Achtzehnter Dezember des Blindnerd-Adventskalenders 2023

Meine lieben,
im Artikel zum 18. Dezember würdigen wir eine Frau, die sich wissenschaftlich mit dem „Funkeln“ der Sterne befasste. Das meiste Funkeln hier auf Erden entsteht zwar durch die Bewegung unserer Atmosphäre, aber es gibt tatsächlich Sterne, die periodisch ihre Helligkeit verändern. Unsere Sonne tut das auch, aber für uns nicht sichtbar.

Henrietta Swan Leavitt, geboren am 4. Juli 1868 in Lancaster, Massachusett, gestorben am 12. Dezember 1921 in Cambridge, Massachusetts war eine US-amerikanische Astronomin. Sie entdeckte 1912 die Perioden-Leuchtkraft-Beziehung, das heißt den Zusammenhang zwischen der absoluten Leuchtkraft der Sternklasse der Cepheiden (Helligkeitsveränderliche Sterne) und deren Perioden unterschiedlicher Helligkeit. Sie legte damit den Grundstein zur Verwendung der Cepheiden als Standardkerzen, um zunächst Entfernungen zu nahe gelegenen Galaxien bestimmen zu können.
Ich finde es äußerst bemerkenswert, dass es einen zuverlässigen Zusammenhang zwischen der Periode in welcher so ein Stern heller und dann wieder dunkler wird und der absoluten Helligkeit gibt. Somit eignet sich dieser Zusammenhang tatsächlich zur Entfernungsbestimmung, denn die Helligkeit konnte man schon ganz gut messen, und wenn man jetzt noch die „Blink-Periode“ betrachtet, dann klappt das mit der Entfernungsbestimmung schon ganz gut.

Levitts Methode reicht bis zu einer Entfernung von 20 Millionen Lichtjahren. Bevor Levitt diese Beziehung bemerkte, benutzten Astronomen Parallaxe und Triangulation die bis zu einigen hundert Lichtjahren benutzt werden können. Unsere Galaxie, die Milchstraße, ist aber schon 105700 Lichtjahre groß. Für das Messen von größeren Entfernungen benutzt man auch die maximale Masse von weißen Zwergen. Das ist aber eine andere Geschichte…

Für Astronomie interessierte sie sich bereits schon in der Schule. Durch eine Krankheit wurde sie fast vollkommen taub. Trotzdem bekam sie 1895 am Harvard College Observatory eine Volontärstelle, und sieben Jahre später wurde ihr eine feste Anstellung angeboten (für 30 Cent die Stunde). Dort beobachtete und katalogisierte Leavitt veränderliche Sterne, allein 1904 konnte sie 172 veränderliche Sterne in der großen und 59 in der kleinen Magellanschen Wolke entdecken. Ihre Beobachtungen musste sie auf die Auswertung von Fotografien beschränken, weil Frauen der Gebrauch des Teleskops verboten war.
Interessant ist an dieser Stelle, dass der gehörlose Astronom John Goodricke sich mit ganz ähnlichen Dingen beschäftigte. Die beiden konnten sich nicht gekannt haben.
Über ihn schrieb ich in meinem Buch in „Wissenschaftler mit vier Sinnen“.
Ein Jahr darauf berichtete sie von 843 neuen veränderlichen Sternen in der kleinen Magellanschen Wolke. 1912 entdeckte Leavitt die Perioden-Leuchtkraft-Beziehung bei Cepheiden.
1913 gelang dem Astronomen, Ejnar Hertzsprung dann die Bestimmung der Entfernung einiger Cepheiden der Milchstraße, womit die Entfernung zu allen Cepheiden kalibriert werden konnte. Als 1920 durch Edwin Hubble Cepheiden identifiziert wurden, die Millionen Lichtjahre entfernt lagen, wies er mit Hilfe des Modells von Leavitt nach, dass es sich dabei um Sterne in anderen Galaxien wie in der Andromedagalaxie handelte. Auch konnten erstmals Entfernungen zwischen verschiedenen Galaxien bestimmt werden. Vor diesen Entdeckungen konnte man nur mit Entfernungen bis zu 100 Lichtjahren rechnen, danach stellten Distanzen bis zu 10 Millionen Lichtjahren kein Problem mehr dar.
In all den Jahren der Beobachtung des Sternenhimmels konnte Leavitt vier Novae beobachten und über 2400 neue veränderliche Sterne entdecken. Außerdem entwickelte sie eine neue photographische Messtechnik, die 1913 internationale Anerkennung fand und unter dem Namen Harvard-Standard bekannt ist.
Henrietta Swan Leavitt gilt als Pionierin der Wissenschaft, und das nicht nur, weil sie eine der wenigen und ersten Frauen in höheren Wissenschaften war. Sie war Mitglied in diversen Verbindungen wie

  • Phi Beta Kappa, der American Association of University Women,
  • der American Astronomical and Astrophysical Society,
  • der American Association for the Advancement of Science
  • und ein Ehrenmitglied der American Association of Variable Star Observers.

1921 starb Henrietta Swan Leavitt an Krebs. Zu ihren Ehren tragen der 1973 entdeckte Asteroid (5383) Leavitt und ein Mondkrater (Mondkrater Leavitt) ihren Namen. In Unkenntnis ihres Todes erwog der schwedische Mathematiker Gösta Mittag-Leffler 1925, Leavitt für einen Nobelpreis vorzuschlagen. Da dieser jedoch nicht postum verliehen wird, ging sie letztlich leer aus.

Und nun geht es wie immer zum Schluss zu unserer literarischen Weihnachtsgeschichte.

Siebzehnter Dezember des Blindnerd-Adventskalenders

Meine lieben,
zum dritten Advent 2023 ehren wir eine Frau, die die Mondfahrt erst möglich machte.

Margaret Hamilton, geboren am 17. August 1936, ist eine Pionierin der Informatik, deren Beitrag zur Entwicklung von Softwarearchitektur und -technologie einen entscheidenden Einfluss auf die Computerrevolution hatte. Ihr Name wird oft in einem Atemzug mit der Apollo-Mondmission genannt, aber ihre Karriere und Innovationen erstrecken sich weit darüber hinaus.

Margaret Hamilton studierte Mathematik an der Earlham College in Indiana und schloss ihr Studium 1958 ab. Schon während ihrer College-Zeit zeigte sie ein herausragendes Interesse an Mathematik und Logik, was später für ihre Erfolge in der Softwareentwicklung von entscheidender Bedeutung sein sollte.

Ihre Karriere begann sie am Massachusetts Institute of Technology (MIT), wo sie am Draper Laboratory als Programmiererin tätig war. Dort begann sie, sich mit Softwareentwicklung und Systemarchitektur auseinanderzusetzen, was zu dieser Zeit noch ein aufstrebendes und wenig erforschtes Gebiet war.

Der Wendepunkt in Hamiltons Karriere kam in den 1960er Jahren, als sie für das Apollo-Programm der NASA arbeitete. Sie leitete das Softwareentwicklungsteam des Instrument-Flugrechners, der für die Navigation und Steuerung der Apollo-Raumfahrzeuge verantwortlich war. Während dieser Zeit entwickelte sie das Konzept des „Software Engineering“ und trug dazu bei, Standards und Methoden für die Softwareentwicklung zu etablieren.

Hamilton und ihr Team führten wegweisende Konzepte wie „Priority Scheduling“ und „End-to-End Testing“ ein. Das Konzept des Priority Scheduling ermöglichte es, kritische Aufgaben mit höchster Priorität in den Vordergrund zu stellen, was für die Sicherheit der Apollo-Missionen von entscheidender Bedeutung war. Das End-to-End Testing, bei dem die gesamte Softwareumgebung simuliert wurde, half, potenzielle Fehler und Schwachstellen zu identifizieren, bevor die Software in den Weltraum geschossen wurde.

Margaret Hamiltons Beitrag zum Apollo-Programm und ihre wegweisenden Ideen in der Softwareentwicklung haben ihre Spuren hinterlassen. Ihr Erbe ist nicht nur in den Weiten des Weltraums zu finden, sondern auch in der Art und Weise, wie Softwareentwicklung heute betrieben wird. Sie gründete später ihre eigene Softwarefirma, Hamilton Technologies, und setzte sich weiterhin für Standards in der Softwareentwicklung ein.

Ihre herausragenden Leistungen wurden mit zahlreichen Auszeichnungen gewürdigt, darunter die NASA’s Exceptional Space Act Award. Im Jahr 2016 wurde sie mit der Presidential Medal of Freedom, der höchsten zivilen Auszeichnung in den USA, geehrt.

Margaret Hamilton ist zweifellos eine Wegbereiterin der Informatik, die mit ihrer Arbeit die Grundlagen für die heutige Softwareentwicklung legte. Ihr Einfluss erstreckt sich weit über die Apollo-Mission hinaus und wird in den kommenden Jahren und Jahrzehnten weiterhin in der sich ständig weiterentwickelnden Welt der Technologie spürbar sein. Margaret Hamilton bleibt eine Inspiration für künftige Generationen von Informatiker:innen und Ingenieur:innen, die die Grenzen des Möglichen in der Softwareentwicklung neu definieren wollen.

Wie spannend das Auspacken eines Weihnachtsgeschenkes sein kann, erfahren wir in unserer heutigen Weihnachtsgeschichte .

