen kugelförmig um die Unfallstelle herum fast mit Lichtgeschwindigkeit ins All geblasen wird. Nimmt man jetzt noch die riesigen Entfernungen von vielleicht Milliarden Lichtjahren zu uns an, dann dürften die Erwartungen von Spekulanten, Börsenmäklern und Schmuckherstellern bald schwinden, dass wir auf einen „Goldregen“ hoffen dürfen. Wie oben schon angedeutet, wäre das Gold schließlich wertlos, wenn es plötzlich in rauen Mengen verfügbar wäre.

Es scheint nun so zu sein, dass der Teil vieler schwerer chemischen Elemente in Zusammenstößen zweier Neutronensternen entsteht, und der Rest durch Supernova-Explosionen.
Es gibt keine unentdeckten chemischen Elemente mehr. Das Periodensystem ist lückenlos voll.
Alles, was jetzt momentan noch künstlich gebacken wird, zerfällt gleich wieder.
Es kann aber sein, dass man sich künstlich in der Element-Bäckerei einem Punkt annähert, den das Universum nicht erreicht, wo nochmal stabile künstliche Elemente entstehen könnten. Man wird sehen und erleben, ob es uns nützt.

Fazit

Gold ist so selten, weil wir alle Kinder des Feuers sind.

Damit Leben hier auf Erden chemisch überhaupt möglich wurde, dafür mussten bereits einige Sterne der ersten Generation ihr Leben lassen, um das Universum mit ihrer Asche, den chemischen Elementen, zu füllen. Denken wir immer daran, wenn wir uns an Gold erfreuen, das Leben den Tot bringt und umgekehrt.
Ist das nicht auch ein Paradox unserer Christenheit?

Gold könnte vom Anfang des Universums stammen.

Es ist sehr alt, und hat einen weiten Weg bis zu uns hinter sich.

Die sicherste Methode es vor Raub zu schützen ist, es einfach in einem Stern zu verstecken, wie es unsere Sonne tut. Ihr Licht bringt uns die Botschaft: „Ätsch, schaut mal. Ich hab viel davon, aber hole es Dir doch, wenn Du kannst…“

Wieso Gold golden glänzt, liegt an seinem einzigartigen Atomaufbau, der ebenfalls eine ganz seltene Eigenschaft des Goldes ist.

Die Geschichte der Herkunft des Goldes ließe sich sicher auch noch für andere Elemente ganz ähnlich erzählen, die ebenfalls nur im Crash zweier Neutronensterne entstehen können. Und seine Seltenheit im Universum erklärt sich mit dieser Tatsache auch. So, und nur so, kann es entstehen. Die leichteren Elemente, wie Kohlenstoff, Stickstoff etc. entstehen im Laufe des Lebens eines Sternes vermutlich in allen, also viel häufiger.

So, das war jetzt meine Gold-Geschichte. Über Kommentare etc. freut sich, wie immer
Ihr und euer Blindnerd Gerhard.
Ich wünsche Ihnen und euch eine schöne und geruhsame Vorweihnachtszeit.

Mein Merkurtransit im Nachgang


Liebe Leserinnen und Leser,

Am Montag, 11.11.2019 hatten wir einen Merkurtransit.
Die sind zwar nicht so selten, wie z. B. die Rückkehr des Halleyschen Kometen, aber würdigen sollte man Transits dennoch, denn sie trugen in vielfältiger Weise viel zum Verständnis des Universums bei.
So konnte der Abstand Sonne-Erde im Jahre 1639 während eines Venustransits, der von Verschiedenen Punkten aus beobachtet wurde, erheblich genauer bestimmt werden.

Merkurtransit bedeutet, dass der Merkur, unser kleinster und innerste Planet über die Sonnenscheibe zieht. Alle Planeten, die weiter innen als die Erde sind, also Merkur und Venus, ziehen aus unserer Erdsicht dann und wann über die Sonnenscheibe, überholen die Erde auf ihren Innenbahnen und machen so einen Transit. Besonders bei der Venus, die mal als Morgenstern, dann gar nicht und schließlich am anderen Horizont als Abendstern erscheint, ist das offensichtlich. Sie ist so groß und uns so nahe, dass wir bei ihr Phasen, ähnlich des Mondes beobachten können, denn sie wird in ihrem Jahreslauf auch unterschiedlich aus Erdsicht von der Sonne beleuchtet.

Beim Merkur ist die Beobachtung eines Transits sehr schwierig, weil er so klein ist, und weil die helle Sonne alles überstrahlt. Aus diesem Grund sehen wir ja auch unseren Mond bei Neumond nicht.
Er ist schwer zu erkennen, und ohne besonderes Teleskop mit Sonnenfilter sollte man niemals in die Sonne schauen, wenn man verhindern möchte, dass man der oder demjenigen den Rest dieses Artikels vorlesen muss…
Kopernikus soll auf seinem Sterbebett bedauert haben, seiner Lebzeit den Merkur nie gesehen zu haben.

Wenn überhaupt, dann ist Merkur nur morgens oder abends in der Nähe der Sonne zu sehen. Und dann natürlich deutlich kürzer und lichtschwächer, als unsere in ihre weißen Wolken gehüllte und viel größere Venus.
Aber auch das Venus-Scheibchen reicht nicht für eine Finsternis aus.

Merkur umrundet in 88 Tagen die Sonne. Dabei überholt er die Erde regelmäßig
und läuft uns quasi durch unser Sonnenbild.
Wieso es so selten Merkurtransits gibt, liegt daran, dass seine Bahn gegenüber der Ekliptik um 7 Grad gekippt ist. Nur an den Knoten, den Schnittpunkten von Ekliptik und Merkurbahn, kann es einen Transit geben. Klingelt es da nicht bei jemandem? Ja, genau. Das sind ganz ähnliche Voraussetzungen, die zu einer Sonnenfinsternis zwischen Ekliptik und Mondbahn herrschen müssen, damit es bei Neumond zu einer Finsternis kommen kann. So ein Merkurtransit ist in der Tat eine mini Sonnenfinsternis.
Er ist leider zu klein, um mit seinem Scheibchen die ganze Sonnenscheibe abdecken zu können. Leider reicht es nicht mal für eine gut sichtbare ringförmige Finsternis. Das Löchlein, das sein Schatten in die Sonnenscheibe „bohrt“,
ist einfach zu klein, um mit bloßem auge gesehen werden zu können.

Von der Erde aus gesehen stehen die Merkurbahnknoten am 9. Mai und am 11. November vor der Sonne, und so finden Merkurtransits stets um diese Termine herum statt. Da die Merkurbahn stark elliptisch ist, treten Transits im November häufiger auf als im Mai. Der letzte ereignete sich am 9. Mai 2016 , der nächste wird erst wieder am 11. November 2032 stattfinden.

Da Merkur keine Atmosphäre hat, ist er mit Teleskop und geschütztem Auge klar und scharf als Punkt zu erkennen, der über die Sonnenscheibe wandert.

