Zum Vollmond heute Nacht eine Mondgeschichte

Ja, Morgen ist Vollmond. Das kommt vor und ist nichts besonderes an sich.

Besonders ist vielleicht, dass jetzt auch Indien mit einer Raumsonde nach dem Mond greift. Es könnte spannend werden, wer der neue erste Mensch des 21. Jahrhunderts auf dem Mond sein wird, und welche Nation dahinter steckt. Ich fände es schön, wenn es ähnlich, wie die ISS ein grenzen überschreitendes Projekt sein würde; ein Beispiel dafür, dass die Menschheit durchaus in der Lage ist, Hürden und Probleme zu meistern, wenn man sie gemeinsam angeht.

 

Vielleicht wundert ihr euch jetzt, wieso ich nichts über die momentan wirklich unglaublichen und zahlreichen Missionen schreibe, die momentan gestartet sind. Ihr kennt mich ja. Das tue ich immer dann, wenn die Medien davon abgelassen haben. Dann kann ich aus dem vollen schöpfen, und die Sache in meine Art von Kontext einbinden.

Deshalb hier einfach mal eine Mondgeschichte, Keplers Traum zum Mond.

Passend zu einem ganz normalen Vollmond ohne Supermond und ohne Mondfinsternis.
Ich werde nicht zum Werwolf und bin auch sonst nicht mondfühlig.

Trotzdem faszinierte der Mond die Menschen schon immer. Heute erzähle ich kurz etwas über eine Mondgeschichte, die mir auch noch gar nicht so lange vertraut ist.

Ich habe sie aus dem Buch “Das Weltgeheimnis”. Das gibt es wunderbar aufgelesen in der Hörbücherei Hammburg.

 

Kein geringerer, als Johannes Kepler, hatte einen Traum vom Mond. Er verfasste ein Traktat, in welchem er seine Vorstellung vom Mond, wie man dort hin kommen könnte, und welche Lebensbedingungen dort herrschten, festhielt.

Der Text diese Traktats ist heute kaum noch bekannt.
Ein Dämon wird zum Erzähler und berichtet zunächst von dem komplizierten und anspruchsvollen Auswahlverfahren, wer mondtauglich sei. “Keinen von sitzender Lebensart – keinen wohlbeleibten – keinen Wolllüstigen nehmen wir mit, sondern, wir nehmen solche, die ihr Leben im eifrigen Gebrauch der Jagdpferde verbringen, oder die häufig zu Schiff Indien besuchen und gewohnt sind, ihren Unterhalt mit Zwieback, Knoblauch, gedörrten Fischen und anderen von Schlemmern verabscheuten Speisen, zu fristen”…
Wie wichtig diese Tauglichkeitsprüfung ist, wird klar, wenn man sich den Start näher betrachtet.
Die Beschleunigung sei laut Keplers Schrift damit vergleichbar, als würde man mit Pulver über alle Lande hinweg gesprengt.
Aus diesem Grunde, müssten alle Mondfahrer vor dieser Tortur mit Opiaten betäubt werden.
Während des Aufstieges müsste man sich an eine unbeschreibliche Kälte gewöhnen, und hätte mit Atemnot zu kämpfen. Später wird die Reise unbeschwerlicher, da die Schwerkraft der Erde ab- und die des Mondes zu nimmt.
Diese Anschauung ist doch schon sehr modern. Vor allem vor dem Hintergrund, dass die Newtonsche Mechanik mit der dazugehörigen mathematischen Beschreibung der Schwerkraft noch nicht bekannt waren.
Problematisch könnte die Landung werden. Hier eilen Laut Kepler schützend Dämonen voraus, um eine weiche Landung zu ermöglichen. In Keplers Text heißt der Mond plötzlich Levania und die Erde nennt er Volva.
Als Astronom stellt Kepler gleich nach der Ankunft klar, dass der Fixsternhimmel auf Levania dem der Erde sehr ähnlich ist. Es gäbe jedoch gravierende Unterschiede. So geht auf dem Mond die Sonne nur zwölf Mal pro Jahr auf und wieder unter. Somit gingen die Uhren dort sehr viel langsamer.
Tag und Nacht wären gemeinsam einen synodischen Monat lang.
In dieser langen Nacht versinkt der Mond in Kältestarre und seine Bewohner hätten mit wütenden Winden zu kämpfen. Während des darauffolgenden nicht minder langen Tages glüht eine unbarmherzige Sonne nieder und lässt alle Kreatur schmachten. Kepplers Höhepunkt seines Traumes ist der Blick zurück.  Er beschreibt, wie man die Erde riesig vom Mond aus sehen können sollte. Heute wissen wir es von den Apollo-Raumfahrern, die um den Mond kreisen mussten, genauer. Viele Aufgänge und Untergänge der Erde am Horizont des Mondes wurden beschrieben und es gibt atemberaubend schöne Fotos davon. Sie zeigen, wie fragil unser Raumschiff Erde, die Blase, in der wir leben, ist. Gerade Gestern hat @Dlr_next die Kinderfrage vertwittert, was ein Astronaut auf dem Mond wohl sähe, wenn wir Vollmond haben. Na, findet ihr es heraus? Genau, der Astronaut hätte gerade Mittag. Die Sonne stünde für ihn hell am Zenit. Ich bin mir da jetzt nicht ganz sicher, aber ich denke, er würde die Erde vor lauter Sonnenlicht nicht sehen, ähnlich, wie wir den Mond bei Neumond aus dem selben Grund nicht sehen können.
Kepler weiß, dass Erde und Mond ein einfach gekoppeltes System sind. Das weiß er deshalb, weil er erkennt, dass der Mond uns stets dieselbe Seite zeigt. Will sagen, dass wir immer die gleiche Landschaft betrachten und diese sich nicht verschiebt, wie sie es täte, wenn der Mond sich irgendwie anders um sich selbst drehte. Deshalb sieht man den Globus ganz unterschiedlich, je nach dem, wo man sich auf dem Mondball befindet. Diejenigen, die sich auf der sog. “Dark Side” aufhalten, sehen die Erde niemals.

Für Erdbetrachter auf dem Mond hat die Erde natürlich auch dem Mond ähnliche Phasen, die Mondbetrachter von der Erde aus sehen.

Für Mondbewohner geht die Erde innerhalb eines Monats auf, und wieder unter.

 

Ein weiterer interessanter Effekt, den Kepler nennt, ist die Tatsache, dass sich die Erde einmal Täglich unter dem Mond weg dreht. Dies sieht man an Strukturen des Erdballs die von Ost nach West vorüber ziehen. Das sollte für Mondbewohner besonders schön bei einer totalen Mondfinsternis betrachten lassen. Nächtlich erhellte Städte ziehen langsam vorüber.

Mit einigen geographischen Kenntnissen sollten die Mond-Bewohner ihre Uhren an vorüberziehenden markanten Punkten mit der Erdenzeit synchronisieren können.

Für die Vorstellung, wie man die Erde sieht, nutzt Kepler das geographische Wissen seiner Zeit.
Er teilt den Erdball in zwei Hemisphären ein, aber nicht in eine Nord- und eine Südhalbkugel, sondern in eine West- und Osthalbkugel, wobei Europa, Afrika  und Asien, die alte Welt, auf der Osthälfte und Nord- und Südamerika auf der Westkugel zu finden sind. Dazwischen ist ein großer Ozean.

In der “alten Welt” erkennt er einen menschlichen Kopf, Afrika, dem sich ein Mädchen in langem Gewande zum Kusse hinneigt. Europa mit Spanien stellen den Frauenkopf dar und Asien ihr Gewand Ihr nach hinten ausgestreckter Arm, der laut Kepler eine Katze anlockt, der Arm als Großbritannien und die Katze als Skandinavien, verfeinern und ergänzen sein Bild. Südamerika vergleicht er mit einer Glocke und dem südlichen Zipfel als Klöppel. Über einen schmalen Strick, ist sie an Nordamerika angehängt.
Als Kepler seinen Traum schreibt, ist die Entdeckung der Welt durch die Seefahrt in vollem Gange. Von Berichten von Weltumsegelungen lässt Kepler sich anstecken und inspirieren. Außerdem verfestigt sich dadurch seine Gewissheit, das kopernikanische Weltbild sei richtig.