Vierzehnter Dezember des Blindnerd-Adventskalenders 2023, Frauen, die Forschen

Meine lieben,
So lasst uns heute das Türchen vom 14.12.2023 öffnen, indem wir die Person und das Lebenswerk von Cecilia Payne würdigen.
Sie fand heraus, woraus unsere Sterne hauptsächlich bestehen, aus Wasserstoff und Helium. Das war in den 20er Jahren des letzten Jahrhunderts durchaus noch nicht bekannt. Man stellte sich vor, dass z. B. unsere Sonne ganz ähnlich aufgebaut sei, wie unsere Erde.
Mit ihrer Entdeckung musste sich diese Frau gegen sehr namhafte männliche Wissenschaftler durchsetzen.
Sie studierte ab 1919 Naturwissenschaften, insbesondere Astronomie, an der Universität Cambridge, die damals aber Frauen keine akademischen Grade zuerkannte. Ab 1923 arbeitete sie im Rahmen eines Programms zur Frauenförderung des Observatoriums der Harvard-Universität als erste Doktorandin von Harlow Shapley. Sie arbeitete mit Annie Jump Cannon zusammen, die sich mit der Auswertung von Sternspektren beschäftigte.
1925 wurde sie am Radcliffe College promoviert, denn auch Harvard war dafür zu konservativ. Allgemein wurde damals angenommen, dass es keine signifikanten Unterschiede in der stofflichen Zusammensetzung zwischen der Erde und den Sternen, wie der Sonne, gab. In ihrer Dissertation wies sie jedoch nach,
dass das Aussehen von Sternenspektren im wesentlichen daher rührte, dass durch die hohen Temperaturen in den Sternen das meiste Material unterschiedlich ionisiert vorliegt, und nicht daher, dass Sterne derart komplex zusammen gesetzt wären, wie unsere Erde.
Sie fand heraus, dass Sterne im wesentlichen aus Wasserstoff und Helium bestehen.
Ihren Befund, Wasserstoff und Helium seien die Hauptbestandteile, musste sie allerdings unter dem Druck von Henry Norris Russell, Shapleys Lehrer, widerrufen. So fügte sie in ihre Arbeit die bemerkung ein:

almost certainly not real

Nach unabhängigen Messungen bestätigte Russell aber 1929 dieses Ergebnis. Ihre Doktorarbeit wurde im Nachhinein als die „zweifellos brillanteste Doktorarbeit“ aus dem Fachbereich Astronomie bezeichnet.
1956 wurde sie die erste weibliche Professorin für Astronomie der Harvard University.
Hier noch einige Fakten zu ihrer Person
1931 wurde Payne amerikanische Staatsbürgerin. Auf einer Reise durch Europa 1933 lernte sie in Deutschland den in Russland geborenen Astrophysiker Sergej I. Gaposchkin kennen. Sie verhalf ihm zu einem Visum für die Vereinigten Staaten, und die beiden heirateten im März 1934 und ließen sich in Lexington, Massachusetts, nieder. Payne fügte den Namen ihres Mannes zu ihrem eigenen hinzu, und die Payne-Gaposchkins hatten drei Kinder: Edward, Katherine und Peter. Sie starb in ihrem Haus in Cambridge, Massachusetts, am 7. Dezember 1979. Kurz vor ihrem Tod ließ Payne ihre Autobiografie als The Dyer’s Hand privat drucken. 1984 wurde sie in dem Band Cecilia Payne-Gaposchkin: an autobiography and other recollections nachgedruckt.
Paynes jüngerer Bruder Humfry Payne (1902–1936), der die Schriftstellerin und Filmkritikerin Dilys Powell heiratete, war Direktor der British School of Archaeology in Athen. Paynes Enkelin Cecilia Gaposchkin ist Professorin für spätmittelalterliche Kulturgeschichte und französische Geschichte am Dartmouth College.
Seit 1936 war Payne-Gaposchkin Mitglied der American Philosophical Society.[6] 1943 wurde sie in die American Academy of Arts and Sciences gewählt.

Sie erhielt unter anderem folgende Ehrungen

  • 1934 Annie J. Cannon Award in Astronomy
  • 1976 Henry Norris Russell Lectureship
  • Der Asteroid (2039) Payne-Gaposchkin wurde nach ihr benannt.

Für heute werde ich es bei diesem für meine Verhältnisse kurzen Artikel belassen,
denn ich habe etwas besseres und sehr hörenswertes für euch.
Anfang Januar 20222 strahlte SWR2-Wissen eine Folge über diese großartige Astronomin aus. In dieser Sendung ist sogar ihre Stimme zu hören.
Aus diesem Grunde schicke ich euch gleich auf die Seite, wo ihr die Sendung entweder direkt anhören, bzw. sowohl die Audio-Datei, als auch das Skript zur Sendung herunterladen könnt. Das kann ich euch an dieser Stelle nicht ersparen, dass ihr auf die Seiten des SWR müsst, weil ich das Audio aus Gründen des Urheberrechts nicht direkt auf dem Blog veröffentlichen darf.
Lehnt euch also zurück und hört euch diese äußerst spannende und wissenswerte Sendung an.
Wer Probleme mit der Bedienung der Seiten des SWR hat, darf sich z. B. über das Kontaktformular gerne an mich wenden. Wir finden einen Weg.

Zur Sendung geht es hier lang.
Und nun, zum Schluss gibt es wieder unsere literarische Weihnachtsgeschichte.

Dreizehnter Dezember des Blindnerd-Adventskalenders 20203, Frauen die Forschen

Meine lieben,
es kann gut sein, das der eine oder die andere das Gefühl hat, „Der hat von der doch schon erzählt“. Ja, es stimmt. Gut aufgepasst. Allerdings ist der Adventskalender eine besondere Situation, wo ich mich mal wiederholen darf, weil hier viele Menschen mitlesen, die unter dem Jahr eher weniger meinen Blog besuchen.
Dann hoffe ich mal, dass mir der heutige dreizehnte etwas mehr Glück bringt, als der gestrige Tag. Diejenigen, welche meinem Blog per Mail folgen, haben gestern keinen Newsletter erhalten. Ich konnte das System einfach nicht überreden, den neuen Beitrag zu teilen. Also gehen wir es an. Auf ein neues.
Heute würdigen wir das Lebenswerk von Williamina Fleming.

Leben

Ihre Eltern waren Robert Stevens und Mary Walker Stevens. Williamina besuchte öffentliche Schulen in Dundee (Schottland) und wurde mit 14 Jahren Lehrerin. Das stelle man sich vor. Also wenn ich mir überlege, wo ich mit vierzehn Jahren war…

Sie heiratete James Orr Fleming. Als sie 21 Jahre alt war, übersiedelte das Paar in die USA nach Boston. Ihr Ehemann verließ sie, als sie mit ihrem Sohn Edward schwanger war. Das muss sehr schwer für sie gewesen sein, in dieser Zeit quasi ein vaterloses Kind als allein erziehende Frau groß zu ziehen. Das war ein großes gesellschaftliches Problem und sicherlich irgendwie auch eine Schande.

So musste sie sich eine Arbeit suchen, um den Lebensunterhalt für sich und ihr Kind zu verdienen.
Sie fand eine Stelle als Angestellte im Haus des Professors Edward Charles Pickering. Pickering, beeindruckt von der Intelligenz Flemings und unzufrieden mit seinen männlichen Assistenten am Harvard-College-Observatorium, erklärte, seine Hausangestellte könne deren Arbeit besser erledigen.

So beauftragte Pickering im Jahr 1881 in dem Observatorium Williamina mit Büroarbeiten und ab 1886 mit der Klassifikation von Sternen.

Lebenswerk

Ihr System basierte darauf, jedem Stern einen Buchstaben zuzuordnen in Abhängigkeit davon, wie viel Wasserstoff in seinem Spektrum beobachtet werden konnte. A-Sterne hatten am meisten Wasserstoff, B-Sterne etwas weniger, und so weiter. Insgesamt gruppierte Fleming die Sterne in 17 Kategorien ein.
Annie Jump Cannon , auch eine Frau, verbesserte später das System und entwickelte eine einfachere Klassifizierung auf Basis der Temperatur.

Fleming beteiligte sich an der Katalogisierung der Sterne, der später als Henry-Draper-Katalog veröffentlicht wurde. In neun Jahren erfasste sie mehr als 10.000 Sterne. Bei ihrer Arbeit entdeckte Williamina Fleming 59 Gasnebel, 310 veränderliche Sterne und 10 Novae. 1907 veröffentlichte sie eine Liste von 222 veränderlichen Sternen, die sie neu entdeckt hatte.
Pickering übertrug ihr die Verantwortung für Dutzende von Frauen, die für die Durchführung mathematischer Klassifikationen angestellt waren, und sie redigierte die Publikationen des Observatoriums.
Frauen wurden häufig als sog. Rechnerinnen angestellt, weil man sie deutlich geringer bezahlte. Solchen Rechnerinnen oder auch Computer genannten Frauen verdanken wir die Mondlandung. denn sie berechneten dafür die Flugbahn der Raketen. An dieser Stelle will ich euch ganz dringend den Film „Hidden Figures“ empfehlen. Dieser handelt genau von diesen Frauen, die den Mondflug berechneten und dazu noch dunkler Hautfarbe waren. Jeder weiß, dass solche Menschen in den 60er Jahren des letzten Jahrhunderts großen Diskriminierungen und Benachteiligungen ausgesetzt wahren. Das ist bis heute noch nicht völlig überwunden. Es gibt diese Geschichte auch als Buch. Auf Deutsch heißt es
Im Kernschatten des Mondes – Die unbekannten Heldinnen der NASA, Taschenbuch von Margot Shetterly, HarperCollins, 9783959674034
Es wurde auch in den Hörbüchereien für blinde Menschen aufgelesen.