Bei Venustransits entstehen durch den Schatten der Atmosphäre tropfenförmige perspektivisch bedingte Effekte.
Das ganze Spektakel dauert schon einige zeit.

Nur mal am Rande bemerkt: Viele gefundene Exo-Planeten wurden und werden bis heute dadurch entdeckt, dass sie vor ihren Muttersternen vorbei ziehen, deren licht vorübergehend etwas verdunkeln und einen Transit vollführen.

In diesem Jahr konnte ich den Merkurtransit nicht verfolgen, weil ich im Zug nach Dresden saß, das Wetter schlecht war und das Internet im Zug, naja, lassen wir das…
Auch für sehende wäre sowieso nix zu sehen gewesen und nur mit Finsternisbrille ohne Teleskop wohl auch nicht.
Und nochmal. Niemals ohne Finsternisbrille oder Sonnenfilter in die Sonne schauen und durch ein Teleskop oder Fernglas schon gar nicht.
Galileo erblindete vermutlich im alter deshalb und es ist ein absolutes Wunder, dass Vater Pfarrer Fabricius mit sohn bei der Beobachtung von Sonnenflecken nicht erblindeten. Sie müssen wahrlich ein sehr lichtschwaches Instrument benutzt haben.

Ich könnte mir vorstellen, dass der Transit bei Sonnenschein vielleicht ganz ordentlich auf einem weißen Schirm auf den man mit einem Fernglas die Sonnenscheibe projezierte, beobachtbar war. Vielleicht hat ja jemand so etwas gemacht und kann in den Kommentaren darüber berichten. Ich denke halt, wenn sich diese Methode zur Beobachtung von Sonnenflecken eignet, dann hierfür doch vielleicht auch.

Es gab im Mai 2016 schon mal einen Merkurtransit. Den habe ich akustisch auf meine Art beobachten können.
Ich habe das Ereignis damals mit Universe to Go, der Astrobrille, von der ich hier schon mehrfach berichtete, verfolgen können.

Diese Brille arbeitet mit Augmented Reality. Für Sehende Himmelsbeobachter werden passend zur Blickrichtung Zusatzinformationen und Sternkonstellationen eingespielt, so dass man sich am Himmel besser zurecht finden kann.

Für Blinde werden die Himmelsobjekte akustisch angesagt. Es gibt sogar einen Suchmodus, der einen per Richtungsangaben zum gewünschten Objekt führt, wenn es denn sichtbar ist.

Und so habe ich beobachtet:
Zunächst suchte ich im Planeten-Suchmodus die Sonne. Die hätte ich auch so gefunden, aber ich wollte es vollständig mit U2G machen.
Das funktionierte prima, denn sie ist so groß und auch so nah.

Im nächsten Schritt drehte ich mich wieder aus der Sonne und stellte die Suche auf den Merkur ein.
Und siehe da. Als ich ihn fand, knallte mir die Sonne voll ins Gesicht.
Natürlich wusste ich das, dass dem so sein würde, aber es mit einem Instrument nach zu empfinden und zu erleben, ist etwas anderes, als es einfach nur zu wissen.
Ich wiederholte den Versuch zu Beginn gegen 14:00 Uhr, zur Mitte, gegen etwa 17:30 und zum Ende gegen 20:15 Uhr.
Mein Ziel war, die Wanderung des Merkur über die Sonnenscheibe zu erleben.
Ich bilde mir ein, den Unterschied von einem zum anderen Rand, erlebt zu haben, bin mir aber wirklich nicht sicher.
Die Erde hat sich ja auch beträchtlich in der zwischenzeit gedreht, Das habe ich natürlich in Richtung und Winkel zur Ekliptik durchaus mit U2G erlebt.
Die Wanderung des Merkurs kann ich aber wirklich aus rein wissenschaftlicher Sicht nicht ganz sicher belegen, aber gefühlt ist gefühlt und das ist auch OK so.

Hätte mich im Jahr 2015, als ich den Entwickler von U2G kennen lernte, jemand gefragt, ob ich mir vorstellen kann, dass eine Astro-App je für Blinde zugänglich sein würde, hätte ich das sicher verneint.

Ich habe es quasi verneint, als Martin mich auf einem Vortrag, den ich in Hannover hielt fragte, ob ich es mir vorstellen könne, dass wir so eine Art Audioguide für blinde Menschen entwickeln könnten. Ich sagte ungefähr, dass ich es nicht glaube und mir nicht vorstellen kann. Aus diesen Grunde sollten wir es probieren.
Und jetzt ist es so, dass es funktioniert.
Ich habe gleichberechtigt mein Instrument und kann teilhaben.
Einfach großartig, wie inklusiv so ein bissel Technik und Software sind.

Saturn und seine Mission


Seid herzlich gegrüßt,

Und wer sich jetzt wundert, wieso der Blindnerd mit dieser alten längst beendeten Cassini-Huygens-Mission daher kommt, der oder sie hat natürlich Recht.
Beim Stöbern in alten Mails habe ich den Text aus der Zeit vor dem Blog gefunden.
Die Mission und mein Text dazu ist mir zu wertvoll, als dass er eventuell verloren geht, und außerdem möchte ich ihn gerne auch hier auf dem Blog teilen.

Viele können sich noch erinnern, dass am 15.09.2017 die Mission Cassini-Huygens final beendet wurde, indem diese kontrolliert in den Saturn stürzte und in dessen Atmosphäre dann verglühte.
Da kommt mir so ne Frage. Hat ein Gasplanet überhaupt ne Atmosphäre in dem sinne, wenn er doch, bis auf einen kleinen Kern selbst aus Gas besteht?
Ja, und diese Frage hat mir damals mein Freund, der @modellansatz, beantwortet, der schon in der Vorgänger-Mailingliste vor dem Blog mit gelesen hatte.
Er schrieb:
die angegebene „Größe“ von Gasplaneten bzw. die Bezeichnung der Höhe 0 bezieht sich auf die Höhe, wo das Gas einen Druck von etwa 1bar hat.
Wiki sagt dazu: „Das Fehlen einer sichtbaren, festen Oberfläche macht es zunächst schwierig, die Radien bzw. Durchmesser von Gasplaneten anzugeben. Wegen der nach innen kontinuierlich zunehmenden Dichte kann man aber jene Höhe berechnen, in der der Gasdruck gerade so hoch ist wie der Luftdruck, der an der Erdoberfläche herrscht (auf Meeresniveau 1 atm oder 1013 mbar).“
Ob Gasplaneten einen festen bzw. flüssigen Kern haben ist unklar, da ab sehr hohen Drücken die Aggregatzustände wegen Superkritikalität nicht mehr unterscheidbar sind.
Sind Druck und Temperatur hoch genug, wird irgendwann der sogenannte kritische Punkt überschritten. Der Unterschied zwischen “flüssig” und “gasförmig” hört dann auf zu existieren und man nennt diesen Zustand dann “superkritisch”. Bei Jupiter (und anderen Gasplaneten) ist genau das der Fall: Weiter außen, wo Temperatur und Druck noch niedrig sind, ist der Wasserstoff noch gasförmig. Da aber weiter innen der kritische Punkt überschritten wird, gehen auch die gasförmige und die flüssige Phase kontinuierlich ineinander über und es gibt keine klar definierte Grenzfläche“

Wie auch immer.
Diese Mission war so erfolgreich, dass man sie würdigen sollte. Von der Planung, zum Start, über die Ankunft am Saturn, der Durchführung der Mission bis zum Ende sind um 30 Jahre vergangen. Somit hängen Lebenswerke vieler Wissenschaftlergenerationen und Experten dran.