Vom Mond aus, kann Kepler seine neue Astronomie aus anderer Perspektive betrachten. Der Globus lässt sich als ganzes begreifen und das kopernikanische Weltgebäude wird offenbar.
Spektakel der besonderen Art sollten Finsternisse sein, die sich vom Mond aus ganz anders präsentieren sollten. Auch diese zieht Kepler in Betracht. Er dreht den Globus, verändert die Positionen von Erde, Sonne und Mond und erschaft sich so einen theoretischen neuen Beobachtungsplatz.

Neu an Keplers Traum ist, die Veränderung der Sichtweise und des Standpunktes. Eine neue hinterfragende, sich selbst misstrauende Denkweise probiert Kepler hier aus. Der Wechsel des Bezugssystems und die Gewinnung von Abstand und einer dadurch veränderten wissenschaftlichen Sicht, öffnen Türen, neues zu wagen und das geozentrische Weltbild zu hinterfragen.

Relativ am Ende seines Traumes, geht Kepler auf den Mond an sich ein. Es gibt Berge und Täler, Winde und Meere und auch Leben.
Er geht auf die Tatsache ein, dass durch die verminderte Schwerkraft die Lebewesen deutlich größer würden mit langen Elefantenbeinen und riesigen Körpern, wobei die Schlangenform vorherrsche. ja, das hat schon viel mit Schwerkraft zu tun, wie groß sich Körper entwickeln können. Wale verenden am Strand, weil ihr Skelett ihr Gewicht unter der Schwerkraft auf dem Land nicht tragen kann. Im Wasser sind sie durch die Auftriebskraft deutlich leichter.

Spoc aus Enterprise hat so große Ohren, weil auf Vulkan, seinem Heimatplaneten, die Luft dünner ist. Dadurch werden alle Geräusche leiser. Das hat dort die Evolution mit größeren Ohren kompensiert.

Nach diesen Überlegungen bricht sein Traum plötzlich ab. Er beendet ihn mit einem starken Regen, der ihn erwachen ließ.

 

Dennoch. Ich finde diesen Traum äußerst spannend. Vor allem, wie sich nüchterne Naturwissenschaft mit der Anwesenheit von Dämonen widerspruchslos fügt, finde ich höchst beeindruckend.

Das findet man allerdings bis heute noch. Ich kenne promovierte Physiker, die in ihrer funtamentalistischen Freikirche leben, dass die Erde in sieben Tagen erschaffen wurde, dass Eva ein Rippchen Adams sei und vielen anderen Unsinn mehr.
Danach gehen sie wieder an ihren Arbeitsplatz und zählen vielleicht Neutrinos…

Ich freue mich, wenn Keplers Traum vom Mond auch euch etwas ergreift.

Es grüßt euch bis zum nächsten mal

Euer Gerhard.

 

So interessant ist unser Pluto, auch als Zwergplanet

Meine lieben Leserinnen und Leser,

und hier kommt er, der angekündigte Artikel über unseren super interessanten Pluto.

Das Pluto nun seit Juli 2006 der Planetenstatus aberkannt wurde, soll uns nicht stören, wie es auch die Forscher nicht zu stören scheint. Wie das Preisschild letztlich auch die Kunst nicht macht, so fasziniert uns dieser Himmelskörper mit seinen fünf Monden nicht minder, wenn er auch nur noch ein Zwergplanet ist.
Noch nie erhielten wir so detaillierte und hoch aufgelöste Bilder von ihm, wie die Sonde New Horizons uns lieferte.
So weit draußen sollte er uns einige unserer brennenden Fragen beantworten, die mit der Entstehung unseres Sonnensystems zusammen hängen.
Hier nun einige von mir gesammelten Daten und Fakten über ihn.

Namensgebung:

Die Planeten haben Namen aus der römischen Götterwelt. Zum Teil haben ihre Entdecker sie benannt. Dabei hat man sich immer Götternamen ausgesucht, die etwas mit dem Aussehen, der Lage zur Sonne und den Merkmalen des Planeten zu tun haben.

In der römischen Mythologie ist Pluto der Gott der Unterwelt. Der Planet erhielt seinen Namen wahrscheinlich, weil er so weit von der Sonne entfernt ist, dass er nie ins Licht gelangt und ständig in der Dunkelheit liegt. Außerdem sind PL die Initialen von Percival Lowell, der 1894 das Lowell Observatory in Arizona gründete. Seine Bemühungen galten der Erforschung des Mars. Seit 2006 zählt Pluto allerdings nicht mehr zu den Planeten, sondern gilt als Zwergplanet.

Entdeckung

Pluto wurde erst 1930 entdeckt. Er hat etwa die Größe Merkurs und
besitzt fünf Monde.
Neptun und Pluto wurden nicht mit optischen Instrumenten entdeckt. Sie verrieten sich durch ihre Schwerkraft, wodurch sie die Bahnen der anderen Planeten störten.

Aufbau:

Über Plutos Beschaffenheit ist noch wenig bekannt. Mit einem Durchmesser von lediglich 2370 km ist er deutlich kleiner als die sieben größten Monde im Sonnensystem. Seine mittlere Dichte von 1,869 g/cm³ spricht für eine Zusammensetzung aus zirka 65 % Gestein und 35 % Wassereis.
Temperatur
Im Juli 2005 konnte erstmals die thermische Emission von Pluto und seinem großen und nahen Mond getrennt gemessen werden. Dabei hat sich gezeigt, dass die Oberfläche von Pluto mit −230 °C um 10 °C kälter ist, als es einem reinen Strahlungsgleichgewicht entsprechen würde. Der Grund dafür ist die Ausbildung der Atmosphäre, durch deren Sublimation Verdunstungskälte entsteht.
Wir kennen dieses Phänomen vom Alltag her. Wenn wir leichtflüchtige Substanzen, wie Alkohol, auf unsere Haut aufbringen, verdunstet er rasch, nimmt Wärme mit und das empfinden wir als Kühlung.

Oberfläche

Durch New Horizons wurde eine näherungsweise herzförmige, auffällig helle, homogen erscheinende Region sichtbar. Sie liegt zum flächenmäßig größeren Anteil nördlich des Plutoäquators und hat bis auf weiteres nach dem Entdecker des Plutos, Clyde Tombaugh, den Namen Tombaugh Region erhalten. Innerhalb der Tombaugh Region befindet sich wiederum ein Sputnik-Ebene getaufter Bereich. Man geht davon aus, dass diese kraterlose Ebene weniger als 100 Millionen Jahre alt und möglicherweise noch in einem Zustand aktiver geologischer Formung begriffen ist. Sichtbare Schlieren in diesem Bereich könnten durch Winde verursacht sein.
Wassereis ist bei einer Temperatur von -230 Grad hart wie Granit.
Stickstoff hingegen ist noch zähflüssig oder schneeartig.

Geologie:

Auf Pluto gibt es keinen Vulkanismus und auch keine Plattentektonik.
Zumindest vom größten Mond Charon her dürften auch keine Gezeitenkräfte mehr auftreten, da dieses system doppelt gekoppelt in einem Gleichgewichtszustand ist. Die anderen vier Monde hingegen wirken noch auf Jupiter.
Grundsätzlich gibt es auf Jupiter wegen seiner Atmosphäre ein Wetter. Geologische Veränderungen durch fließende Substanzen, wie Wasser auf der Erde oder Methan auf dem Saturnmond Titan, sind durchaus denkbar.