Und wir lernten unsere heutige Astronomin im Zusammenhang mit sog. Weißen Zwergen kennen.
Im Jahre 1910 waren Teleskope schon deutlich besser und empfindlicher, so dass diese Objekte langsam beobachtet werden konnten.
In diesem Jahr entdeckten die Astronom*innen Henry Norris Russell, Edward Charles Pickering und Williamina Fleming, dass
40 Eridani B ein sonnennaher schwacher Stern ist, Dieser sollte eigentlich eine rote Zwergsonne sein.
Er leuchtet entgegen aller Erwartungen weiß und muss daher eine sehr hohe Oberflächentemperatur besitzen. Er ist also ein weißer Zwerg, der erste, welcher je erblickt wurde.
Über diese Zwerglein schrieb ich in Station acht auf unserer Reise zu den schwarzen Löchern.

Ihr Appell

Fleming gelangte zu der Überzeugung, dass die Astronomie ein geeignetes Betätigungsfeld für Frauen ist. In ihrem Artikel A Field For Woman’s Work in Astronomy ging sie auf die Tätigkeit von sich und ihren Kolleginnen am Observatorium näher ein und versuchte die Motivation von Frauen zu stärken, sich in die Astronomie wissenschaftlich einzubringen.
Da rennt sie bei mir offene Türen ein. Und außerdem ist die Astronomie eines der inklusivsten Dinge, mit welchen man sich beschäftigen kann.

Würdigungen

1899 erhielt sie den Titel Kurator für Astronomische Fotografien und 1906 wurde sie Ehrenmitglied der Königlichen Astronomischen Gesellschaft von London – die erste Frau, der diese Ehre zuteil wurde. Kurz darauf erhielt sie ein Ehrenstipendiat am Wellesley College. Kurz vor ihrem Tod zeichnete die Mexikanische Astronomische Gesellschaft sie für die Entdeckung neuer Sterne mit der Guadalupe Almendaro Medaille aus.
Nach ihr wurde 1970 der Mondkrater Fleming (zusammen mit Alexander Fleming) benannt, sowie 2022 der Asteroid (5747) Williamina.

So, und nach all dem geht es wieder zu unserer heutigen literarischen Weihnachtsgeschichte.

Zehnter Dezember des Blindnerd-Adventskalenders, Forschende Frauen

Meine lieben,
auch dies ist ein Türchen, das aus organisatorischen Gründen zu früh erscheint. Ob ihr eure Neugierde zügeln könnt, oder gleich alle heute erschienenen vorproduzierten Türchen aufreißt, liegt bei euch. Mir ist als Kind das Warten bei den Schokoladen-Adventskalendern oft nicht gelungen. Ein Heißhunger nach Schokolade sorgte häufig für eine Plünderung vor der Zeit.
Wie auch immer. Kommen wir zu unserer heutigen Frau:

Lasst uns den zweiten Advent 2023 damit begehen, indem wir die Person und das Lebenswerk von Maria Mitchell betrachten und würdigen.
Ich kam auf Maria Mitchell, weil sie mir vor einigen Jahren in der Adventszeit großes Kopfzerbrechen bereitete, denn sie war in einem Weihnachtsrätsel der @Weltraumreporter so gut versteckt, dass sogar Google zumindest am Anfang völlig nutzlos war, und ChatGPT gab es noch nicht. Ich fand sie dann im Buch „Die Planeten“ von Dava Sobel. In diesem Buch ist ein ganzes Kapitel ihr und Frau Herschel gewidmet, die hier bereits mehrfach geehrt und erwähnt wurde.
Das Kapitel in Dava Sobels Buch ist in einen wunderschönen Briefwechsel zwischen den beiden Astronominnen eingebettet. Leider konnte ich nicht recherchieren, ob es diesen Briefwechsel tatsächlich gab, oder ob es künstlerische Freiheit der Autorin war. Auf jeden Fall ist es ein sehr gelungenes Kapitel.
Und ja, das Buch gibt es bei den Hörbüchereien aufgelesen.
Also, wer war nun Maria Mitchel.
Maria Mitchell (* 1. August 1818 in Nantucket, Massachusetts; † 28. Juni 1889 in Lynn, Massachusetts) war eine US-amerikanische Astronomin und Vorkämpferin für die Frauenrechte.

Maria Mitchell gehörte zu den Frauen, bei denen viele positive Faktoren zusammen kamen, so dass sie zu den wurde, was sie war, und das sie erreichte, was Frauen in der damaligen Zeit eher unzugänglich war.
Eine der ersten Grundvoraussetzungen, die ihr ihre Laufbahn ermöglichten war, dass ihre Eltern Quäker waren.
Diese Religionsgemeinschaft vertritt, dass Frauen dasselbe Recht auf Bildung haben, als Männer.
Ihr Vater, William Mitchell, war Lehrer und Hobbyastronom. Bald schon bemerkte er die naturwissenschaftliche Begabung seiner Tochter und unterrichtete sie in Astronomie und Mathematik.
Er ermunterte sie auch, eigene Untersuchungen anzustellen.

Normalerweise wurden Töchter aus derlei Elternhäusern höchstens in hauswirtschaftlichen Dingen oder den schönen Künsten, wie Musik, unterrichtet.
Somit stellte Maria Mitschel schon bald eine Ausnahme dar.

Ein weiterer Umstand, der sie quasi zwangsläufig zur Astronomie brachte war, dass ihr Wohnort astronomischer nicht sein konnte.
Sie wurde 1818 auf Nantucket geboren, einer kleinen von Seefahrt geprägten und rund 50 Meilen vor der Küste Massachusetts gelegenen Insel. Hier ankerte die weltweit größte Walfangflotte und von hier aus stachen Seefahrer in See, deren Wissen um den Sternenhimmel als Navigationshilfe unabdingbar war.
Somit gab es in allen Haushalten astronomische Instrumente, wie Sextanden, Efimeriden (Sternkarten), Teleskope und Schiffsuhren.
Letztere durfte sie schon mit vierzehn Jahren eichen. Es ist unglaublich wichtig, dass diese Uhren genau geeicht waren, denn man brauchte sie zur Bestimmung des Längengrades auf hoher See.

Man kann davon ausgehen, dass die Bedingungen der Sternbeobachtung von dieser Insel aus all nächtlich prächtig gewesen sein sollte. Die Insel war weit genug vom Festland entfernt, so dass keinerlei Lichtverschmutzung vorhanden gewesen sein dürfte.
Der Name der Insel, Nantucket,bedeutet weit entferntes Land. Klarer, schwarzer stockfinsterer Sternenhimmel also.

Bald schon war Maria in der Bedienung nautischer Instrumente besser, als so mancher Seebär.
Aber auch sonst verlief ihr Leben ereignisreich und sehr ungewöhnlich.

Schon mit 14 Jahren kalibrierte sie Chronometer für Seefahrer oder unterwies sie im Gebrauch von Sextanten. Mit 17 Jahren gründete Maria Mitchell auf Nantucket eine Mädchenschule und unterrichtete Mathematik. Mit 18 Jahren wurde sie zur Leiterin der Bibliothek von Nantucket ernannt. Hier liegt auch die Wiege ihrer Bildung. Fast täglich hielt sie sich in dieser Bibliothek auf, in der auch Frauen willkommen waren – anders als in den meisten anderen Bibliotheken der USA.

Berühmt wurde Maria Mitchell mit 29 Jahren durch die Entdeckung eines Kometen:
Am 01. Oktober 1847 entdeckte sie vom Observatorium ihres Elternhauses aus den später nach ihr benannten Mitchell-Kometen.
Bereits ein Jahr später, 1848, wurde sie als erste Frau in die American Academy of Arts and Sciences aufgenommen sowie 1850 in die American Association for the Advancement of Science.

Sie leitete die Bibliothek von Nantucket, bildete sich mit Hilfe der ihr anvertrauten Bücher weiter, arbeitete gemeinsam mit ihrem Vater an astronomischen Fragestellungen und unterhielt umfangreiche wissenschaftliche Korrespondenz mit den großen amerikanischen Universitäten. Maria Mitchell las Deutsch und Französisch im Original und war der Überzeugung, dass der Zugang zur Astronomie durch Mathematik erfolgt. Sie wurde als Rednerin zu vielen Vorträgen und Konferenzen eingeladen.

1865 eröffnete mit dem Vassar College in Poughkeepsie, New York, eine der ersten amerikanischen Frauen-Universitäten. Maria Mitchell erhielt den Ruf und wurde mit 47 Jahren die erste Astronomieprofessorin Amerikas – ohne jemals selbst eine Universität besucht zu haben.

Sie setzte sich dafür ein, dass Frauen die gleichen Rechte erhielten, wie sie die Männer an den Universitäten Yale und Harvardinne hatten und dass die Frauen auch fachlich gleich zogen.

So verteidigte sie ihre Studentinnen gegen herrschende Konventionen, die beispielsweise Frauen untersagten, nach 22 Uhr vom Observatorium aus zu beobachten.

1873 gründete sie die American Association for the Advancement of Women und wurde zwei Jahre später deren Präsidentin. Nicht nur in Vorträgen, sondern in der täglichen Arbeit als Professorin und Direktorin des Vassar-College-Observatoriums setzte sie sich beständig für die Gleichberechtigung von Frauen ein.

Ein Kredo von ihr war:

We especially need imagination in science. It is not all mathematics, nor all logic, but is somewhat beauty and poetry.