Noch nie konnte ich an einer Mission derart partizipieren, wie bei Cassini-Huygens. Grund dafür ist einfach, dass es Podcasts dazu gab. Damit kann man derlei erleben, mitfiebern und naja, auch etwas mit traurig sein, wenn es dann zuende geht. Es ist nicht zu ermessen, wie wertvoll das Medium Podcast für mich als Zugang zu Bildung und Wissenschaft, mit den Jahren geworden ist.

Ich werde die Mission kurz einführen und dann habe ich einiges Audio- Video- und Textmaterial zusammengestellt. Das kann dann jeder nach bedarf lesen, hören und vertiefen.

Und es geht los:

Einführung

Cassini-Huygens ist der Name einer Mission zweier Raumsonden zur Erforschung des Planeten Saturn und seiner Monde. Bei Cassini handelt es sich um einen Orbiter, der im Auftrag der NASA vom Jet Propulsion Laboratory gebaut wurde, um den Saturn, seine Ringe und Monde von einer Umlaufbahn um den Planeten aus zu untersuchen. Huygens (konstruiert von Aérospatiale im Auftrag der ESA) wurde als Lander konzipiert, um von Cassini abgekoppelt auf dem Mond Titan zu landen und diesen mittels direkter Messungen in der Atmosphäre und auf der Oberfläche zu erforschen, was aufgrund der dichten und schwer zu durchdringenden Atmosphäre des Mondes nicht von einer Umlaufbahn aus möglich ist. An der Mission ist auch die italienische Raumfahrtagentur ASI beteiligt.
Die beiden aneinander gekoppelten Sonden wurden am 15. Oktober 1997 vom Launch Complex 40 auf Cape Canaveral mit einer Titan-IVB-Rakete gestartet. Am 1. Juli 2004 schwenkte Cassini in die Umlaufbahn um den Saturn ein, und am 14. Januar 2005 landete Huygens drei Wochen nach der Trennung von Cassini auf Titan und sandte 72 Minuten lang Daten, die das Verständnis über den Mond deutlich verbesserten.
Auch der Cassini-Orbiter hat mit seiner umfangreichen Ausstattung an wissenschaftlichen Instrumenten viele neue, teils revolutionäre Erkenntnisse in Bezug auf Saturn und seine Monde geliefert. Die Mission wurde daher mehrfach verlängert,
Nun ist das Ende aber unausweichlich. Der Treibstofftank ist nahezu leer, so dass der Treibstoff nur noch für das letzte finale Manöver reicht…

Namensgebung

Zur Namensgebung sagt Wiki:
Giovanni Domenico Cassini (* 8. Juni 1625 in Perinaldo, Grafschaft Nizza, Herzogtum Savoyen; † 14. September 1712 in Paris) war ein italienischer Astronom und Mathematiker, der in Bologna Ansehen erwarb, 1669 an an die Académie Royale des Sciences in Paris berufen wurde, 1673 die französische Staatsbürgerschaft annahm und seitdem meist Jean-Dominique Cassini genannt wurde. Er wurde zum Begründer einer Dynastie von Astronomen, die bis zur Französischen Revolution die Direktoren des Pariser Observatoriums stellten, weshalb er auch mit Cassini I bezeichnet wird.
Er ermittelte u. A. die Neigung der Erdbahn, bestimmte die Eigendrehung des Jupiter anhand des sog. Roten Flecks und bestimmte den Durchmesser der Sonne.
Ruhm erlangte er auch durch die erstellung sehr genauer Ephemeriden, die für die Geodäsie und die Seefahrt unverzichtbar waren.
Es ist aufregend über ihn zu lesen, denn er forschte im widersprüchlichen Spannungsfeld zwischen dem heliozentrischen – und dem geozentrischen Weltbild.
Christian Huygens, auch Christianus Hugenius, war ein niederländischer Astronom, Mathematiker und Physiker. Huygens gilt, obwohl er sich niemals der noch zu seinen Lebzeiten entwickelten Infinitesimalrechnung bediente, als einer der führenden Mathematiker und Physiker des 17. Jahrhunderts. Er ist der Begründer der Wellentheorie des Lichts, formulierte in seinen Untersuchungen zum elastischen Stoß ein Relativitätsprinzip und konstruierte die ersten Pendeluhren. Mit von ihm verbesserten Teleskopen gelangen ihm wichtige astronomische Entdeckungen.

Das soll es als Einführung auch von mir gewesen sein. In der kleinen Linksammlung kommen u. A. Experten zu Wort, die die Mission, ihren Verlauf und die Hintergründe viel besser erklären können, als ich. Ich führe jeden Link kurz ein, damit man weiß, worum es geht und, was vor allem Screenreader-Nutzer erwartet, wenn man darauf klickt.

Macht euch darauf gefasst, dass die Audio-Podcasts etwas länglich sein können. Erfahrene Podcasthörer wissen, dass es vor allem bei Wissenschaft-Podcasts noch länger gehen kann. Ich höre die Dinger meist mit doppelter Geschwindigkeit.
Haltet durch. Es lohnt sich und öffnet für diejenigen, die das noch nie gemacht haben, eine ganz neue Welt.

Podcasts und mehr

Das DLR gab gemeinsam mit der ESA einen deutschsprachigen Podcast zu Astronomie und Raumfahrt heraus. In Folge 30 dieses Podcasts („Raumzeit“ von Tim Pritloge) wird über diese Mission ausführlich gesprochen. Im Rahmen dieser Folge wird auch das Geräusch abgespielt, das der Lander Huygens erzeugt, als er durch die dicke Atmosphäre des Saturnmondes Titan absteigt. Er hatte ein Mikrofon an Bord, weil man sich erhoffte, eventuell Gewittertätigkeit zu hören. Dieser Fahrtwind ist definitiv ein Wind, der nicht von der Erde kommt. Es klingt so unwirklich und verblüffend. Dieses Geräusch ist eines der wertvollsten Weltraumgeräusche in meiner Sammlung. Oft wird der Saturnmond Titan mit der Erde verglichen. Die Rolle des Wassers übernimmt dort flüssiges Methan. Es gibt Flüsse, Seen und auch sonst so einiges, das auf der Erde durch fließendes Wasser entstand. Für Leben ist es aber leider zu kalt auf Titan.
Der Podcast wird gemeinsam mit dem Planetarium Zeiss Jena fortgeführt.Hier nun der Sound dieses ganz erstaunlichen Fahrtwindes. Er wird mit einer Engl. Erklärung eingeführt. Am Anfang ist eine relativ lange Pause, also nicht wundern, wenn es nicht gleich startet.