Atmosphäre

Plutos sehr dünne Atmosphäre besteht zum größten Teil aus Stickstoff, zum zweitgrößten Teil aus etwas Kohlenmonoxid und zirka 0,5 % Methan.Nach Messungen am James Clerk Maxwell Telescope ist die Atmosphäre im Jahr 2011 3000 km hoch und das in ihr enthaltene Kohlenstoffmonoxid −220 °C kalt. Zuvor nahm man an, die Atmosphäre sei 100 km hoch. Ihr Druck an Plutos Oberfläche beträgt laut der US-Weltraumbehörde NASA etwa 0,3 Pascal und laut der Europäischen Südsternwarte (ESO) um 1,5 Pascal.
New Horizons entdeckte in der Plutoatmosphäre Aerosole bis in 130 km Höhe. Diese konzentrieren sich hauptsächlich auf zwei Nebelschichten, die erste etwa 50 km über Boden und die zweite in ca. 80 km Höhe.

Leben:

bei -230 Grad ist definitiv kein Leben möglich.
Durch den Sonnenwind können mit dem Stickstoff der Atmosphäre einfachere chemische Verbindungen entstehen. Leben wird daraus allerdings nie werden.

Magnetfeld:

Pluto besitzt kein Magnetfeld.
Deshalb ist seine Atmosphäre ungeschützt den geladenen Teilchen des Sonnenwindes ausgesetzt und wird fortgetragen.
Aus diesem Grund geht dem Mars seine Atmosphäre langsam verloren.

Monde:

Von Pluto sind fünf Monde bekannt. Ihre Umlaufbahnen sind annähernd kreisförmig und zueinander komplanar. Sie liegen in Plutos Äquatorebene, aber nicht in seiner Bahnebene. Mit New Horizons wurde – aus Sicherheitsgründen – vor dem Vorbeiflug nochmals intensiv nach Monden und Staubringen gesucht; es konnten keine weiteren Plutomonde entdeckt werden.

Bei unserem Trabanten ist es genau umgekehrt. Die Mondbahn liegt nahezu in der Ekliptik, nicht aber in der Äquatorebene.

Ihre Namen sind
Charon, Nix, Hydra, Kerberos und Styx.
Ich möchte euch hier nicht mit Daten zu den Umlaufbahnen langweilen. Das merkt man sich eh nicht.
Interessant ist aber doch, dass ein Zwergplanet, kleiner als unser Mond, fünf Monde haben kann.

Laut einem etwas älteren Astronomiebuch aus meiner Sammlung, hat Pluto nur einen Mond und die Atmosphäre besteht aus Methan und ettliche andere Details unterscheiden sich völlig, bzw. werden vermutet.
Es ist einfach so, dass wenn man, was auch immer, genau wissen möchte, dann muss man sich irgendwann auf den Weg machen und hin gehen.

UmlaufBahn:

Pluto benötigt für eine Sonnenumrundung 247,68 Jahre. Im Vergleich zu den Planeten ist die Umlaufbahn Plutos deutlich exzentrischer, mit einer numerischen Exzentrizität von 0,2488. Das heißt, der Abstand zur Sonne ist bis zu 24,88 % kleiner oder größer als die große Halbachse.

Der sonnenfernste Punkt der Plutobahn, das Aphel, liegt bei 49,305 AE, während der sonnennächste Punkt, das Perihel, mit 29,658 AE näher an der Sonne liegt als die sehr wenig exzentrische Bahn Neptuns. Zum letzten Mal durchlief Pluto diesen Bereich, in dem er der Sonne näher ist als die Neptunbahn, vom 7. Februar 1979 bis zum 11. Februar 1999. Das Perihel passierte Pluto 1989. Sein Aphel wird er im Jahr 2113 erreichen. Dort beträgt die Sonnenstrahlung nur etwa 0,563 W/m². Auf der Erde ist sie 2430-mal so hoch. Für einen Beobachter auf Pluto wäre der scheinbare Durchmesser der Sonne nur etwa 1/50 des scheinbaren Sonnendurchmessers, den wir auf der Erde gewohnt sind. Die Sonne sähe für diesen Beobachter wie ein extrem heller Stern aus, der Pluto 164-mal so hell wie der Vollmond die Erde beleuchtet.
Seine Bahn ist um 17 Grad gegen die Ekliptik geneigt.
Wir sprachen im Zusammenhang mit Finsternissen darüber, dass die Bahn des Mondes auch gegen die Ekliptik geneigt ist.
(Stichwort Knotenpunkte und Trakonistischer Monat)

Auffällig ist, dass Pluto in der Zeit, in der sich Neptun dreimal um die Sonne bewegt, genau zweimal um die Sonne läuft. Man spricht daher von einer 3:2-Bahnresonanz.
In der Musik nennt man das eine Synkope.
Schön, nicht wahr?

Rotation:

Pluto rotiert in 6,387 Tagen einmal um die eigene Achse. Die Äquatorebene ist um 122,53° gegen die Bahnebene geneigt, somit rotiert Pluto rückläufig. Seine Drehachse ist damit noch stärker geneigt als die des Uranus, aber im Unterschied zum Uranus und zur Venus ist der Grund dafür allgemein ersichtlich, ebenso die Ursache für Plutos ziemlich große Rotationsperiode, denn die Eigendrehung des Zwergplaneten ist durch die Gezeitenkräfte an die Umlaufbewegung seines sehr großen Mondes Charon gebunden. Damit sind Pluto und Charon die einzigen bisher bekannten Körper im Sonnensystem mit einer doppelt gebundenen Rotation.

Erde und Mond sind einfach gekoppelt. Das bedeutet, dass der Mond uns stets die gleiche Seite zuwendet. Er dreht sich innerhalb eines Monats einmal um sich selbst, wobei die Erde sich unter ihm durchdreht, so dass der Mond aus unserer Sicht auf- und untergeht.
Pluto und Charon sind doppelt gekoppelt. Das bedeutet, dass Charon ihm immer dieselbe Seite zuwendet und gleichzeitig, dass Charon sich mit der selben Geschwindigkeit um Pluto bewegt, wie dieser sich dreht.
Charon und Pluto sind so miteinander gekoppelt, als wären beide fest mit einer Stange verbunden.
Dem Erde-Mond-System wird dieses Schicksal auch einst beschieden sein, denn Ebbe und Flut bremsen das System mit der Zeit ab. Ist dieses Gleichgewicht erreicht, wird der Erdentag deutlich länger sein, der Abstand zum Mond auch, der Mond wird sich in der Äquatorebene der Erde befinden und der Mond wird lediglich noch von einer Stelle der Erde aus zu sehen sein. Ebbe und Flut gibt es dann nicht mehr, und auch keine Mondphasen.

Diese Mail soll aber nicht mit einem Horrorszenario enden. Bis dieses eintritt vergeht noch seeeeeehr viel Zeit.

Liebe Grüße

Gerhard.

Die Internationale Astronomische Union und der Planet, der keiner mehr sein darf

Liebe Leserinnen und Leser,

Anknüpfend an meinen voran gegangenen  Artikel zur Einladung  auf dem Kongress der Internationalen Astronomischen Union in Wien befassen wir uns heute etwas näher damit, was die Internationale Astronomische Union (IAU) ist, und welch gewichtige Entscheidungen sie treffen kann.

Die Internationale Astronomische Union (IAU) ist eine von vielen Welt weiten wissenschaftlichen Vereinigungen. Die große Wissenschaft spielt sich heutzutage international ab. So sind beispielsweise an der ISS weit mehr als 100 Länder beteiligt. Ebenso verhält es sich mit dem gigantischen LHC in Cern.

Das legt nahe, dass viele wissenschaftliche Disziplinen sich international vernetzen, um derlei Großprojekte überhaupt stemmen zu können.

Die Internationale Astronomische Union (IAU; französisch Union astronomique internationale, UAI) ist eine 1919 in Brüssel gegründete weltweite Vereinigung von Astronomen mit Sitz in Paris. Ihr Ziel ist die Förderung der Astronomie und ihrer Forschung durch internationale Zusammenarbeit. Sie ist neben anderen ähnlichen Organisationen für andere Wissenschaftszweige ein Mitglied des Internationalen Wissenschaftsrats, der seinen Sitz ebenfalls in Paris hat. Mit dem Stand von November 2008 hat die IAU 9623 Einzelmitglieder aus weltweit 86 Ländern sowie 65 nationale Mitglieder, das heißt, astronomische Gesellschaften und Akademien.