Zu Deutsch:

In der Wissenschaft brauchen wir vor allem Fantasie. Es geht nicht nur um Mathematik oder um Logik, sondern auch ein wenig um Schönheit und Poesie.

Es braucht nicht viel Interpretationsgabe, um das Kredo auch so zu lesen“In der Wissenschaft braucht es auch weibliche Faktoren“.

Mitchell war eine der berühmtesten Wissenschaftlerinnen (Männer und Frauen) in den USA des 19. Jahrhunderts.
Mitchell galt als ausgezeichnete Professorin, die sich für ihre Studentinnen einsetzte und sie dabei unterstützte, wirklich gute Wissenschaftlerinnen zu werden, obwohl sie „nur“ Frauen waren.

Praxiserfahrung war ihr ganz wichtig. Mit der Frage „Did you learn that from a book or did you observe it yourself?“, ging sie in die Analen der amerikanischen Wissenschaft ein.

Maria Mitchell beschäftigte sich auch mit grundlegenden mathematischen Fragen, etwa mit dem ´Großen Fermatschen Satz`. Eine harte Nuss, die im 17. Jahrhundert von Pierre de Fermat formuliert, aber erst 1994 von dem britischen Mathematiker Andrew Wiles bewiesen wurde.

Hier noch einige Ehrungen zum Schluss:
Für die Entdeckung des Mitchell-Kometen wurde sie vom König von Dänemark mit einem Orden ausgezeichnet.

1905 wurde sie in die Hall of Fame for Great Americans aufgenommen.

Nach ihrem Tod wurde zu Ehren Maria Mitchells die Maria Mitchell Astronomical Society gegründet.

Der Hauptgürtelasteroid (1455) Mitchella, den der Heidelberger Astronom Alfred Bohrmann (1904-2000) am 5. Juni 1937 entdeckte, ist nach ihr benannt.

Auch auf dem Mond erhielt sie einen Platz.
Schon im Amateurteleskop kann man auf dem Mond den an den Krater Aristoteles grenzenden Einschlagkrater Mitchell erkennen, der 1935 von der Internationalen Astronomischen Union nach der großen Forscherin und Frauenrechtlerin benannt wurde. Sein Durchmesser beträgt etwa 30 Kilometer. Er zeigt deutliche Erosionsspuren und sein Ringwall ist vom später entstandenen, etwa 80 Kilometer großen Krater Aristoteles teilweise überdeckt.

Sie war eine großartige Wissenschaftlerin und Vordenkerin für Frauenrechte. Einige ihrer Themen sind bis heute Aktuell.
Gerade in der heutigen Zeit, wo Raubbau an Natur, Mensch und sozialen Errungenschaften im Namen des Fortschritts getrieben wird, sollten wir uns derer erinnern, die VorkämpferInnen und VorReiterinnen für viele Menschenrechte waren.

Quellen:
Wikipedia
Die Planeten von Dagmar Sobel
Weihnachtsrätsel 2018 der @Weltraumreporter

Siebenter Dezember des Blindnerd-Adventskalenders 2003, Forschende Frauen

Meine lieben,
Die Frau, die wir heute würdigen wollen, liegt mir ganz besonders am Herzen, weil sie sich mit etwas befasst, das vor allem für Hörmenschen sehr wichtig ist, nämlich mit Radio. Gerade in diesem Jahr macht die Menschheit seit einhundert Jahren Radio. Das Weltall kann das aber in Form der Radioastronomie schon von Beginn an. Aber lest selbst:

Jocelyn Bell Burnell, eine renommierte britische Astrophysikerin, wurde am 15. Juli 1943 in Belfast, Nordirland, geboren. Ihr Geburtsname war Jocelyn Bell, und sie erlangte weltweite Anerkennung für ihre bahnbrechende Arbeit im Bereich der Radioastronomie.
Bell Burnell begann ihre akademische Laufbahn am Newnham College in Cambridge, wo sie Physik studierte. Während ihres Studiums wurde sie Mitglied des renommierten Cavendish Laboratory, das eine führende Rolle in der physikalischen Forschung spielte. Ihre wegweisende Arbeit begann 1967 während ihrer Doktorarbeit unter der Aufsicht von Antony Hewish.
Unter der Leitung von Hewish und ihrem Kollegen Martin Ryle arbeitete Bell Burnell an einem Radioteleskop, das als Interferometer Array bekannt war. Während ihrer Beobachtungen stieß sie auf ein ungewöhnliches Signal, das alle 1,3 Sekunden ein starkes Puls-Signal aussandte. Nach intensiven Untersuchungen und Ausschluss anderer möglicher Ursachen stellte sich heraus, dass es sich um die ersten Signale von Pulsaren handelte.
Ein Pulsar ist der Rest eines Sterns der bereits von der Weltbühne abgetreten ist. Er wiegt ungefähr das 1,5 bis 3,5 fache der Sonne, ist nur wenige Kilometer groß, also sehr dicht, besteht nahezu nur aus Neutronen, besitzt ein starkes Magnetfeld und dreht sich ungeheuerlich schnell um sich selbst. Steht seine Rotationsachse und sein Magnetfeld günstig in unserer Sicht, dann können wir mit Radioteleskopen die Impulse messen, wenn der Stern uns den magnetischen Nordpol und dann den Südpol zu uns neigt. Das Signal ist ein sehr gleichmäßiges Ticken. Und das ist es, was unsere heutige Astronomin letztlich entdeckte.
Diese Entdeckung führte zu einem bedeutenden Durchbruch in der Astrophysik und wurde als Beweis für die Existenz von Neutronensternen postuliert. Bell Burnell war maßgeblich daran beteiligt, die Signale zu identifizieren und von möglichen menschlichen oder technischen Quellen zu unterscheiden. Ironischerweise erhielt sie für diese Entdeckung nicht den Nobelpreis für Physik, sondern ihr Doktorvater Antony Hewish und Martin Ryle. Dennoch hat sie in der wissenschaftlichen Gemeinschaft und darüber hinaus enormen Respekt und Anerkennung für ihre Rolle bei dieser Entdeckung erhalten.
Jocelyn Bell Burnell setzte ihre Karriere in der Astrophysik fort und leistete wichtige Beiträge auf dem Gebiet der Neutronensterne, Galaxien und kosmischen Magnetfelder. Sie hatte eine beeindruckende akademische Laufbahn und war in verschiedenen wissenschaftlichen Organisationen aktiv. Zudem engagierte sie sich für die Förderung von Frauen in den Naturwissenschaften.
Schade, dass wir diese wundersamen „Sternleichen“ hier nicht näher behandeln können.
Bleibt mir nur, wie bei jedem Türchen die weihnachtliche Geschichte

Sechster Dezember, Nikolaus des Blindnerd-Adventskalenders 2023, Forschende Frauen

meine lieben,
Heute ist schon Nikolaus. Puh, wie die Zeit vergeht. Ist das vielleicht schon der Weihnachtsstress?
heute wenden wir uns, wie soll es anders sein, mal wieder einer Frau aus der Astronomie zu.

Die Welt der Astronomie wurde durch zahlreiche herausragende Persönlichkeiten geprägt, und eine der einflussreichsten Frauen in diesem Bereich war zweifellos Vera Rubin. Als Pionierin der Astronomie trug sie maßgeblich dazu bei, unser Verständnis des Universums zu vertiefen und öffnete gleichzeitig Türen für Frauen in der Wissenschaft.

Vera Rubin wurde am 23. Juli 1928 in Philadelphia, Pennsylvania, geboren. Schon früh zeigte sie Interesse an der Astronomie, beeinflusst durch ihren Vater, der selbst Ingenieur war. Rubin studierte an der Vassar College und schloss ihr Studium 1948 ab, bevor sie ihren Master-Abschluss an der Cornell University erwarb. Trotz ihrer herausragenden Fähigkeiten und ihres Engagements für die Wissenschaft stellte sich Rubin früh den Herausforderungen, die Frauen in der männerdominierten Welt der Astronomie, ausgesetzt waren.

Rubins bahnbrechende Arbeit begann in den 1960er Jahren, als sie begann, die Rotationsgeschwindigkeiten von Galaxien zu untersuchen.
Bei Untersuchungen des Andromeda-Nebels machte sie eine überraschende Entdeckung. Wenn die Masse von Galaxien wie die sichtbaren Sterne verteilt wäre, sollte die Umlaufgeschwindigkeit in den Außenbezirken von Spiralgalaxien mit zunehmender Entfernung vom Zentrum abnehmen. Stattdessen fand sie
mit der Entfernung der Sterne vom galaktischen Zentrum aus gesehen, fast gleich bleibende Umlaufgeschwindigkeiten mit typischen Werten um 200 km/s. Rubin erklärte dies dadurch, dass ein Halo Dunkler Materie um den Andromedanebel vorhanden sein müsse. Rubins Ergebnisse waren zusammen mit ähnlichen Resultaten aus Radiomessungen der 21-cm-Linie des atomaren Wasserstoffs die stärksten Anzeichen für die Existenz Dunkler Materie in normalen Galaxien.

Die sichtbare Materie in Galaxien konnte also die beobachteten Rotationsgeschwindigkeiten der Sterne innerhalb von Galaxien nicht erklären. Rubin schloss daraus, dass es eine unsichtbare, massereiche Komponente geben müsse, die sie später als „Dunkle Materie“ bezeichnete.
Diese Erkenntnis revolutionierte das Verständnis der Astronomen von der Zusammensetzung des Universums. Rubin lieferte überzeugende Beweise für die Existenz von Dunkler Materie, die einen erheblichen Teil der Masse im Universum ausmacht, aber nicht direkt beobachtet werden kann.