Fahrtwid Titan

Und hier folgt Folge 30 von Raumzeit.
RZ30 Cassini-Huygens

Folge 32 dieses Podcasts beschäftigt sich dann allgemein mit dem Saturnsystem.
Rz32 Das Saturnsystem

Mehrfach musste Cassini durch das Ringsystem des Saturn fliegen. Die Ringe des Saturn sind nicht geschlossen. Es gibt Lücken in die man fliegen kann, wenn man sie trifft. Eine ist nach Cassini benannt.
Außerdem gibt es zwischen den Ringen zonen, in denen fast keine Ringteilchen zu finden sind. Man dachte, es wären mehr Teilchen dort anzutreffen. Ein Glück, dass nicht, denn ansonsten hätten die Cassini zerstören können.
Um die Sonde zu schützen, flog man mit der Antenne voran durch die Ringe. die Teilchen, die auf die Antenne, die auch als Schutzschild ausgelegt war, treffen, kann man hier hören. Man hört hauptsächlich das Rauschen des Instruments. Die wenigen Teilchen, machen sich durch ein Knack-Geräusch im Sound bemerkbar. Man muss sich schon etwas rein hören.
Ein Geräusch, das von so weit her kommt, darf sich auch erlauben, schwer hörbar zu sein.
Und so klingt es.

Und

Hier
noch eine lesenswerte Erklärung des Sounds in Englischer Sprache.

Die Zeitschrift „Abenteuer Astronomie“ verteilte auf Twitter einen Link zu einem Fahrplan der letzten Stunden.
Zum Fahrplan

Ach, dafällt mir noch was zu Cassini und der Lichtgeschwindigkeit ein
Wir erleben Licht, als benötigte es keine Zeit zu seiner Ausbreitung.
Im Jahr 1676 stellte Ole Rømer, ein Astronom und Mitarbeiter bei Cassini , fest, dass die Zeiten zu welchen der Mond IO seinen Planeten, Jupiter, verdeckt werden sollte, je nach der Position der Erde zum Jupiter bis zu mehreren Minuten variiert.
Daraus schloss er, dass das Licht eine endliche Geschwindigkeit haben muss,
wenn die Verzögerungen vom Abstand zwischen Jupiter und der Erde abhängig sind.,
Der von Roemer ermittelte Wert für die Geschwindigkeit des Lichtes wich nur um 30 % vom tatsächlichen Wert ab. Die Messmethoden zur Bestimmung der Lichtgeschwindigkeit wurden in der Folgezeit immer genauer.
Cassini stimmte zunächst mit Roemer überein, verfiel dann aber doch wieder der Aristotelischen Vorstellung der zeitlosen Lichtausbreitung und des vorhandenseins eines raumfüllenden Äthers.
Ich schrieb darüber im Artikel „Nichts ist auch was – die Lehre von der Leere“.

Abschiedsvideo:
Das ist ein Deutsches Video von dem ich auch vorhin nur mal kurz das Intro angeschaut hab.

Hier ein kostenloses Ebook der Nasa mit vielen Saturn-Bildern: Keine Ahnung, wie zugänglich das ist, aber für unsere Sehlinge sicher spannend.

Beschreibung des Aussehens der Sonden:
Was jetzt hier noch fehlt, ist eine textuelle Beschreibung der Sonden. In RZ30 ist zwar eine, aber dann muss man tief in die Folge reinhören.
Vielleicht hat jemand sehendes, der hier mitliest Lust, uns das Ding zu beschreiben?

Apropos Beschreibung. Das ist es eben auch, was Podcasts für blinde Menschen so unglaublich interessant machen. Für die Sehenden gibt es vielleicht in den Shownotes Links und Bilder, aber beim Hören eben auch nicht. Deshalb muss alles beschrieben und erklärt werden. Wie im Radio.

Und ganz zum Schluss kommt doch tatsächlich noch ein Abschiedslied auf Cassini-Huygens.
Zuerst eine kleine Geschichte dazu, die mich sehr gefreut hat.
Zunächst teilte Spektrum der Wissenschaft, @spektrum einen Link über twitter, der mich zu einer Seite schickte, die nicht ganz barrierefrei war. Ich fand den Play-Button einfach nicht.
Flash-Kram halt.
Ich schrieb zurück, dass ich das Abschiedslied leider nicht anhören könne, weil ich die Barriere mit dem Abspielknopf nicht überwinde.
Kurz drauf kam dann ein Link zu Youtube, den ich hier mit euch teile. Damit gings dann.
Danke @Spektrum, dass ihr eine barrierefreie oder barrierearme Lösung gefunden habt. Jetzt kann ich auch bei dem Song mitmachen und mithören und mitfeiern und mittrauern…
Es war mir doch gleich klar, dass irgendwer etwas musikalisches zu diesem Anlass bringen wird.
Und bei so viel Italien in der Mission ist es auch nicht verwunderlich, dass das Stück in Italienischer Opern-Tradition erklingt, aber hört selbst.

A farewell to @CassiniSaturn, in the style @RobertPicardo sings best: opera!
Start the Song here.

Jetzt wünsche ich euch viel Freude und Anteilnahme am Ende dieser unglaublichen Mission.

Die Sonne tönt – Klingel oder Orgelpfeife


Liebe Leserinnen und Leser,

Viele von uns haben es noch in der Schule gelernt:
„Die Sonne tönt nach alter Weise,
in Bruder Sphären Wettgesang.
Und ihre vorgeschrieb’ne Reise,
vollendet sie mit Donnergang…“
Goethes Prolog im Himmel aus Faust I.

Mit der eher esoterischen Idee von Sonnenton, Erdenton und klingender Himmelsmechanik, haben wir uns in „Das Ohr am Teleskop“ und „klingende Planetenbahnen“ beschäftigt.
Schon klar, niemand kann die Sonne hören. Schon alleine deshalb nicht, weil 149 Mio Kilometer Vakuum zwischen ihr und uns liegen.

Es gibt aber in der Tat Gründe, sich damit zu beschäftigen, ob die Sonne klingt und schwingt, wie Schallwellen sich im Stern fortpflanzen, ob sie eher Glocke oder Orgelpfeife ist und vieles mehr.
Der Hauptgrund ist das Problem, dass wir nicht in die Sonne hinein sehen können. Was wir von ihr sehen, ist ihre Photosphäre, die alles überstrahlt und keinen Blick nach innen zulässt. Ich habe schon im vorigen Artikel erwähnt, dass uns ein Neutrino-Teleskop den Blick nach innen gewähren würde. Dieses wird es aber aufgrund der Eigenschaft, dass Neutrinos quasi mit nichts wechselwirken, nie geben. Mit Radio-Teleskopen kann man je nach dem, welche Wellenlänge man betrachtet, ein bisschen unter die Oberfläche schauen, aber auch nicht wirklich in den Stern hinein.