Quelle war hier Wikipedia.

Früher, vor der Globalisierung und wo die Welt noch nicht so “klein” war, wie heute, schlossen sich Wissenschaftler eher zu nationalen Vereinigungen zusammen. Ein Beispiel hierfür ist die Royal Society in Großbritannien, die mit ihrer Gründung im Jahr 1660 zu den ältesten wissenschaftlichen Vereinigungen der Welt gehört.

Deutschland hat mit der Astronomischen Gesellschaft, die meine Arbeit derart schätzte, dass sie mich 2013 als Mitglied aufnahm, auch eine der ältesten astronomischen Vereinigungen.

Die Astronomische Gesellschaft (AG) ist der Fachverband der deutschen Astronomie/Astrophysik. Sie wirkt als Förderer von Wissenschaft und Forschung, stärkt den Austausch ihrer Mitglieder untereinander und befördert die Verbreitung wissenschaftlicher Erkenntnisse in öfffentlichkeit und im Bildungswesen.
Sie wurde bereits 1861 in das Vereinsregister eingetragen und hat ihren Sitz in Hamburg.

Schon damals suchte man stets nach Planeten. Nicht unbedingt nach extra terestrischen, dafür hätten die damaligen Messinstrumente niemals gereicht, sondern in unserem Sonnensystem.
Um möglichst viele Astronomen zu dieser Suche zu vereinen, gründete man um 1800 eine internationale Vereinigung, weil man einen Planeten zwischen Mars und Jupiter vermutete.
Dieser vermeindliche “Planet” ist der Asteroid Ceres. Es ist absolut natürlich, dass man in der großen Lücke zwischen den Umlaufbahnen von Mars und Jupiter noch einen Planeten wähnte. OK, es gibt keinen, aber diese Lücke ist durchaus nicht leer, denn sie beinhaltet den Asteroidengürtel.

Ein weiteres Großprojekt zu dieser Zeit war die Kartographie des Himmels. Hierfür hatte die Pariser Sternwarte 1887 das “Carte du Ciel-Projekt” ins Leben gerufen.

Ende des 19. Jahrhunderts organisierte der Amerikanische Sonnenforscher George Ellery Hale eine Konferenz, auf der die Idee entstand, etwas internationales zu gründen.

Interessant an dieser ersten internationalen Organisation war, dass es ihnen ein Anliegen war, dass Wissenschaftler so nützlich wie möglich im Krieg eingesetzt werden konnten.
So wurden astronomieerfahrene Soldaten dazu angehalten, nachts, wenn nicht gekämpft wurde, Himmelsbeobachtungen durchzuführen. Das mag vielleicht etwas makaber klingen, aber andererseits dürfte es für viele begabte Wissenschaftler auch eine wichtige Ablenkung ihres grausamen Tagesgeschäftes gewesen sein.

Wie auch immer.
Hier wird offenbar, wie wichtig internationale Kooperationen gerade in der Astronomie sind. Der Himmel ist viel zu groß, um alleine erforscht zu werden. Schon alleine deshalb nicht, weil man nicht gleichzeitig als einzelner jeden Punkt des Himmels beobachten kann.

Nun entwickelten sich über mehrere Stufen und zwischen den Weltkriegen hindurch diverse wissenschaftliche Vereinigungen. Als Gründungsdatum der IAU wird der 28.07.1919 angegeben. Wegen des ersten Weltkrieges konnten Deutschland und Österreich zunächst nicht beitreten. Deutschland weigerte sich sogar, weil es sich hier nicht unterordnen wollte. Dies wurde aber etwas “aufgeweicht”, indem die Organisatoren 1928 einzelne Deutsche Astronomen zum Kongress nach Leiden einluden.

Danach folgte erst einmal der zweite Weltkrieg. Deutschland wurde schließlich 1951 Mitglied der IAU und Österreich folgte 1955.

Schön ausführlich ist die Entstehung der IAU in einer der letzten Folgen der Sternengeschichten von Florian Freistetter erklärt.

http://scienceblogs.de/astrodicticum-simplex/2018/08/31/sternengeschichten-folge-301-die-internationale-astronomische-union/”>http://scienceblogs.de/astrodicticum-simplex/2018/08/31/sternengeschichten-folge-301-die-internationale-astronomische-union/

Lasst mich jetzt an einem der prominentesten Beispiele erläutern, welch weitreichende Entscheidungen die IAU treffen kann.
Ins Gerede ist die IAU im August 2006 gekommen, als sie auf ihrem Kongress in Prag den Entschluss fasste, dass Pluto künftig kein Planet mehr sein darf, sondern nur noch ein Zwergplanet ist.

Ach, wie mühsam haben wir noch in der Schule die Namen der neun Planeten uns eingepaukt. Eine große Hilfe hierbei war der Satz:

“Mein Vater erklärt mir jeden Sonntag unsere neun Planeten”.

Die Anfangsbuchstaben der Planetnamen entsprechen denen, der Wörter dieses Satzes:

“Merkur, Venus, Erde, Mars, Jupiter, Saturn, Uranus, Neptun und Pluto”.

Und Pluto darf jetzt nicht mehr mitmachen? Dann wissen wir ja gar nicht mehr, was für neun Objekte unser Vater all sonntäglich erklärt.

Naja, jetzt musste man den Satz auf die verbleibenden acht Planeten reduzieren.
Er heißt nun:
“Mein Vater erklärt mir jeden Sonntag unseren Nachthimmel.”

Auch schön, denn dort gibt es noch deutlich mehr erklärenswertes, als nur unsere acht Planeten, von denen höchstens sechse, einschließlich der Erde  mit bloßem Auge zu sehen sind.

Eine berechtigte Frage in diesem Zusammenhang ist die, wie so denn plötzlich Zweifel hochkochen, was denn nun ein Planet sein soll, und was nicht.

Das hat sich doch schon seit den alten Griechen und noch davor nicht mehr geändert. Es kam halt lediglich immer mal wieder ein neuer Planet hinzu. Merkur, Venus, Mars, Jupiter und Saturn sind mit bloßem Auge sichtbar. Zu alter Zeit sowieso, als es noch keine Lichtverschmutzung gab. Für die Entdeckung des Uranus, der am 13. März 1781 von William Herschel und vermutlich mit Unterstützung seiner Schwester Lucrezia, entdeckt worden war, brauchte man schon ein starkes Spiegelteleskop. Sterne sind so weit weg, dass sie selbst im Teleskop zwar heller, aber letztlich doch nur als nadelstichartige Punkte zu sehen sind. Ein Planet hingegen präsentiert sich als Scheibchen, das über einige Beobachtungsnächte hinweg, seine Position am Sternenhimmel verändert. Außerdem bildet das Scheibchen keinen Schweif aus, so dass mit der Zeit ein Komet ausgeschlossen werden kann. Durch die Veränderung der Position stellte Herschel sehr bald fest, dass es sich hier um einen bis dato unsichtbaren Planeten handeln muss, der unsere Sonne umkreist.

Die beiden letzten Planeten, Neptun und damals noch Pluto, wurden nicht durch Sicht entdeckt. Sie verrieten sich, indem sie durch ihre Schwerkraft die anderen sichtbaren Planeten in ihren Bahnen leicht störten.

Heutzutage sind die Teleskope natürlich so stark, dass man auch diese beiden letzten  bei guten Bedingungen als Scheibchen wahrnehmen kann. Heutige Teleskope lösen sogar ferne Galaxien, Nebel und Sternhaufen in ihre einzelnen Sterne auf, und es gibt weitere Verfahren, mehr über ihre Beschaffenheit und Oberflächen zu erfahren.