Vera Rubins Karriere war nicht nur von wissenschaftlichen Durchbrüchen, sondern auch von ihrem Engagement für die Förderung von Frauen in der Wissenschaft geprägt. Sie kämpfte gegen Geschlechterbarrieren und setzte sich aktiv für die Gleichberechtigung von Frauen in der Forschung ein. Ihre Arbeit und ihre Hartnäckigkeit haben dazu beigetragen, dass Frauen in der Astronomie und anderen wissenschaftlichen Disziplinen heute besser vertreten sind.

Vera Rubin verstarb am 25. Dezember 2016, hinterließ jedoch ein dauerhaftes Vermächtnis. Ihre Forschung hat nicht nur die Grundlagen der Astronomie transformiert, sondern auch den Weg für zukünftige Generationen von Wissenschaftlerinnen geebnet. Zahlreiche Auszeichnungen, darunter die National Medal of Science, würdigen ihre Beiträge zur Wissenschaft.
Neueste Missionen werden uns hoffentlich in den nächsten Jahren endlich die dunkle Materie offenbaren. Bis da hin werden aber noch viele Türchen von vielen Adventskalendern zu öffen sein.
Somit bleibt mir auch heute nur, euch zum heutigen Türchen unseres weheinachtlich-literarischen Adventskalenders zu schicken.

Vierter Dezember des Blindnerd-Adventskalenders 2023, Forschende Frauen

Meine lieben,
heute habe ich es leicht, weil ich vor fünf Jahren schon mal über die Frau zum Weltfrauentag 2018 berichtete, die mir ChatGPT für heute ausgespuckt hat.

So lasst uns disen vierten Dezember damit begehen, indem wir die Person und das Lebenswerk von Caroline Lucretia Herschel würdigen. Die Daten zu diesem Artikel habe ich von Wikipedia und dem Buch Die Planeten von  Dava Sobel und Thorsten Schmidt, ISBN: 9783827002679.
Caroline Lucretia Herschel wurde am 16. März 1750 in Hannover geboren.
und verstarb am 9. Januar 1848 ebenda.
Sie war eine deutsche Astronomin.
Zu Beginn ihrer wissenschaftlichen Karriere unterstützte sie ihren Bruder Wilhelm Herschel bei seinen Forschungen, glänzte aber bald durch ihre eigenen astronomischen Erfolge. Ihre wichtigsten Beiträge zur Astronomie waren die Entdeckung mehrerer Kometen, die Berechnung genauer astronomischer Reduktionen und der Zonenkatalog hunderter Sternhaufen und Nebel.

Sie wuchs mit vier Brüdern und einer Schwester, die allerdings schon als Kind verstarb, im Hause des Militärmusikers Isaak Herschel und seiner Frau Anna Ilse Herschel in Hannover auf. Als Musiker wollte der Vater seinen Kindern eine musikalische Ausbildung ermöglichen. Bei den Herschels wurde nicht nur viel musiziert, sondern auch philosophiert und Astronomie getrieben. Neben Wilhelm war auch ihr Bruder Alexander als Musiker und Astronom tätig.

Caroline schrieb darüber:

Mein Vater war ein großer Bewunderer der Astronomie und besaß einige Kenntnisse in der Wissenschaft. Ich erinnere mich, dass er mich in einer kalten Nacht auf die Straße führte, um mich mit einigen unserer schönsten Sternbilder bekannt zu machen, nachdem wir vorher einen Kometen, der eben sichtbar war, beobachtet hatten.

Man stelle sich vor. Da geht ein Vater mit seiner Tochter einfach vor die Tür, um Sterne zu schauen. Undenkbar, bei unseren heute so lichtverschmutzten Städten.
Sie hatte, was für ein Mädchen durchaus nicht üblich war, die möglichkeit, gemeinsam mit ihren Brüdern die Garnisonsschule täglich für einige Stunden zu besuchen.
Viele Stunden des Tages verbrachte sie jedoch gegen ihren Willen mit Stricken, Sticken und allerlei Haushaltstätigkeiten. Die Mutter meinte, dass sie ein „roher Klotz sein und bleiben sollte, allerdings ein nützlicher“.
Sie wollte ein Leben führen, das auch geistige Anforderungen bereit hielt. Daher folgte sie dem Wunsch des Vaters, und ließ sich zur Konzertsängerin ausbilden.

1772 folgte sie als 22-Jährige ihrem zwölf Jahre älteren Bruder Friedrich Wilhelm Herschel nach England, der als Organist und Konzertleiter im vornehmen Bath tätig war. Er brauchte sie als Haushälterin, wollte ihr aber auch Gelegenheit geben, sich musikalisch weiterzubilden und als Solistin in seinen Konzerten mitzuwirken. Schon bald stieg sie zur ersten Sängerin bei den von ihrem Bruder aufgeführten Oratorien auf, erreichte dadurch einen gewissen Ruf und übernahm Leitungsfunktionen im Chor.
Caroline widmete sich nun neben dem Haushalt und ihren Auftritten auch der Astronomie. Zum Beispiel half sie Wilhelm beim Anfertigen von Spiegelteleskopen. Ihre Hauptaufgabe bestand darin, die Spiegel zu polieren und zu schleifen. Bei dieser Tätigkeit kam es auf absolute Genauigkeit an. Daneben befasste sie sich mit astronomischer Theorie. Sie erlernte die mathematischen Formeln für Berechnungen und Reduktionen als Grundlage für das Beobachten und Durchmustern des Himmels.

Im Jahr 1781 entdeckte Wilhelm den Planeten Uranus, was ihn über die Landesgrenzen hinaus bekannt machte. Neben zahlreichen Ehrungen bekam er eine Stelle in der Stadt Slough als Astronom von König Georg III. angeboten, die er dankbar annahm. Nun konnte er sich ganz seiner wahren Leidenschaft widmen.

Caroline musste sich entscheiden, als Sängerin in Bath ihre erfolgreiche Karriere fortzusetzen oder ihrem Bruder als wissenschaftliche Assistentin zu folgen. Sie entschied sich für letzteres und bekam vom Hof eine Anstellung als Gehilfin ihres Bruders mit einem Gehalt von 50 Pfund im Jahr. Nun begann Caroline mit der eigenen Erforschung des Sternenhimmels. Sie widmete sich mit einem kleinen Spiegelteleskop der Kometensuche. Dabei entdeckte sie 1783 drei bemerkenswerte Nebel und zwischen 1786 und 1797 acht Kometen, darunter den Enckeschen Kometen.

Nächte lang verbrachten die beiden am Teleskop, wo sie die Sternpositionen notierte,
die er ihr vom anderen Ende des von ihnen selbst gebauten riesigen Fernrohrs zurief, wertete die nächtlichen Aufzeichnungen aus und rechnete sie nach, schrieb Abhandlungen für die Philosophical Transactions, entdeckte vierzehn Nebel, berechnete Hunderte von ihnen und begann einen Katalog für Sternhaufen und Nebelflecke, die heute Deep-Sky-Objekte genannt werden, anzufertigen. Des Weiteren verfasste sie einen Ergänzungskatalog zu Flamsteeds Sternenatlas, der 561 Sterne umfasste, sowie ein Gesamtregister dazu.
Für diese Arbeit wurde ihr allerhöchste Anerkennung zuteil, unter anderem von Carl Friedrich Gauß und Johann Franz Encke. Trotzdem blieb sie die bescheidene Frau, die sie immer gewesen war. Ihre Biographin Renate Feyl bemerkt dazu:
„Bis an das Ende ihres Lebens versucht sie jeglichen Hinweis auf eine eigene Leistung lediglich als das Verdienst ihres berühmten Bruders herauszustellen. Sie wagt zu wissen, will aber dieses Wagnis nicht öffentlich eingestehen. Immer wieder betont sie, wie nichtsnutzig, wie unfähig, wie untauglich sie sei. Dies ist ihre lebenslängliche Demutsgeste und Entschuldigung dafür, dass sie sich erkühnt, leise, aber nachhaltig auf ihre Weise zu nehmen, was einem menschlichen Wesen zusteht: das Recht auf Erkenntnis.“
1822 starb ihr geliebter Bruder Wilhelm. Nun hielt sie nichts mehr in England. Wenige Wochen nach seinem Tod zog sie wieder in ihre Heimatstadt Hannover, die sie fast fünfzig Jahre zuvor als junge Frau verlassen hatte. Hier setzte sie ihre astronomischen Studien fort und ordnete die Aufzeichnungen, welche sie beide anfertigten und die Hinterlassenschafft ihres Bruders.
So ermöglichte sie auch ihrem Neffen John Herschel, die Arbeit seines Vaters systematisch fortzusetzen und auf den südlichen Sternenhimmel auszudehnen.