Vieles, was wir über das Innere von Sternen, und was dort passiert wissen, kommt aus Simulationen am Computer. Man spielt beispielsweise mit den Verhältnissen von Wasserstoff, Helium Metallen und Massen herum, und passt die Modelle an, bis sie das tun, was wir auch beobachten.
Mit „Metallen“ meinen Astronomen alle Elemente, die schwerer als Wasserstoff und Helium sind, weil die Hauptsache, die in einem Stern passiert, die Fusion von Wasserstoff zu Helium ist. Somit reduzieren Astronomen häufig den Rest der Chemie auf „Metalle“.

Und an dieser Stelle wird die Sache etwas absurd. Wir beobachten, dass die Sonne brodelt. Wir sehen, dass die Sonne schwingt. Wir hören leider nicht, wie sie klingt, obwohl der Schall im Stern enorm sein muss und neben der Konvektion für das Wallen, Brodeln, pulsieren und Schwingen des Sterns verantwortlich ist.
Die Sonne ist ein einziger riesiger Resonator.
Die Schwingungsmuster an ihrer Oberfläche verraten den Sonnenforschern viel über das Innere der Sonne, z. B. was sich in ihren Schichten tut, wie innere Schichten rotieren, man kann überprüfen, ob die Modelle des inneren der Sonne, z. B. Temperatur etc. ungefähr passen, und vieles mehr.
Heute greifen wir nur ein Klang-Phänomen heraus. Es ist gut möglich, dass hier noch weitere Artikel über die Astroseismologie folgen werden.

Schwingende Saiten

Im eindimensionalen, ist eine gespannte Saite das einfachste, was man sich schwingend und klingend vorstellen kann. Sie ist gespannt an zwei festen Punkten aufgehängt und schwingt, wenn man sie anspielt. An den Aufhängungen nicht, aber in der Mitte schwingt sie am meisten. Bei tiefen Instrumenten, z. B. bei einem E-Bass kann man das sogar sehen. Die Saite wird durch ihre relativ große Amplitude verwaschen im Bild. Teilt man nun die Saite in der Mitte, so erhält man die doppelte Frequenz. Bei Flageolett-Tönen, wo man die Mitte der Saite nicht ganz drückt, sondern nur leicht abdempft, schwingt dann die linke Hälfte stets gegenläufig zur rechten. Der Flageolett-Punkt schwingt, wie die beiden äußeren Aufhängungen der Saite nicht. Man nennt das auch Knoten.
Wir haben also die Aufhängungen der Saite und dazwischen in der Mitte einen Knoten. Links und Rechts davon jeweils einen Bauch. Musikalisch erklingt die Oktave. Diese schwingt doppelt so schnell, wie der Grundton der Seite.
Teilt man die Saite in Drittel,
bekommt man die Quinte, dann die nächste Oktave, die Quarte usw.
Die hier entstehenden übereinander geschichteten Töne nennt man in der Physik die Harmonischen.
Spielt man ein Instrument, so erklingen immer einige dieser Harmonischen gleichzeitig. Dieser Zusammenklang macht die Charakteristik, macht den Klang, macht den Sound des Instruments aus.
Im Grunde ist die Saite durch ihre Schwingung und ihre Obertöne in der Zeitlupe dann auch wellig, bzw. gekräuselt.

Schwingende Flächen

Wir gehen nun einen Schritt weiter in unserer akustisch-visuellen Beobachtung.
Es gibt aus dem 17. Jahrhundert einen interessanten Versuch des Physikers Chladni
Ernst Florens Friedrich Chladni, der 1787 die Schrift Entdeckungen über die Theorie des Klanges veröffentlichte, tat folgendes:
Er nahm eine Glasscheibe und spannte diese wagerecht an einer Ecke in eine Klemme. Dann bestreute er sie mit Sägespänen. Nun strich er den Rand der Scheibe mit einem Geigenbogen an, um sie in Schwingung zu versetzen. Die Vibration brachten nun die Sägespäne zum Hüpfen. Nun ist es aber so, dass es nun auch auf der Fläche Knoten gibt, die nicht schwingen. Andere Orte schwingen so stark, dass die Späne quasi abgeschüttelt werden. Es entstehen nun Muster aus Orten, wo sich die Späne sammeln, und Orten, wo nachher keine mehr sind, weil sie vertrieben wurden.
Je nach dem, wo und wie Kladny die Scheibe mit seinem Bogen anstrich, änderten sich diese Muster. In manchen Erlebnisparks, z. in Schloss Freudenberg, ist dieser Versuch zum selbst ausprobieren, aufgebaut.
Im Gegensatz zur Welle einer Saite, hat man nun schon eine gekräuselte Oberfläche auf der zweidimensionalen Scheibe.
Auf ein Musikinstrument übertragen, entspricht diese Situation z. B. auch einer Trommel, wo das Trommelfell über den Körper der Trommel gespannt ist.

Und nun überlegen wir uns im nächsten Schritt, wie sich das ganze mit unserer Sonne verhält, die ein Gasball ist.

Die schwingende Sonne

Ich sagte schon, dass die Sonne brodelt. Gasblasen steigen auf und vergehen, wegen des Wärmeaustausches. Selbiges geschieht in der Küche im Kochtopf. Da die Ränder der blasen, auch Granulen genannt, kühler sind, leuchtet die Sonne dort stets etwas dunkler. Auch durch den Dopplereffekt kann man sehen, wenn sich eine Granule auf uns zu bewegt. Dann ist das Licht etwas ins blaue hinein gestaucht. Ins rote, wenn sich eine von uns entfernt, z. B. auflöst.
Die Frage ist nun, ob dieses Geblubber analog zum Weinglas auch den ganzen Stern zum Schwingen bringt.
Der Kochtopf wird ja auch vom kochenden Wasser in Schwingung versetzt und mit ihm meist auch der ganze Herd samt Arbeitsplatte.
Manche Wasserkocher beginnen regelrecht zu singen mit Obertönen etc, wenn das Wasser langsam zu kochen beginnt.
Wie das ganze System schwingt, hängt beispielsweise davon ab, woraus die Küche gemacht ist, wie alles miteinander verbaut ist etc.
Der Schall pflanzt sich in unterschiedlichen Materialien und unterschiedlichen Aggregatzuständen (gasförmig, flüssig, fest) unterschiedlich schnell fort. Das machen Seismologen sich zu Nutze, um das innere der Erde zu erforschen. Plattentektonik, Vulkane erzeugen Schall. Das kann für Frühwarnsysteme unverzichtbar sein. Manchmal erzeugt man auch künstlich Schall, um ihn an anderer Stelle zu empfangen, um Rückschlüsse darüber zu erlangen, ob er beispielsweise durch eine Gasblase oder eine Flüssigkeit gegangen ist.