Trotzdem. Wieso plötzlich diese Aufregung um den Planetenstatus des Pluto?

Außer Kometen, die plötzlich mit ihren prächtigen Schweifen scheinbar aus dem Nichts auftauchten, nahezu geradlinig durch die Sternbilder zogen und wieder verschwanden, gab es nichts weiter außer den Planeten mit ihren Monden in unserem Sonnensystem. Das änderte sich jedoch mit der Entwicklung immer stärkerer Messinstrumente. Da waren plötzlich unzählige Asteroiden zwischen Mars und Jupiter zu sehen. Diese bilden den Asteroidengürtel und stellen quasi die Schneegrenze in unserem Sonnensystem dar, weil es jenseits von ihnen eisige Planeten gibt, wobei weiter innen die Steinplaneten Merkur, Venus, Erde und Mars ihre Bahnen um die Sonne ziehen. Und damit nicht genug. Es wurde auch ein weiterer Asteroidengürtel jenseits des Neptun entdeckt, der Kuiper-Gürtel, benannt nach dem Astronomen Gerard Peter Kuiper (1905–1973). Bei so vielen neu gefundenen Objekten, musste man sich ernsthaft überlegen, was denn nun ein Planet, was ein Zwergplanet und was schließlich nur einer unter vielen Asteroiden sein soll.

Auslöser für diese Diskussion war die Tatsache, dass man zunehmend Himmelskörper im oder am Rand unseres Sonnensystems fand, die Pluto durchaus ebenbürdig in Form und Größe sind. Da gibt es beispielsweise das Kuiper-Objekt Xena, das größer als Pluto ist.

Außerdem war Pluto sowieso etwas seltsam.

Da haben wir von innen nach außen vier Steinplaneten, Merkur, Venus, Erde und Mars. Dann kommen die vier Gasplaneten Jupiter, Saturn, Uranus und Neptun. Und jetzt kommt noch so ein Winzling, kleiner als unser Mond, bestehend aus Eis und Stein, der sich zudem noch auf einer sehr exzentrischen Bahn bewegt, dessen Bahn zudem noch gegen die Ekliptik ziemlich gekippt ist und der quasi auf seiner Bahn entlang rollt, weil seine Achse derart gegen  seine Umlaufbahn geneigt ist.

Und so traf sich 2006 im August die IAU zu ihrem Kongress in Prag, um diese Frage ein für allemal zu klären.

Zunächst einmal wurde von einer ausgewählten Expertenrunde ein erster Entwurf zur Abstimmung vorgelegt. Doch der wurde sehr kritisiert.
Nach diesem Entwurf sind Planeten Himmelskörper, die folgendes erfüllen müssen:
1. so viel Masse haben, dass sie durch Eigengravitation in eine runde Form gezwungen wurden. Was leichter ist, hat eher eine Kartoffelform und ist auf jeden Fall nicht rund.

2. einen Stern umkreisen, ohne selbst Sterne oder Monde, also Trabanten anderer Planeten zu sein. Ohne Monde haben wir Merkur und Venus. Auf diese beiden trifft aber Teil eins der Definition zu. Sie sind schwer genug, um Rund zu sein.

Nach dieser Definition hätte Pluto seinen Status als Planet behalten, es wären aber noch zahlreiche andere Himmelskörper in Frage gekommen, zum Beispiel Ceres und Xena.  Es wäre äußerst unpraktisch, müssten wir vielleicht gar dutzende oder mehr Planetennamen auswendig lernen. Wie lang wäre dann die Eselsbrücke, der Merksatz?

Innerhalb der vollwertigen Planeten sollte in zwei Gruppen aufgeteilt werden: die klassischen Planeten von Merkur bis Uranus und die Zwergplaneten wie Pluto, Ceres oder Xena.
Für diesen Entwurf einer Definition, ließ sich keine Mehrheit finden.
Stattdessen einigte man sich auf folgende neue Definition von Planeten:

1. Diese Planetendefinition gilt nur für unser Sonnensystem.
Das ist schade, dass man nichts fand, was für alle Sternsysteme gelten könnte. Vielleicht wird das im Zuge der Neuentdeckung von Planeten, die um andere Sterne kreisen, nochmal irgendwann neu aufgerollt werden müssen.

2. Ein Planet soll ab jetzt nur noch ein Körper sein, dessen Masse der Gesamtmasse aller anderen Körper in seinem Bahnbereich übertrifft. Will sagen, der auf seiner Bahn zumindest einigermaßen aufgeräumt hat.

Gerade letzteres trifft auf den Pluto nicht zu. Er bewegt sich im Kuiper-Gürtel mit zahlreichen anderen Himmelskörpern.

In unserem Sonnensystem gibt es also nur noch die acht klassischen Planeten Merkur, Venus, Erde, Mars Jupiter, Saturn, Uranus und Neptun, sowie Zwergplaneten, Monde und Kleinkörper. Pluto, Charon und Ceres sowie das kürzlich entdeckte Himmelsobjekt Xena sind Zwergplaneten und damit keine Planeten.

Als Kleinkörper gelten Asteroiden, Kometen und andere Objekte geringer Größe, die keine Monde sind und die Sonne umkreisen.

Bis heute entfacht die Diskussion um diese Definition immer mal wieder. Die Degradierung Plutos zum Zwergplaneten dürfte vor allem die Amerikaner tief getroffen haben, denn Pluto war der einzige Planet, der von einem Amerikaner entdeckt worden war.

Es standen noch andere Definitionen zur Auswahl, die bis heute immer mal wieder in Erwägung gezogen werden.

Das würde uns aber hier zu weit führen. Der Artikel soll ja nur beispielhaft zeigen, zu welch folgenschweren Entscheidungen die IAU, die mich eingeladen hat, bemächtigt ist.

Ich denke, es ist schade, dass Pluto nicht mehr dabei sein kann, aber die Zeiten ändern sich und durch die verbesserten Instrumente auch die Grundvoraussetzungen, die eventuell alte lieb gewonnene Definitionen in Frage stellen.

Wie oft wurde, was für uns viel folgenschwerer war, der Mensch von seinem Platz im Universum vertrieben.

Vom Mittelpunkt des Sonnensystems an den Rand, Dann war unsere Sonne nur noch ein Stern unter vielen, Wir waren kein Mittelpunkt im Universum mehr, und fristen unser Dasein am Rand einer Galaxie unter milliarden anderer. Als Trost für Pluto, werde ich einen meiner nächsten Artikel dem Pluto, seinen Monden und seiner Schönheit widmen.

Es grüßt euch bis zum nächsten Mal

Euer Gerhard.

Die Hundstage

Liebe Leserinnen und leser,

 

Hier noch auf die Schnelle ein Artikel für die brüllende Hitze:

Inhaltgeber hierfür war vor allem Wikipedia.

 

 

Als Hundstage werden im Volksmund in Europa die heißen Tage im Sommer, in der Zeit vom 23. Juli bis zum 23. August, bezeichnet, obwohl der Begriff Hundstage in Verbindung des heliakischen Aufgangs des Sirius ursprünglich nicht mit der Jahreszeit vom 23. Juli bis zum 23. August verbunden war.