Die bedeutendsten Gelehrten suchten sie in ihrem einfachen Haus in der Marktstraße auf, um sie ihrer Gunst und Wertschätzung zu versichern. Selbst zum königlichen Hof hatte sie Kontakt. Zahlreiche Auszeichnungen wurden ihr verliehen – 1828 unter anderem die Goldmedaille der Royal Astronomical Society, zu deren Ehrenmitglied sie 1835 ernannt wurde. Sie war die erste Frau, der Anerkennungen dieser Art zuteilwurden. Anlass dazu war ihr sogenannter Zonenkatalog, den sie zum Andenken an ihren Bruder erstellt hatte. Er enthielt die reduzierten Beobachtungen sämtlicher von Wilhelm Herschel entdeckten Nebel und Sternhaufen. 1838 ernannte die Königliche Irische Akademie der Wissenschaften in Dublin die 88-jährige Caroline Herschel zu ihrem Mitglied. 1846 erhielt sie im Alter von 96 Jahren im Auftrag des Königs von Preußen die goldene Medaille der Preußischen Akademie der Wissenschaften.
Noch an ihrem 97. Geburtstag wurde sie vom Kronprinzenpaar empfangen, unterhielt sich einige Stunden lebhaft mit ihnen und sang ihnen abschließend ein Lied vor, das ihr Bruder siebzig Jahre zuvor komponiert hatte. Caroline Herschel starb am 9. Januar 1848. Sie erreichte das hohe Alter von 97 Jahren und wurde auf dem Gartenfriedhof in Hannover beerdigt, wo sich ihr Grab auch jetzt noch befindet.
So viele Dinge wurden nach ihr benannt, dass der Name jedem Menschen irgendwann mal begegnet ist, bzw. wird.
Der Komet 35P/Herschel-Rigollet, der Mondkrater C. Herschel im Sinus Iridum (Regenbogenbucht) und der Planetoid (281) Lucretia, aus dem Sonnensystem.
In Braunschweig, Bremen, Darmstadt, Lübeck, München, Ottobrunn, Peine und Wennigsen sind Straßen, nach ihr benannt.

in Berlin-Friedrichshain der Caroline-Herschel-Platz, In Hannover die Volkssternwarte Hannover e.V. Geschwister Herschel, benannt.

Schulen, Schwimmbäder und andere Einrichtungen, tragen ihren Namen.

Sogar in die bildende Kunst des 20. Jahrhunderts fand sie Eingang. Die feministische Künstlerin Judy Chicago widmete ihr in ihrer Arbeit The Dinner Party eines der 39 Gedecke am Tisch.
Inhaltlich zurecht, trägt Ein Programm der Gottfried Wilhelm Leibniz Universität Hannover zur Förderung des weiblichen wissenschaftlichen Nachwuchses, ihren Namen.

Google veröffentlichte anlässlich ihres 266. Geburtstages am 16. März 2016 ein Google Doodle.
Sir John Franklin benannte eine Insel in der Nordwestpassage nach den Geschwistern Herschel.

Nicht zuletzt ist 2012 eine Mission zuende gegangen, deren eine Raumsonde Herschel und die andere nach Max Plank benannt wurde.

Und nun kommt nach der Geschichte über diese interessante Person natürlich der literarisch-weihnachtliche Teil.
Habt eine gute Woche.

Eine Friedensaktivistin feiert Geburtstag


Meine lieben,

was für ein Jahr. Und schon wieder ist mir eine Jubilarin fast durch gegangen. Im Grunde habe ich von einem anderen Jubilar der in diesem Jahr sein einhundertstes feiert, davon erfahren. Ja, genau, durch das Radio.
im Namen der gesamten Menschheit möchte auch ich herzlich das 25-jährige Bestehen der Internationalen Raumstation (ISS) feiern. Genau genommen war ihr Geburtstag gestern, am 20.11.1998, aber man muss ja hinterher kommen mit dem Schreiben.

Die Friedensaktivistin

Gerade in diesen Zeiten ist es ganz wichtig, auf die ISS zu schauen. Sie ist ein Zeichen des Friedens und ein eindeutiger Beweis dafür, dass die Menschheit als ganzes tatsächlich großes vollbringen kann, wenn grenzen, Nationalitäten, politische Differenzen und andere Barrieren überwunden werden.
Es gibt so viele Aspekte, welche die Raumstation ausmachen.
Sie ist technisch vermutlich die komplexeste Maschine, die je von Menschen gebaut wurde.
Mich fasziniert und begeistert, wieviele Nationen Hand in Hand an dieser Maschine bauen

im Januar 2022 waren 15 Nationen als Partner am ISS-Projekt beteiligt:

  • die Vereinigten Staaten,
  • Russland,
  • Kanada,
  • Japan,
  • Brasilien,
  • Belgien,
  • Dänemark,
  • Frankreich,
  • Deutschland,
  • Italien,
  • die Niederlande,
  • Norwegen,
  • Spanien,
  • Schweden und
  • die Schweiz.

Viele weitere Nationen hatten bzw. haben Versuche auf der ISS laufen.

Meilensteine der Wissenschaft

Mir kommt es vor, als wäre es erst gestern gewesen. Ich kann mich noch gut an das erste Modul erinnern, das ins All gebracht wurde. Tja, lang ist’s her, als es noch die guten alten Spaceshuttle gab.
Die ISS hat eine Fülle von wissenschaftlichen Erkenntnissen ermöglicht, von Fortschritten in der Mikrogravitationsforschung bis hin zu Entwicklungen in den Lebenswissenschaften.
Hier einige Beispiele aus der Forschung:

  1. Mikrogravitationsforschung:
    Die Schwerelosigkeit in der ISS-Umgebung ermöglicht es Wissenschaftlern, Phänomene im Bereich der Mikrogravitation zu studieren. Dies führte zu Erkenntnissen über Veränderungen in biologischen Prozessen, Zellwachstum und Entwicklungsprozessen bei Tieren und Pflanzen.
  2. Medizinische Forschung:
    Studien zur Auswirkung der Mikrogravitation auf den menschlichen Körper haben wichtige Erkenntnisse zur Gesundheit von Astronauten geliefert. Dies schließt Forschung zu Knochenverlust, Muskelatrophie und den Auswirkungen auf das Immunsystem ein.
  3. Materialwissenschaft:
    In der Schwerelosigkeit verhalten sich Materialien anders als auf der Erde. Die ISS dient als Testumgebung für die Entwicklung neuer Materialien und die Untersuchung ihrer physikalischen Eigenschaften, einschließlich der Produktion von Legierungen und Verbundwerkstoffen.
  4. Pflanzenforschung:
    Experimente auf der ISS haben gezeigt, wie Pflanzen auf Schwerelosigkeit reagieren. Dies ist nicht nur für zukünftige Weltraummissionen wichtig, sondern hat auch Auswirkungen auf die Agrarwissenschaften auf der Erde.
  5. Fluidphysik:
    Das Verhalten von Flüssigkeiten in der Schwerelosigkeit wurde intensiv erforscht. Dies hat nicht nur Auswirkungen auf die Wasserverteilungssysteme in der Raumfahrt, sondern auch auf grundlegende physikalische Prinzipien.
  6. Krebsforschung:
    Experimente auf der ISS haben dazu beigetragen, die Auswirkungen der Schwerelosigkeit auf die Entwicklung und das Wachstum von Krebszellen zu verstehen. Dies könnte langfristig zu Fortschritten in der Krebstherapie führen.
  7. Technologische Innovationen:
    Die Entwicklung von neuen Technologien, wie zum Beispiel verbesserten Wasserreinigungssystemen und fortschrittlichen Raumfahrzeugtechnologien, wurde durch die Forschung auf der ISS vorangetrieben.
  8. Astrobiologie:
    Die ISS hat zur Untersuchung von extremophilen Mikroorganismen beigetragen, um Erkenntnisse über die Möglichkeit außerirdischen Lebens zu gewinnen und die Überlebensfähigkeit von Mikroorganismen im Weltraum zu verstehen.

Diese Beispiele verdeutlichen, dass die ISS nicht nur ein Außenposten für die Raumfahrt ist, sondern auch ein einzigartiges Laboratorium für wissenschaftliche Forschung in der Schwerelosigkeit, das Erkenntnisse für eine Vielzahl von Disziplinen auf der Erde und darüber hinaus liefert.
Um so wichtiger ist es, dass wir Menschen, wie Alexander Gerst und Matthias Maurer haben, die gute Wissenschaftskommunikation betreiben. Besonders berührt bin ich immer dann, wenn Schulkinder Funkkontakt zur ISS aufnehmen dürfen, um Fragen zu stellen. Ich wäre damals in der Schule bei so einer Chance durchgedreht.

Wie sieht sie denn aus

Lasst uns nun einige Körperteile dieser kosmischen Schönheit betrachten:
Wie die meisten wissen dürften, wurde die ISS nicht an einem Stück in eine Umlaufbahn um die Erde gebracht.
Das würde man mit einer Station, die mittlerweile die Fläche eines Fußballfeldes ausfüllt, nicht schaffen. So waren viele Raketenstarts nötig, um schließlich Modul für Modul im All zur heute komplexesten Maschine der Welt zusammen zu bauen. Wie viele das genau waren, lässt sich nur schwer sagen, da es beispielsweise auch Flüge gab, die lediglich der Versorgung dienten. Es waren hunderte.

Da gibt es Russische Segmente, den Arm aus Canada (Canadarm), das Europäische Columbus-Modul, ein Japanisches Forschungslabor, verschiedene Möglichkeiten, unterschiedlichste Raumfähren andocken zu lassen, und, und, und. Und am Ende passt alles zusammen, die verschiedenen Standards und Adapter verbinden sich zur Raumstation.
Die folgende Liste zählt mal einige zentrale Module auf. Mit ihr wird auch nochmal klar, wie international diese Raumstation tatsächlich ist.