Das geht so natürlich bei der Vermessung unserer Sonne nicht. Dennoch lohnt es sich, das ganze Geblubbere und Gewabere auf ihrer Oberfläche zu beobachten. Genau das tut die Astroseismologie. So fand man beispielsweise eine Schwingung des ganzen Sterns, die sich alle fünf Minuten wiederholt. Das bedeutet, dass die Sonne sich alle fünf Minuten mal etwas aufbläht, um anschließend wieder zu schrumpfen. Man hat auch noch andere Schwingungsmuster gefunden. In diesem Sinne verhält sich unsere Sonne, als wäre sie eine Art Gong. Angeschlagen wird er von den sich stets verändernden Granulen, die wie Regen auf einem Blechdach den ganzen Stern quasi zum „klingen“ bringen.
Die Nasa hat das mal sonifiziert, wobei ich jetzt nicht weiß, ob sie den Fünf-Minuten-Rhythmus oder eine andere Eigenschwingung verwendet hat.

So klingt unsere Sonne

Die Materie an der Oberfläche der Sonne wird in erster Linie durch
die Granulation bewegt. Die in ihr aufsteigenden und absinkenden
Materieballen haben Durchmesser von etwa 1500 Kilometern. Das ist
ein Zehntel Prozent des Sonnendurchmessers. Der Doppler-Effekt
verrät uns ihre Geschwindigkeiten: diese liegen etwa bei einem Kilometer in der Sekunde. Innerhalb von Minuten lösen sie sich auf, um neuen Granulen Platz zu machen. Zu den Granulen kommen noch die Supergranulen, langsamer in ihrer Bewegung, doch größer und beständiger.

Lange schon weiß man, dass es Sterne gibt, die sich innerhalb von Tagen aufblähen und wieder zusammen ziehen. Man weiß auch, dass Sterne verschiedener Masse, alters und Lebensstadium unterschiedlich schwingen und sich deutlich in ihrer Bildung von Granulen unterscheiden.

Die Schallwellen in der Sonne verraten uns, wie unterschiedlich schnell sich einzelne Schichten bewegen. Erst tief in ihrem Innern dreht sie sich, wie ein starrer Körper, z. B. die Erde. Die anderen Schichten darüber laufen z. B. dieser Drehung voraus. Als Gasball kann die Sonne das so tun. Ganz erforscht und verstanden ist das aber alles bis heute noch nicht. Die neue Raumsonde, der Solar.Orbiter, wird uns hier sicherlich noch viel neue Erkenntnis verschaffen.

Man könnte noch sehr viel mehr über die Astroseismologie schreiben.
Ich habe hier alles natürlich nur sehr vereinfacht darstellen können, ansonsten wäre der Artikel ein Buch geworden.

Jetzt hoffe ich, dass ihr die Faszination mit mir teilt, dass die Sonne in einem gewissen Sinne quasi ein Gong ist.

Und damit verabschiede ich mich für heute.
Es grüßt euch
euer Gerhard.

Teilchensuche – Den Sonnen-Neutrinos auf der Spur


Liebe Leserinnen und Leser,
Am 16.09.2019 machte das Messinstrument KATRIN Schlagzeilen.
Da dieses am KIT steht und ich als Mitarbeiter des KIT darauf irgendwie stolz bin, möchte ich hier auch etwas zum Thema Neutrinoforschung auf dem Blog beitragen.

KATRIN ist ein Messinstrument wie ein Hochhaus, das so groß ist, dass man es über 8500 km hinweg um den ganzen Kontinent herum von Bayern per Schiff nach Karlsruhe schaffen musste, weil es auf dem Landweg nicht am Stück auf die Straßen gepasst hätte.
So ein riesiges Instrument wird dazu benutzt, um das kleinste Teilchen, das Neutrino zu wiegen.
Das kleinste Teilchen, das so klein und leicht ist, dass es fast nie irgendwo anstößt und mühelos die Erde, unseren Körper durchdringt. Milliarden dieser Teilchen treffen in jeder Sekunde auf jeden Quadratzentimeter unseres Körpers und wir merken nichts davon.
Bei Kernverschmelzung wie im Innern unsere Sonne, bei Sternexplosionen, Supernovae entstehen riesige Mengen dieser Geisterteilchen.
Das Universum ist voll davon. Es sollten sogar noch welche durchs All vagabundieren, die uns vom Urknall erzählen können.
Mit Katrin soll Klarheit darüber geschaffen werden, wie viel Masse Neutrinos denn nun besitzen. Noch ist die Masse nicht bestimmt, aber eine Obergrenze, die sie nicht übersteigen dürfte.
Aber, bevor man die Dinger wiegen kann, muss man sie erst mal finden. Darum geht es heute:

Lange Zeit war überhaupt nicht klar, ob Neutrinos eine Ruhemasse besitzen oder wie Photonen (Lichtteilchen) nicht. Diese Frage führt uns direkt zu unserer Sonne.
Aber der Reihe nach:

Der Name leitet sich da her, dass das Neutrino elektrisch neutral ist.
Es wechselwirkt quasi mit nichts und dennoch wird ein erheblicher Teil der Energie, die in unserem Kernfusionsreaktor Sonne, entsteht, von ihnen davon getragen.
Es gibt drei Arten von Neutrinos, Elektron- Myon- und Tau-Neutrinos.
Wenn es uns denn mal gelingt, mit einem Detektor eines einzufangen, dann erzählt es uns, wo es her stammt

• kosmischen Neutrinos (Weltall)
• solaren Neutrinos (Sonne)
• atmosphärischen Neutrinos (Erdatmosphäre)
• Geoneutrinos (Erdinneres)
• Reaktorneutrinos (Kernreaktoren)
• Neutrinos aus Beschleunigerexperimenten

Zunächst wurde das Neutrino, wie so vieles in der Physik nur postuliert, weil man es noch nicht nachweisen konnte.
Betrachtet man den radioaktiven Beta-Zerfall mancher Elemente, ein Neutron zerfällt zu einem Proton, einem Elektron und, ja zu was denn noch?
Man stellte fest, dass etwas fehlt. Die Bruchstücke des zerfallenen Atomkerns waren leichter, als ein kompletter Kern. Diese winzige fehlende Masse oder diese Energie, muss von etwas davon getragen worden sein, was man nicht messen konnte.
Auch die kinetische Energie der zerfallenen Teile war immer etwas kleiner, als sie hätte sein sollen.
1933 postulierte Wolfgang Pauli daher dieses Teilchen. Manche kennen diesen Pauli vielleicht noch aus dem Chemieunterricht als Pauli-Prinzip.
Auch bei der Kernverschmelzung geht die Bilanz nur mit Neutrinos auf, die entstehen und Energie davon tragen.
Also machte man sich daran, verschiedene Detektoren zu bauen, um Neutrinos nachzuweisen.