Namensgebend ist das Sternbild Großer Hund (Canis Major). Der Stern Muliphein stellt den Kopfanfang des Sternbildes dar, ist aber so lichtschwach, dass er erst bei voller Dunkelheit zu sehen ist. Sirius erscheint als hellster Stern bereits in der Morgendämmerung. Mit Aludra ist es dann vollständig aufgegangen.
Vom Aufgang des Sternbildes Großer Hund bis zur Sichtbarkeit als Gesamteinheit vergehen 30 bis 31 Tage, woher sich deshalb die Bezeichnung „Tage vom großen Hund“ (Hundstage) ableitet.
Das Römische Reich ist verantwortlich für die Zeitansetzung (23. Juli bis 23. August) der Hundstage (lateinisch dies caniculares). Am Anfang der Römischen Königszeit erfolgte der sichtbare heliakische Aufgang von Sirius in Rom am 26. Juli, zu Zeiten von Julius Cäsar im Jahr 46 v. Chr. am 1. August.
Im altägyptischen Kalender nahm Sirius als Verkörperung der Göttin Sopdet sowie als Bringer der Nilschwemme im dritten Jahrtausend v. Chr. einen besonderen Rang ein. Das gleiche Ereignis wurde später von den Griechen als heliakischer Aufgang bezeichnet, was so viel wie ‚mit der Sonne (Helios) aufgehend‘ bedeutet.
Die Griechen erklärten den Zusammenhang zwischen der Wiederkehr des Sirius und den Tagen der größten Sommerhitze durch den folgenden Mythos: Die Verschmelzung des Sonnenlichts mit dem Feuer des Sirius sei Ursache der großen Hitze.
Arabische Astronomen bezeichneten die in flirrender Sommerhitze besonders häufig erscheinenden Fata Morgana gar als den vom Himmel tropfenden Speichel des Hundssterns.

Die Eigenbewegung des Sternbildes Canis Major und die Präzession der Erde sind dafür verantwortlich, dass sich die Zeit der Hundstage um etwa 4 Wochen verlagert hat. In Deutschland kann der heliakische Aufgang des Sirius erst frühestens ab dem 30. August beobachtet werden und ist damit jetzt ein Zeichen für den nahenden Herbstanfang. Entsprechend der alten Tradition werden aber immer noch die heißesten Wochen des Jahres als „Hundstage“ bezeichnet.

Erklärung Präzessionsbewegung der Erde:
Präzessionsbewegung der Erde meint, dass unsere Erde sich nicht nur um sich selbst und um die Sonne dreht, sondern einem Kreisel gleich taumelt.
Diese Taumelbewegung sorgt dafür, dass der Frühlingspunkt langsam durch den Tierkreis wandert. Das bedeutet, dass die Erdachse zum Zeitpunkt der Tag-Nacht-Gleiche, sich langsam gegen den Fixsternen-Himmel verschiebt.
Etwa alle 2000 Jahre befindet sich der Frühlingspunkt in einem anderen Sternbild.
Noch nicht lange her, wechselte der Frühlingspunkt von Sternbild Fisch in das Sternbild Wassermann.
Esoterisch veranlagte Menschen sehen in diesem Wechsel immer eine Zeit der Umwälzung und Veränderung, wie beispielsweise die New-Age-Bewegung in den sechziger Jahren des letzten Jahrhunderts.

Sternschnuppen Sehen und Hören

 

Liebe Leserinnen und Leser,
Heute geht es um Sternschnuppen im Sommer, um die Perseiden. Es geht auch darum, wie man sie sehen, aber auch hören kann.

“Wie bitte, hören?” Ja, genau, hören.

 

Die Perseiden oder auch Laurentiustränen, Tränen des Laurentius genannt, sind ein jährlich im Sommer wiederkehrender Meteorstrom, der in den Tagen um den 12. August ein deutliches Maximum an Sternschnuppen aufweist. Der scheinbare Ursprung dieses Stroms, liegt im namensgebenden Sternbild Perseus.

Das Sternbild soll die Gestalt des griechischen Helden Perseus darstellen, der die tödliche Medusa besiegte. Der Stern Algol repräsentiert das abgeschlagene Medusenhaupt, das er in der Hand hält.

Perseus gehört zu den 48 klassischen Sternbildern, die von Ptolemäus beschrieben wurden.
Bereits im Mittelalter hatten arabische Astronomen die eigenartige Verdunklung des Sterns Algol beobachtet. Der Name leitet sich aus dem arabischen Ras al Ghul ab und bedeutet Haupt des Dämonen.

In meinem Buch im Kapitel “Wissenschaftler mit vier Sinnen” berichte ich über den gehörlosen Astronomen John Goodricke, der sich mit Sternen beschäftigte, die ihre Helligkeit ändern.
Zurück zu den Perseiden:

Vom 17.Juli bis zum 24. August kann vermehrt mit Sternschnuppen gerechnet werden.

Diesmal fällt das Maximum, die Nacht vom 12. auf den 13.08. auf kurz nach Neumond, denn amm 11.08. findet, leider nicht bei uns,  eine partielle Sonnenfinsternis statt, die es nur bei Neumond geben kann.

Für Sternschnuppenjäger bedeutet das, dass der Himmel nicht störend vom Mond aufgehellt wird. Somit steigen die Chancen, Sternschnuppen zu entdecken.
Am besten beobachtet man die Sternschnuppen an einem möglichst dunklen Ort auf dem Land, wo kein Stadtlicht stört. Man legt sich am besten auf eine Wiese auf den Rücken und wendet nach Mitternacht den Blick gen Osten, also in Richtung Erddrehung. Man dreht sich dann quasi mit der Erde in den Meteorschauer hinein.

Am besten sichtbar sind die Perseiden auf der Nordhalbkugel.
Hörbar sind die Perseiden zumindest für Amateurfunker, die einen Empfänger und eine passende Antenne besitzen, auch.

Diese Disziplin des Amateurfunks nennt man Meteor Scatter.

Das ist dann auch wieder mal was für “Das Ohr am Teleskop”.
Wer einen passenden Empfänger und eine Antenne besitzt, kann das Französische Radar-Signal des Weltraumradars GRAVES benutzen. Dieses französische Radarsystem sendet auf 143,050 MHz einen Dauerträger, Dauerton, der über Phasenarray-Antennen den Himmel “abtastet”. Meteoriten, aber auch andere Objekte (Flugzeuge, Satelliten, die ISS, der Mond) reflektieren das Signal und streuen es in alle Richtungen, und diese Reflexionen können dann in Europa gut empfangen werden. Anhand der Doppler-Abweichung erkennt man dann, welches Objekt das Funksignal reflektiert hat: der Mond oder Flugzeuge bewirken eine sich nur langsam ändernde Dopplerabweichung, bei Objekten in Erdumlaufbahn ändert sich die Abweichung schnell, und bei Meteoriten extrem schnell.

Als Einstieg in den Empfang von Signalen des GRAVES Radars empfiehlt es sich, den Aufsatz von Rob Hardenberg, mit Rufzeichen PE1ITR, zu lesen.

Dank @dbsv-jugendclub gibt es hier einen Link, wie sich das anhört.
“Sternschnuppen hören”

Was sind nun die Perseiden?

Die Perseiden bestehen aus dem, was der Komet 109P/Swift-Tuttle. bei seinen letzten Besuchen durch erwärmung, schmelzen etc. verloren hat.
Er erscheint ungefähr alle 130 Jahre und entfernt sich dann stets etwas schlanker, als er vorher war. Das nächste Mal wird er um das Jahr 2126 erwartet. Ganz genau kann man das bei Kometen nie sagen, weil ihre Bahn von den Planeten gestört werden können, bzw. sie selbst ihre Bahn ändern, wenn sie aktiv sind. Dann wirkt sich die Aktivität wie kleine Schubdüsen aus.
Die Erde kreuzt auf ihrer Bahn immer um den 12. August die Staubspur, die dieser Komet im All hinterlässt, wenn er vorbei kommt. Die Staubteilchen treffen dabei mit hoher Geschwindigkeit auf die Atmosphäre und bringen die Luftmoleküle zum Leuchten. Die Sternschnuppe ist daher nicht das verglühende Staubkorn selbst, sondern wird durch das Rekombinationsleuchten der ionisierten Luft sichtbar.

Momentan werden die zu erwarteten Sternschnuppen jedes Jahr immer weniger, weil zum einen schon viel in der Erdatmosphäre verglühte und zum anderen sich der Kometenstaub, immer mehr verteilt und somit ausdünnt.

Es wird Zeit, dass er mal wieder vorbei kommt, und seine Bahn für uns mit neuem “Sternenstaub” auffüllt.

Eines Tages wird der Komet vollständig aufgelöst sein.

Dann wird es die Perseiden nicht mehr geben, weil kein Nachschub an Staub mehr kommt.