  1. Russische Module:
    • Sarja: Das erste Modul, das 1998 gestartet wurde, dient als Energie- und Steuereinheit.
    • Swesda (auch bekannt als das Service- oder Lebenserhaltungsmodul): Ermöglicht die Lebenserhaltung und enthält Schlafbereiche für die Besatzung.
    • Pirs (auch bekannt als Stykowochny Otsek): Ein Andockmodul und Luftschleuse.
  2. Amerikanische und europäische Module:
    • Unity (auch bekannt als Node 1): Ein Verbindungsknoten, der die Hauptverbindungspunkte für die US-amerikanischen, russischen, europäischen und japanischen Module darstellt.
    • Destiny (auch bekannt als das US-Labor): Ein Forschungslabor für biologische und physikalische Wissenschaften.
    • Tranquility (auch bekannt als Node 3): Beherbergt die Lebenserhaltungssysteme und ist mit dem Cupola-Modul verbunden.
    • Columbus: Das europäische Forschungslabor für biologische und physikalische Wissenschaften.
  3. Japanische Module:
    • Kibo: Ein vielseitiges japanisches Forschungslabor, das in mehrere Abschnitte unterteilt ist, darunter das Pressurized Module (PM), das Exposed Facility (EF) und das Logistics Module (LM).
  4. Zusätzliche Module:
    • Zarya: Ein russisches Modul, das als das erste Segment der Raumstation diente und als ein wichtiger Energielieferant fungiert.
    • Zvezda: Das Hauptsteuermodul für die Raumstation, das auch als lebenserhaltender Bereich für die Crew dient.
    • Cupola: Ein Glaskuppel-Modul, das eine atemberaubende Aussicht auf die Erde bietet und auch als Kontrollzentrum für Roboterarm-Manipulationen dient.

Es ist wichtig zu beachten, dass die ISS im Laufe der Jahre kontinuierlich modifiziert und erweitert wurde. Neue Module wurden hinzugefügt, und einige ältere wurden durch modernere ersetzt, um den sich ändernden Anforderungen der Raumstation gerecht zu werden. Daher können sich die konkreten Module und ihre Funktionen im Laufe der Zeit ändern.

Ja, und dieser Satz stimmt total auch bei meiner ISS aus Lego. Sie ist schon nicht mehr ganz aktuell, und Lego gibt keine Update-Sets, was sehr schön wäre, heraus.
Ihr Aussehen kann ich mir als Blinder nicht vorstellen. aber man kann sie auch schlecht erklären. Sie hat im Grunde genommen keine Form. Die dosenartigen Module sind über eine Gitterstruktur miteinander verbunden. Und am auffälligsten sind natürlich die riesigen Solarzellen.
Zum Glück gibt es das Modell. So weiß ich wenigstens ungefähr wie, was und wo.

Höhen und Tiefen

Schauen wir uns nun nach dieser vielleicht etwas trockenen Aufzählung noch einige Höhen und Tiefschläge an, die die iSS in den letzten 25 Jahren so hin nehmen musste.

  • Als im Jahre 2003 das Shuttle, die Columbia beim Wiedereintritt in die Atmosphäre verglühte, geriet das Projekt ISS in große Gefahr. Bis zur Aufklärung des Vorfalles mussten alle Shuttles am Boden bleiben.
    Betroffen davon war z. B. auch das Deutsche Forschungslabor Kolumbus.
    Niemand wusste genau, ob es zum Einsatz kommen könnte, denn für Russische Trägerraketen war es zu groß.
    Somit wurde für zwei Jahre die ISS nur mit zwei Astronauten besetzt, die versuchten, den Betrieb aufrecht zu halten. Nach zwei Jahren Pause flogen dann die Shuttles wieder. Man war sich aber bewusst, dass die Shuttles in die Jahre gekommen waren und es war fraglich, ob man die Station noch mit deren Hilfe fertigstellen können wird.
    Mit dabei war 2006 Thomas Reiter, der sogar einen Außenbord-Einsatz hatte.
    2008 war es dann so weit. Endlich konnte das Kolumbus-Modul der ESA an die Raumstation geflantscht werden.
    Der Deutsche Astronaut Hans Schlegel half dabei.
  • Seit 2011 ist die ISS fertig und umkreist in etwa 400 km Höhe ein mal in 90 Minuten die Erde.
    Das bedeutet, dass sie bis heute bereits mehr als drei Milliarden Kilometer zurück gelegt hat. Das ist fast die doppelte Strecke von der Sonne zum Saturn. Das sind schon Lichtstunden.
  • Ammoniak-Leck (Mai 2013): Im Mai 2013 wurde ein Ammoniak-Leck an einem der Kühlkreisläufe der ISS entdeckt. Die Besatzung wurde angewiesen, bestimmte Module zu evakuieren, während die Bodenkontrolle versuchte, das Problem zu analysieren. Der Vorfall konnte erfolgreich gelöst werden.
  • Probleme mit Raumfahrzeugen: Es gab mehrere Vorfälle im Zusammenhang mit Raumfahrzeugen, die zur ISS ankoppelten. Einige Male gab es Schwierigkeiten bei der Annäherung oder beim Andocken, was zu erhöhtem Alarmzustand und schnellen Maßnahmen seitens der Besatzung führte. Zum Beispiel gab es 2014 einen Vorfall, bei dem ein russisches Progress-Raumfahrzeug Schwierigkeiten beim Andocken hatte.
  • Brandalarm (September 2019): Im September 2019 löste ein Rauchmelder auf der ISS einen Alarm aus. Die Besatzung ging in ihre Sojus-Raumschiffe, während die Bodenkontrolle das Problem untersuchte. Es stellte sich heraus, dass es sich um einen Fehlalarm handelte, und die Besatzung konnte in die Station zurückkehren.
  • Mikrometeoriten und Weltraummüll: Die ISS ist durch ihre hohe Umlaufbahn potenziellen Gefahren durch Mikrometeoriten und Weltraummüll ausgesetzt. Es gab mehrere Fälle, bei denen kleine Partikel oder Trümmerteile die Außenhülle der Station getroffen haben. In den meisten Fällen führten diese Treffer jedoch nicht zu ernsthaften Schäden.

In der Regel sind die Systeme der ISS darauf ausgelegt, mit verschiedenen Situationen umzugehen, und die Besatzung ist gut ausgebildet, um auf Notfälle zu reagieren. Die Zusammenarbeit zwischen der Bodenkontrolle und der Besatzung spielt eine entscheidende Rolle bei der Bewältigung von Problemen und der Gewährleistung der Sicherheit der Raumstation.

Das soll mal reichen. Wir sehen, das Teil ist schon recht sicher.

Und hier noch einige Tipps für eine eigene ISS-Feier.

Um eine Vorstellung über die ISS und deren Geschichte zu bekommen, lohnt sich auf jeden Fall das hier:
ISS bei Wikipedia

Podcast-Hörer werden nun in folgendem bemerken, dass meine Linksammlung einiges des Podcasts @raumzeit von Tim Pritlove, aufführt. Er hat einfach viele Interviews mit Experten zur ISS und sich darum rankende Themen geführt. Seit Jahren höre ich diesen Podcast und habe unglaublich viel darüber lernen dürfen.
In Folge 64 des Podcast Raumzeit von Tim Pritlove geht es um die ISS.
Episode 64 ISS
Folge 56 desselben Podcasts befasst sich mit dem Thema „Forschung in Schwerelosigkeit“.
Viele Experimente lassen sich wegen der Schwerkraft auf der Erde nicht durchführen. Es gibt zwar Parabelflüge und Falltürme, in welchem man für wenige Sekunden quasi Schwerelosigkeit erzeugen kann, das reicht aber beispielsweise für medizinische Langzeitversuche nicht aus. Und diese Versuche benötigen wir, wenn wir Menschen wieder zum Mond, Mars oder sonst wohin aufbrechen wollen.
Episode 56, Forschung in Schwerelosigkeit

In RZ010 geht es um Raumstationen allgemein.
Zu Folge 10
Und in Folge 17, um das Europäische Transportschiff ATV.
Zum ATV

Ich habe mal nach Sounds gesucht, wie es auf der ISS so klingt.
Man hört meist nicht viel. Im Grunde hört sich vieles ähnlich an, als wäre man in einem Server-Raum, aber so bescheiden ein Geräusch auch klingen mag, die Tatsache, dass es von der ISS stammt, wertet es für mich schon unheimlich auf.
Soundbeispiel 1
oder
Beispiel 2
Das fliegende Klassenzimmer mit Alexander Gerst ist ein sehr hörenswerter Youtube-Kanal
Zum Fliegenden Klassenzimmer
Ach ja, es gibt hier noch ein Interview mit Alexander Gerst vom @Omegataupodcast. Dieser Podcast ist wirklich extrem hörenswert.
Interview mit Alexander Gerst

Nicht zuletzt war Major Tom auch schon auf der ISS. Zumindest wurde das Lied Major Tom von David Bowie dort schon gesungen.

Fazit:

Ich kann es in diesen Zeiten eigentlich nur immer und immer wieder wiederholen:
Und nicht nur ich, sondern sogar ChatGPT stellt kar heraus:

Die Internationale Raumstation steht nicht nur für technologischen Fortschritt und wissenschaftliche Entdeckungen, sondern auch für die Fähigkeit der Menschheit, gemeinsam Großes zu erreichen. Der Aufbau der ISS ist ein herausragendes Beispiel dafür, wie die Zusammenarbeit über nationale Grenzen hinweg dazu beitragen kann, die Grenzen des Weltraums zu erkunden und das Verständnis für das Universum zu vertiefen. Die ISS bleibt eine lebendige Plattform für die Erforschung neuer Horizonte und für die Förderung der internationalen Zusammenarbeit in der Raumfahrt.