Alle Detektoren basieren auf der Tatsache, dass es ganz selten halt doch passiert, dass ein Neutrino ein Atom anrempelt. Das führt entweder zu einem kleinen Blitz, z. B. bei Wasser- oder Eis-Dbasierten Detektoren, wie dem Ice-Cube in der Antarktis, bzw. das angestoßene Atom nimmt die Energie des Neutrinos auf, und verwandelt sich in ein anderes Element. Ich wusste bis etwa Mitte der 90er Jahre nichts von Neutrinos und schon gar nicht, wie man sie nachweisen kann. Da hörte ich, dass sie im Kern unserer Sonne entstünden und dass deutlich mehr davon entstehen sollten, wie man nachgewiesen hatte.
Das Buch „Den Geheimnissen der Sonne auf der Spur“ von Prof. Rudolf Kippenhahn, war an dieser Stelle unglaublich erhellend für mich.

Ein Element, womit Neutrinos manchmal wechselwirken ist das Chlor-Isotop CL37
Es ist etwas schwerer, als das uns bekanntere CL35, weil es zwei Neutronen mehr in seinem Kern hat. Neutronen verändern die chemischen Eigenschaften von elementen quasi nicht.
Manchmal nimmt nun so ein Chlor37-Atom ein Neutrino bestimmter Energie auf, und verwandelt sich unter Abgabe eines Elektrons in ein Argon-Atom. Das ist ein Edelgas.
Darauf beruhte ein Experiment, das den Astrophysikern lange
Sorgen bereitete. In einem großen Tank war Chlor in Form der Verbindung Perchloräthylen den Neutrinos der Sonne ausgesetzt. Der Stoff ist eine Flüssigkeit, die man hauptsächlich in der Reinigungsindustrie verwendet, ähnlich dem uns bekannteren Tetrachlorkohlenstoff.
Raymond Davis von der Universität von Maryland, der dieses Experiment entwickelt hat, verwandte 38000 Liter dieses Stoffes.
Da auch andere Strahlung ungewollt diese Reaktion auslösen können, schirmte man den Tank ab, indem man ihn in eine aufgelassene Goldmine, etwa 1500 m unter die Erdoberfläche packte. Nur Neutrinos können so eine dicke Schicht ungehindert durchqueren.
Außerdem war der Tank noch mit einem Wassertank umgeben, da Wasser ganz gut gegen Strahlung isoliert.
Welche Energie ein sog. Sonnenneutrino ungefähr haben könnte, erfuhr man durch Sonnen-Simulationen im Computer.
Da Neutrinos nur dort entstehen, wo die Kernfusion stattfindet, würde man, gäbe es ein Neutrinoteleskop, die Sonne nur als Scheibchen eines Zehntels der sichtbaren, wahrnehmen. So ein Teleskop wird es nie geben. Somit können wir nicht in die Sonne hinein schauen.
Man konnte nun auf das Modell basierend festlegen, wieviele Neutrinos dieser bestimmten Sorte ungefähr von unserer Sonne zu erwarten wäre. Die meisten verfehlen den Detektor natürlich, bzw. gehen durch ihn hindurch, ohne mit einem Cl-Atom zu reagieren.
Leider reagiert das Cl37 nur auf hochenergetische Neutrinos, die nicht von dem Prozess her rühren, der die meiste Energie erzeugt, der Verschmelzung von Wasserstoff zu Helium. Für diese niderenergetischen Neutrinos ist das Cl37 blind.

Diese Neutrinos bei denen Chlor funktioniert, machen nur etwa 1,5 % des Neutrinostromes aus, der von der Sonne kommen sollte.
Interessant ist an dieser stelle z. B., wie man in 650 Tonnen Perchloräthylen nach
35 Argonatomen suchen soll.
Lange Rede, kurzer Sinn. Selbsd, wenn man alle möglichen statistischen Fehler einbezog, kamen nach sieben Jahren Laufzeit nur ein fünftel des erwarteten Neutrino-Werts heraus.
Da die Sonnenmodelle außer den Neutrinos im wesentlichen alle Eigenschaften des Sterns richtig widerspiegelten, konnte ja auch etwas am Experiment falsch sein.
Aber auch andere Experimente, z. B. mit Wasserdetektoren zeigten alle zu wenige Neutrinos von der Sonne an.
Verständlicherweise versuchte man nun an verschiedenen Parametern der Modelle zu drehen, was ich uns an dieser Stelle erspare, aber es half nichts und machte das Modell im Grunde schlechter.

Heute weiß man, dass das Defizit der Neutrinos da her rührt, dass Neutrinos eine Ruhemasse haben müssen. Sie können sich auf ihrem Weg von einer Sorte in eine andere verwandeln.
Das bedeutet, dass viele Sonnenneutrinos bei uns als etwas anderes ankommen, als wonach wir suchen und worauf unser Detektor reagiert.
Diese sog. Fähigkeit zu oszilieren funktioniert nur dann, wenn man eine Ruhemasse zugrunde legt. Wie groß diese ist, wissen wir noch nicht. Wir wissen seit KATRIN bis jetzt nur, dass sie nicht größer als ein Elektronenwolt sein sollte. Früher ging man von 2 Ev aus. Somit ist man jetzt schon doppelt so gut, als vorher. Diese Erkenntnis stammt genau aus dem KATRIN-Messinstrument, das hier in Karlsruhe steht.
Wir dürfen gespannt sein, was hier noch geschieht.

Ihr findet hier einige super spannende Links, die alles wesentliche zu KATRIN erklären. Es lohnt sich, hier mal rein zu schauen.
Ein schönes Youtube-Video über die Geschichte und den Aufbau gibt es hier.
Eine Meisterleistung der KIT-Pressestelle findet ihr hier.
Alle guten Dinge sind drei.
Eine Radiosendung des SWR würdigt dieses Ergebnis ebenfalls.

Und damit verabschiede ich mich für heute und hoffe, dass der Artikel etwas Freude macht.

Droht Gefahr von unserer Sonne?


Liebe Leserinnen und Leser,
Nach einer etwas längeren Urlaubspause, melde ich mich hiermit auf Blindnerd zurück:
„Die Sonne, der Stern von dem wir leben“ ist der Titel des wunderbaren Buches von Prof. Rudolf Kippenhahn.

Ohne zweifel.
Sie spendet Licht und Wärme und ohne sie ist kein Leben möglich.
Sie schickt uns ihre Energie im Überfluss, so dass sogar noch mehr als genügend übrig bleibt, damit wir Strom daraus gewinnen können.
Im Grunde ist jede Energieform außer der Kernkraft irgend wann mal Sonnenenergie gewesen. Sie schlummert in Kohle, die mal Pflanzen waren, die durch ihr Licht wuchsen, im Erdöhl und im Holz an dessen Feuer wir uns wärmen. Wind und Wasserkreislauf werden von ihr angetrieben, was jeder noch aus dem Biologieunterricht kennt.