Die erste überlieferte Beobachtung der Perseiden fand vor etwa zwei Jahrtausenden in China statt. Danach gibt es Berichte aus Japan und Korea. In Europa stammt die erste bekannte Beobachtung aus dem Jahr 811.
Da das Erscheinen der Perseiden mit dem Fest des Märtyrers Laurentius am 10. August zusammenfällt, der im Jahre 258 das Martyrium auf einem glühenden Rost erlitt, werden sie im Volksmund auch Laurentiustränen oder Tränen des Laurentius genannt. Kurz vor seinem Tod soll Laurentius der Legende nach seinem Widersacher, dem römischen Kaiser Valerian, die folgenden Worte gesagt haben: „Du armer Mensch, mir ist dieses Feuer eine Kühle, dir aber bringt es ewige Pein.“
Hach, wie ist das einfach nett, wenn man in der Astronomie so schön vom Höckchen auf’s Stöckchen kommt.

Jetzt wünsche ich ihnen und euch viele schöne klare Sommernächte mit vielen Sternschnuppen und Wünschen, die dann in Erfüllung gehen.

 

Ihr und euer Gerhard.

Droht Gefahr durch Astroiden aus dem All?

Liebe Leserinnen und Leser,

Morgen, 30.06. ist Asteroid Day. Bis vor wenigen Wochen wußte ich auch nicht, dass es so einen Tag überhaupt gibt. Naja, wofür gibt es denn keinen Tag…

An diesem Tag laufen viele Veranstaltungen, an Sternwarten, der ESA, und sonstigen Einrichtungen, die sich irgendwie mit Weltall und, Astronomie und dann natürlich auch mit Asteroiden, die uns bedrohen könnten, befassen.

Am Asteroid Day, also morgen, jährt sich erneut ein Ereignis, das durch einen einschlagenden Asteroiden verursacht wurde.

das Tunnguska-Ereignis.

Das Tunguska-Ereignis bestand aus einer oder mehreren sehr großen Explosionen (daher auch Tunguska-Explosion am 30. Juni 1908 im sibirischen Gouvernement Jenisseisk, der heutigen Region Krasnojarsk, deren Ursache sich bisher nicht zweifelsfrei klären ließ. Das Ereignis fand in der Nähe des Flusses Steinige Tunguska (Podkamennaja Tunguska) im Siedlungsgebiet der Ewenken statt.
Als wahrscheinlichste Ursache gilt der Eintritt eines Asteroiden – des nach der Region benannten Tunguska-Asteroiden – oder eines kleinen Kometen in die Erdatmosphäre, wo er in einigen km Höhe explodierte. Nach neueren Erkenntnissen ist auch eine vulkanische Eruption nicht auszuschließen. Es gab sogar Spekulationen darüber, dass es ein kleines Schwarzes Loch oder gar eine außerirdische Lebensform gewesen sein könnte…

Zum Glück fand das Ereignis in relativ unbewohntem Waldgebiet statt. Aber noch Jahrzehnte danach waren, sind vielleicht die Schäden noch sichtbar.

Und noch einer:

Der Meteor von Tscheljabinsk war ein am 15. Februar 2013 um etwa 9:20 Uhr Ortszeit (4:20 Uhr MEZ)[3] weithin sichtbarer Meteor in der Tscheljabinsker Oblast rund um die Stadt Tscheljabinsk im russischen Ural,[4] nachdem ein Meteoroid bzw. kleiner Asteroid in die Erdatmosphäre eingetreten war. Nach Rekonstruktion der Flugbahn zählte dieser mit hoher Wahrscheinlichkeit zur Gruppe der erdnahen Asteroiden vom Apollo-Typ.[5][6]
Es handelte sich um den größten bekannten Meteor seit über 100 Jahren. Ein noch größerer Meteor könnte zuletzt beim Tunguska-Ereignis im Jahr 1908 in die Erdatmosphäre eingedrungen sein. Bisher einmalig für einen Meteoritenfall ist auch die hohe Zahl der verletzten Personen von rund 1500 – die meisten allerdings durch splitterndes Fensterglas.

Die Wortwahl hier mit Asteroid, Meteor, Meteorid und eventuell noch Meteorit ist hier sehr verwirrend. Es fängt immer mit einem kleinen Asteorid oder einem Stückchen Komet an, das in unsere Erdatmosphäre eindringt. Die Sache heizt sich auf, entwickelt eine Glühspur, explodiert vielleicht sogar wie bei obigen Beispielen und wenn man dann Glück hat, kann man noch Teile davon finden, wenn das Ursprungsobjekt groß und stabil genug war.
Hat man Pech, bleibt von diesem Ereignis noch so viel Material übrig, dass es für einen Krater mit all seinen Folgen reicht.
Beim Durchlauf durch diese Phasen, wechselt das fallende Objekt quasi seinen Namen mehrfach, was uns hier nicht bekümmern soll.

Viele werden schon davon gehört haben, dass vor 65 Mio Jahren ein großer mehrere Kilometer durchmessende Asteroid auf dem Amerikanischen Kontinent auf die Erde aufgeschlagen ist. Durch den Einschlag wurde so viel Staub, Ruß und anderes in die Atmosphäre geschleudert, dass sich die Sonne derart verfinsterte, dass es eine dramatische Klimakatastrophe mit Abkühlung gab, an welche sich die gigantischen Saurier nicht rasch genug anpassen konnten, und vermutlich auch große Teile ihrer Nahrungskette verloren. Man geht von mindestens drei derartiger Katastrophen aus, die entweder einen Neustart des Lebens bedeuteten, quasi ein “Reset Evolution” oder gravierende Veränderungen zeitigten…
Das Nördlinger Ries ist ein Becken, das auch auf einen etwa 2 km großen Asteroiden schließen lässt. Es gibt noch weitere Krater, die diesen Ursprunges sind. Auf der Erde sind die manchmal gar nicht so leicht zu finden. Wind, Wasser, Vulkanismus und sonstige Beben formen die Erde stets um. Ihre Oberfläche ist somit allenfalls verwischte Erdgeschichte.
vor 4,5 Milliarden Jahren, als unser Sonnensystem gerade am Entstehen war, gab es noch deutlich mehr Asteroiden und somit auch mehr Kollisionen. Die meisten Brocken haben sich zu den Steinplaneten geballt, aber es ist schon noch einiges übrig, z. B. im Asteroidengürtel, der sich zwischen Mars und Jupiter befindet und die inneren Steinplaneten von den äußeren Gasplaneten trennt.
Vermutlich erlitt unsere Venus einen fürchterlichen Zusammenstoß. Sie erleidet momentan eine enorme Klimakatastrophe in Form eines Treibhauseffekts. Außerdem scheint sie auf dem Kopf zu stehen, denn sie dreht sich sehr langsam falsch herum um sich selbst. Eine Kollision könnte sie auf den Kopf gekippt haben und der Einschlag verursachte dann dieses extreme Klima.

Unser Mond ist extrem verkratert. Da es auf ihm keine Eruption gibt, ohne Wasser, Luft und Bodenaktivität, kann man an seinen Wunden und Narben viel darüber sagen, wie dieses Bombardement mal gewesen sein muss.
Auch er ist, darf man einigen Theorien glauben, durch eine Kollision eines riesigen Objektes mit der Erde, entstanden und wurde nicht von der Erde eingefangen.

Da sich das Sonnensystem mehr und mehr geordnet hat, nahm dieses Bombardement stets ab. Somit lässt sich über die Kraterhäufigkeit das Alter eines Körpers bestimmen, der keine, wie auch immer geartete, Aktivität besitzt.