Ein Nachruf

Meine lieben,
wir schreiben heute den 10. November 2023. Gerade erfuhr ich aus dem Radio, dass Frank Borman, einer der drei Astronauten der Apollo-8-Mission mit stolzen fünfundneunzig Jahren verstorben sei.
Er war u. A. ein Astronaut der Weihnachtsmission Apollo-8, die über die Weihnachtstage 1968 ablief. Lasst uns nun kurz diesem Mann ehren, der an diesem großen Meilenstein auf dem Weg zum Mond beteiligt war.

Zu seiner Person

Frank Borman zeigte schon früh eine Affinität zur Luft- und Raumfahrt.
Nachdem Borman 1950 an der Militärakademie in West Point sein Studium beendet hatte, diente er bis 1953 als Kampfpilot der Luftwaffe auf den Philippinen, danach als Fluglehrer in Georgia und Arizona. 1957 erhielt Borman einen Master in Luftfahrttechnik. Danach lehrte er bis 1960 als Assistenzprofessor in West Point Thermodynamik und Fluidmechanik. Dann kehrte er an die Edwards Air Force Base in Kalifornien wieder ins Cockpit zurück: zuerst in der Ausbildung zum Testpiloten, danach als Ausbilder.

Am 17. September 1962 wurde er von der NASA in die zweite Astronautengruppe gewählt. Als Spezialaufgabe übernahm er die Raketen, die die Raumschiffe in die Erdumlaufbahn bringen sollten.

Nach einigen Stationen wurde Borman zum Kommandanten von Gemini 7 nominiert.
Zusammen mit Jim Lovell umkreiste er vom 4. Dezember bis zum 18. Dezember 1965 die Erde, Das war ein Langzeitrekord, der erst 1970 von der Besatzung von Sojus 9 gebrochen wurde.

Sein Leben danach

Nach seiner beeindruckenden Raumfahrtkarriere verließ Frank Borman die NASA im Jahr 1970 und begann eine erfolgreiche Laufbahn in der Wirtschaft. Er war unter anderem Präsident der Eastern Air Lines und später auch der Liberty University.

Ehrungen

  • Borman war einer der ersten sechs Astronauten, denen am 1. Oktober 1978 die Congressional Space Medal of Honor verliehen wurde
  • Er ist als einer von wenigen Astronauten Mitglied in der National Aviation Hall of Fame
  • 1968 war er mit seinen Kameraden von Apollo 8 Mann des Jahres des Time Magazine
  • Der Name des Softwareunternehmens Borland wurde von Bormans Namen inspiriert
  • Der Mondkrater Borman wurde 1970 nach ihm benannt

Die Geschichte zum Schluss

So, jetzt aber genug der trockenen Fakten und Stationen von Borman’s Leben. Schauen wir uns eine, die eine, etwas genauer an.

Mit der Mission Apollo-8 Vor 55 Jahren wurde Jules Vernes Roman „Von der Erde zum Mond“ Realität: Der Flug der Apollo 8 um den Mond war bis dato die kühnste Mission des gesamten Mondprogramms, weil sich noch keine Apollo aus dem Erdorbit gewagt hatte.
Das Mondprogramm der NASA war ein gut durchdachter, schrittweiser Ansatz, bei dem jede Mission des Merkur-, Gemini- und Apollo-Programms um eine weitere Fähigkeit ergänzt wurde, die für die Landung auf dem Mond erforderlich sein würde.
Da war der Start überhaupt, das An- und Abkoppeln zweier Raumschiffe, der Mensch im Weltraum, das Verlassen des Orbits und vieles mehr.

Die eigentliche Mission von Apollo 8 bestand darin, die Mondlandefähre im Erdorbit zu testen. Ein vernünftiges Ziel, wenn man bedenkt, dass dies der allererste bemannte Flug der mächtigen Saturn V sein würde, der größten und mächtigsten Rakete, die je gebaut wurde. Auch das Raumschiff Apollo an der Spitze war ziemlich neu: Nur eine Crew hatte es zuvor geflogen.
Die Montage der Mondlandefähre war jedoch weit hinter dem Zeitplan zurückgeblieben und die NASA stand unter enormem Druck.
Im September 1968 hatten die Sowjets zwei Schildkröten und ein paar Mehlwürmer um den Mond geschickt und sicher auf die Erde zurück gebracht.
Die Befürchtung, die Soviets würden das nun auch zuerst mit Menschen schaffen, war durchaus berechtigt.
Aus diesem Grunde mussten die Missionsplaner das Ziel für Borman, Lovell und Anders leicht ändern: Sie sollten nicht im Erdorbit bleiben, sondern den Weg zum Mond wagen, ihn umkreisen, und wieder sicher auf der Erde wassern.
Die Entscheidung war unglaublich mutig, wenn man bedenkt, dass kein Raumschiff des Mondprogramms jemals die Umlaufbahn der Erde verlassen hatte. Apollo 6, ein unbemannter Testflug mit Saturn V, sollte um den Mond herumfliegen, aber die dritte Stufe versagte. Sie zündete ihre Triebwerke für die „Trans Lunar Injection“ leider nicht.
Und somit war das Ziel der Mission verloren und sie wurde abgebrochen.
Als Borman, Lovell und Anders am 21. Dezember 1968 an der Küste Floridas vom Pad 39 A des John F. Kennedy Space Centre abflogen, waren sie die ersten Menschen, die die relative Sicherheit der Erdumlaufbahn verließen und 400.000 Kilometer ins Ungewisse wagten.
Als nun die drei Astronauten den Mond erreichten, taten sie etwas, womit wohl niemand gerechnet hatte.

Die Astronauten von Apollo 8, waren gebeten worden, die ersten Live-Bilder vom Mond mit etwas „Angemessenem“ zu kommentieren – schließlich würde etwa ein Sechstel der Menschheit das Ereignis an ihren Fernsehern mit verfolgen.
Und sie zitierten einen Teil der Schöpfungsgeschichte aus dem ersten Buch der Bibel, Genesis.
Bei Martin Luther liest sich das in der neuesten Übersetzung, im ersten Buch Mose, Genesis, Kapitel eins, wie folgt:

  1. Am Anfang schuf Gott Himmel und Erde.
  2. Und die Erde war wüst und leer, und es war finster auf der Tiefe; und der Geist Gottes schwebte auf dem Wasser.
  3. Und Gott sprach: Es werde Licht! Und es ward Licht.
  4. Und Gott sah, dass das Licht gut war. Da schied Gott das Licht von der Finsternis
  5. und nannte das Licht Tag und die Finsternis Nacht. Da ward aus Abend und Morgen der erste Tag.
  6. Und Gott sprach: Es werde eine Feste zwischen den Wassern, die da scheide zwischen den Wassern.
  7. Da machte Gott die Feste und schied das Wasser unter der Feste von dem Wasser über der Feste. Und es geschah so.
  8. Und Gott nannte die Feste Himmel. Da ward aus Abend und Morgen der zweite Tag.
  9. Und Gott sprach: Es sammle sich das Wasser unter dem Himmel an besondere Orte, dass man das Trockene sehe. Und es geschah so.
  10. Und Gott nannte das Trockene Erde, und die Sammlung der Wasser nannte er Meer. Und Gott sah, dass es gut war.

Und wer diesen ersten Gottesdienst im All im Originalton hören möchte, bitte
hier lang.

Schon klar. Der Anfang der Schöpfungsgeschichte aus dem Buch Genesis der des alten Testaments unserer Bibel ist nicht unbedingt das, was wir als Weihnachtsgeschichte bezeichnen würden. Aber mal ganz ehrlich. Hätte die Geschichte vom Kindlein im Stall zu der Situation gepasst, dass die drei Astronauten, Frank Bormann, Jim Lovell und Bill Anders, damals am Heiligen Abend 1968 die ersten Menschen in einer Umlaufbahn um den Mond waren?

Am 24. Dezember 1968, verschwand Apollo 8 schließlich hinter dem Mond. Kein Mensch hatte jemals die andere Seite des Mondes direkt beobachtet.

Im Mondschatten zu sein bedeutet, im Funkloch zu sein. Durch den Mond hindurch ist kein Funkkontakt zur Erde möglich. Die drei waren also völlig auf sich alleine gestellt.
Völlig heimatlos. Sie würden nicht mal durch die Gravitation der Erde wieder angezogen, sollten sie mit ihrem Schiff mit ausgefallenen systemen durch das All trudeln. Selbst bei einem Absturz auf den Mond, wäre keine Rettung möglich. So lange konnte man im Apollo-Schiff nicht überleben, wie es gedauert hätte, eine Rettungsmission zusammen zu stellen, und außerdem hatte man derlei noch nie vorher geprobt.
Sie mussten die Zündung der Triebwerke selbst berechnen, einleiten und kontrollieren.
Zündete das Triebwerk zu kurz, und Apollo 8 würde ins All geschleudert, zu lang, und sie würde ein weiterer Krater auf dem Mond werden. Für die Astronauten fühlten sich die vier Minuten und sieben Sekunden, während derer das Triebwerk arbeitete, um sie auf die richtige Bahn zu blasen, wie eine Ewigkeit an.
Nach 20 Stunden im Orbit war es Zeit zu gehen. Eine weitere kritische Zündung des Triebwerkes, und Borman, Lovell und Anders waren auf dem Weg zurück auf die „gute Erde“. Am 27. Dezember öffneten sich drei riesige Fallschirme über dem Nordpazifik südlich von Hawaii. Die Apollo 8 wasserte sicher im Meer, und wurde von einem Flugzeugträger aufgenommen.

Was für ein Abenteuer, was für eine Geschichte. Eine Geschichte, die bereits hundert Jahre zuvor von dem gewissen Jules Verne erzählt worden war. Die NASA, so schien es, folgte nur seinem Skript.