In alten Zeiten glaubte man, die Sonne sei das vollkommenste, göttlichste, reinste und perfekteste Objekt am Himmel.
Aber spätestens, als man Fernrohre auf sie richtete, fand man, dass sie doch nicht ganz so glatt und vollkommen ist. Sie hat eine etwas gekörnte Oberfläche und noch schlimmer. Sogar Flecken. Und damit noch immer nicht genug. Diese Flecken bewegen sich und es gibt Zeiten mit vielen und Zeiten mit wenig bis gar keinen Sonnenflecken.
Galilei hat sie beobachtet und gezeichnet.
Durch intensive Beobachtungen der Sonne, z. B. Samuel Heinrich Schwabe über 40 Jahre lang, oder Die Hausfrau Siglinde Hammerschmidt über 20 Jahre lang,
fand man heraus, dass alle 11 Jahre die Sonne maximal viele Flecken aufweist.
Was diese Flecken aber waren, konnte man sich früher nicht erklären.

Manchmal kam es aber vor, dass in der Nähe von Sonnenflecken die Sonne plötzlich eine Art Lichtausbruch hatte. Kurz nach so einem Ereignis konnte man dann vermehrt Polarlichter sehen, Kompassnadeln erzitterten. Telefondrähte schlugen Funken, Uboote wurden falsch geortet, weil ihr Funk gestört wurde. In ganzen Landstrichen fielen die Stromnetze aus, als es dann welche gab etc.
Immer dann, wenn so ein Sonnenausbruch, auch Flare genannt, auf die Erde zeigt, dann passieren etwa zwanzig Stunden später derartige Dinge.
Was solch ein Ausbruch uns anhaben kann, konnte man am 01.09. vor 150 Jahren erleben.
Als der Astronom Carrington gerade Sonnenflecken zählte, leuchtete neben einer Fleckengruppe plötzlich ein riesiger Sonnenflare auf.
Schon bald darauf konnte man Polarlichter bis fast zum Äquator beobachten, Kompassnadeln zitterten, Telefonleitungen schmolzen oder schlugen Funken und Stromnetze fielen aus.
Vor einigen Jahren brachte ein ähnliches schwächeres Ereignis dieser Art das Kanadische Stromnetz zum erliegen.

Man weiß mittlerweile, dass Sonnenflecken durch sehr starke Magnetfelder entstehen. Diese können sich so nahe kommen, dass sie sich berühren und auslöschen. Dass das funktioniert liegt daran, dass die Sonne sich im sog. Plasmazustand befindet. Das ist neben fest, gasförmig und flüssig ein weiterer Aggregatzustand mit seltsamen Eigenschaften, Die wir uns für einen weiteren Artikel vorbehalten, in welchem wir über den Stoff der Sonne sprechen werden.
Tatsache ist, dass wenn sich Magnetfelder derart auslöschen, sehr viel Energie und auch Sonnenmaterial in den Weltraum geschleudert wird.
Das sind dann geladene Teilchen. Treffen die nun auf das Magnetfeld der Erde, dann wird dieses durchgeschüttelt. Für Stromleitungen kann das bedeuten, dass sie wie eine Antenne wirken, weil der Sonnensturm in sie hinein induziert. Dadurch entstehen in den Leitungen Ströme, die dort nicht hin gehören. Sicherheitssysteme schalten dann Kraftwerke aus.
Es entstehen großartige Polarlichter, weil die geladenen Sturmteilchen mit den Molekülen unserer Atmosphäre rekombinieren. Das kann man sich so ähnlich vorstellen, wie eine Neonröhre funktioniert.
Auch Polarlichter behandeln wir mal extra.

Nun müssen wir uns berechtigt die Frage stellen, welche Konsequenzen solch ein heftiger Sonnensturm, wie das sog. Carrington-Ereignis hätte, wenn er die Erde träfe.
Wie oben schon erwähnt, legt er Stromnetze lahm, zerstört Leitungen und vieles mehr. In heutiger Zeit wären seine Auswirkungen noch verherender. Mittlerweile kreisen tausende Kommunikationssatelliten um unsere Erde. Diese würden beschädigt, bzw. fielen vorübergehend aus. GPS, Internet, Fernsehen und andere Kommunikationsmöglichkeiten könnten nachhaltig gestört werden. In diesem Sinne hängt unsere Kommunikation an einem seidenen Faden, denn es gibt keinen Grund, dass so etwas nicht wieder passieren könnte. Sonnenflecken kommen und gehen und damit auch die sehr komplexen Magnetfelder, die wenn sie sich auslöschen, diese Sonnenstürme erzeugen.

Wie die magnetische Sonne und ihr Dynamo genau funktionieren, ist bis heute noch nicht ganz verstanden. Auch dazu muss ich leider auf einen weiteren Artikel vertrösten.

Was also tun, wenn …
Es bleibt uns nicht viel mehr, als das Weltraumwetter, wie man die Sonnenaktivität auch bezeichnet, zu beobachten. Insbesondere in Zeiten hoher Aktivität mit vielen Sonnenflecken, müssen wir auf der Hut sein. Wir müssen ununterbrochen beobachten und besitzen ein Warnsystem für das Weltraumwetter. Bricht in einer uns zugewandten Fleckengruppe ein Flare aus, so nehmen wir ihn ungefähr 8 Minuten später war, weil das Licht von der Sonne so viel Zeit benötigt, bis es uns erreicht.
Zum Glück ist der Teilchenschauer deutlich langsamer unterwegs, als die Lichtgeschwindigkeit. Wir können dann kritische Systeme ausschalten, und den Sturm abwarten. Satelliten schaltet man dann mal besser in ihren Save-Mode, obwohl man das nur ganz ungern tut, denn man weiß nicht, ob man sie wieder aufwecken kann.
Stromnetze gestaltet man vielleicht besser so, dass sie sich nicht mehr stück für Stück als Kettenreaktion abschalten können (dezentral)
Was aber alles dann noch ausfallen würde, ist relativ ungewiss.

Nun, wie oft müssen wir mit so etwas rechnen?
Die Sonne ist im gegensatz zu unserer Erde riesig. 1,44 Mio Kilometer gegen 10.000 Kilometer im Durchmesser.
Außerdem sind wir ungefähr 150 Mio Kilometer von der Sonne entfernt.
Nun kann die Sonne einen Sturm in alle Richtungen abschießen. Das bedeutet, dass die meisten Sonnenstürme uns nicht treffen, weil sie z. B. auf der gegenüberliegenden Seite der Sonne los gehen. Dann kriegen wir davon nichts mit.
So kann man berechnen, das statistisch gesehen so ein großer Sonnensturm vielleicht ein zwei mal pro Jahrtausend auftritt.
Wie gesagt. Sonnenausbrüche gibt es immer. Vor allem in Zeiten hoher Sonnenaktivität, aber uns treffen sie zum Glück eher selten. Aber ein bis zwei pro Jahrtausend sind nicht nie.

Somit ist es unsere hohe Aufgabe, das Weltraumwetter zu beobachten und Notfallpläne auszuarbeiten für den Fall der Fälle. Hoffen wir, dass wir sie nie brauchen…