Nichts desto Trotz zeigen uns obige Ereignisse, dass es durchaus sinnvoll sein könnte, sich mit der Möglichkeit weiterer, vielleicht dann gefährlicherer, Einschläge zu beschäftigen. Jede Sternschnuppe, möge sie die Wünsche des Betrachters erfüllen, ist uns eine ungefährliche Mahnung darüber, dass permanent Staub, Trümmer, Steinchen, auf die Erde fallen. Im Falle der Schnuppe, ist das völlig harmlos und kann entspannt unter “Einfach schön” geführt werden.
Wächst sich so ein Bröckchen allerdings mal in den Bereich so um viele Meter bis gar Kilometer aus, dann wird es, wenn man das Teil nicht vorher mit einem Teleskop entdeckt, um Maßnahmen einzuleiten, eventuell gefährlich.
So ein zwei bis drei Kilometer großer Brocken in Mitten Deutschlands, dann wäre von Deutschland vermutlich nicht mehr viel übrig. Unvorstellbar, wenn so etwas in eines unserer Ballungszentren fiele.
Dass die Erdoberfläche zu etwa 3/5 von Wasser bedeckt ist, macht die Situation nicht unbedingt besser. So ein Brocken würde einen enormen Tsunami verursachen, der viele Küsten treffen könnte.

Andererseits ist es so, dass die Zeit, bis so etwas vielleicht mal in tausenden Jahren geschieht, nicht unbedingt gegen uns arbeitet. Die Teleskope, die Himmelsdurchmusterung und Messgeräte, wie Radar, werden immer empfindlicher und präziser. Schon Brocken mit wenigen Metern Durchmesser können entdeckt werden, in so fern sie sich auf der Nachtseite der Erde befinden, damit sie von der Sonne angestrahlt werden können.
Gegen die Sonne ist die Erkennung deutlich schwieriger. Das können wir bei Neumond erleben.Wir sehen den vor der Sonne stehenden Mond nicht, weil er völlig von der Sonne überstrahlt wird.

So weit, so gut. OK, wir können immer kleinere Asteroiden früh genug erkennen, um Maßnahmen zu ergreifen.
Gibt es diese Maßnahmen? Was können wir überhaupt tun? Wer koordiniert einen derartigen Katastrophenfall?

Desto größer ein drohender Asteroid ist, desto früher werden wir ihn erkennen, was uns Zeit verschafft, die wir dann aber auch dringend brauchen werden und wo keine kleinste Einheit davon ungenutzt verstreichen sollte.
Wir sprechen hier von Jahren, Jahrzehnten und mehr, bei mehreren Kilometer großen Objekten.
Wie gesagt. Die kleineren entdeckt man zwar später, aber es geht längst nicht so viel Gefahr von ihnen aus.

Stellen wir uns einen großen mehrere Kilometer im Durchmesser, Asteroid vor.
Zunächst mal wird er entdeckt, so gut es geht vermessen, und beobachtet. Durch immer längere Beobachtungszeit wird immer klarer, wie seine Bahn verläuft.
Zum Glück ist es meist so, dass ein anfänglicher Kandidat für eine mögliche Kollision, sich später als doch nicht so gefährlich erweist, weil man mehr und mehr Aussagen über seine Bahn treffen kann.
Hierfür gibt es bei der ESA Datenbanken über Asteroiden. Es prägt sich hier dann tatsächlich eine Art Hitparade aus, welche Kandidaten die ersten Plätze belegen. Das ändert sich, desto mehr man über einen Asteroid, sein vermutetes Gewicht und seine Bahn weiß.

Es lohnt sich diese Hitparade mal zu bestaunen Unten im Link zu @raumzeit, wird in den Shownotes darauf verlinkt.
Natürlich ist es so, dass ein anfänglich für harmlos befundener Brocken in der Hitliste aufsteigen könnte, weil man merkt, “Hoppla”, der könnte ja doch …
Das geschieht aber sehr selten, weil es einfach im leeren Raum so ist, dass sich zwei Körper sehr selten treffen.

Außerdem bewahrt uns in den meisten Fällen unser “Staubsauger” Jupiter davor, weil er durch seine enorme Gravitations-Wechselwirkung sich der Störenfriede entweder entledigt, indem er sie aus dem Sonnensystem wirft, bzw. sie sich gleich selbst einverleibt oder ihre Bahn so verändert, dass sie nimmermehr uns in die Quere kommen können.
Also, zurück zu unserer Entdeckung. Was machen, wenn einer sich verdammt gefährlich weit oben auf der Hitliste befindet.
Desto mehr Zeit man hat, desto mehr Technik Missionen etc. kann man zu der Gefahrenquelle schicken.
Im ersten Schritt sollte sich die Menschheit vereinen, Russland, USA, China, etc. Es geht dann nur noch um ein Ziel, den Asteroiden abzuwehren. Da müssen dann alle anderen Feden hintan stehen.
Es zeigt sich ja, z. B. auf Konferenzen, auf der Raumstation etc. dass dieses auf wissenschaftlicher Ebene durchaus schon sehr erfolgreich funktioniert.
Nehmen wir mal an, sie haben sich geeinigt. Nun wird jede Weltraumnation im Sinne der Rettung der Welt zunächst mal eine Erkundungsmission hin schicken, bzw. einer macht das stellvertretend, und um die Kosten zu reduzieren, für alle.
Diese Mission wird Klarheit darüber bringen, wie man dem Asteroiden am effektivsten auf den Leib rückt.
Ganz wichtig ist an dieser Stelle, dass man analysiert, wie seine Oberfläche beschaffen, er in seinem Inneren aufgebaut ist, und woraus er im wesentlichen besteht.
Danach kann man dann die geeignete Maßnahme ergreifen, um ihn aus dem Weg zu räumen.
Ist das Objekt stabil und hart, dann könnten einige gleichzeitig mit Raketen abgefeuerte Projektile den Asteroid leicht aus seiner Bahn lenken. Das muss nicht viel sein. Auf die Entfernung summiert sich das und reicht, dass wir verschont bleiben.

Wäre das Objekt eher porös, wie z. B. Juri, dann wäre diese Art der Problemlösung vielleicht sogar äußerst kontraproduktiv und würde die Gefahr verschlimmern und unkalkulierbarer machen. Das Objekt könnte in viele Teile zerbrechen, von welchen jedes dann für sich eventuell wieder eine potentielle Gefahr darstellte.
In den meisten Fällen dürfte es günstiger sein, den Asteroid möglichst am Stück zu lassen.

Es gibt Studien der ESA, die erforschten, ob man ein relativ schweres Raumschiff starten könnte, das über Jahre oder Jahrzehnte parallel zum Asteroid fliegen könnte, um ihn nach und nach mittels Gravitation ganz leicht von seiner Bahn weg zu ziehen. Das ist gar nicht so einfach. Die Düsen dieses Raumschiffs dürfen beispielsweise nicht den Asteroid anblasen, weil das ihn ja in die entgegen der gewollten Richtung schieben würde.

Eine weitere spannende Überlegung wäre, ob man den Asteroid zumindest zur Hälfte oder so, anmalen sollte. Das führte dazu, dass sich die Absorbtion des Sonnenlichts veränderte. Dieses übt einen leichten Druck auf den Asteroid aus, der ihn, genügend Zeit vorausgesetzt, etwas aus seiner Bahn drücken sollte.
Wer den Asteroiden anmalen soll und wie man diese Gravity-Aktion durchführen kann, weiß ich jetzt nicht genau.

Es besteht auch die Möglichkeit, dass man den Asteroid mittels von einer Atombombe erzeugten Druckwelle verschiebt. Das bedeutet, dass man die Bombe nicht auf den Körper werfen würde, sondern davor zünden. Auf ihn werfen, könnte ihn ja zerbrechen lassen, was man nicht möchte.

Zum Glück kommt ein derartiges Ereignis äußerst selten vor. Nachteil daran ist, dass alle Politiker so ein Szenario auf die nächste Legislatur verschieben, weil es ja soooooo weit weg und unwahrscheinlich scheint.
Also bei kleineren Asteroiden würde man vermutlich keine Technikschlacht durchführen. Hier würde man evakuieren und sich so verhalten, wie man das bei einer Tornado-Warnung, einer Tsunami-Warnung u. Ä. täte.
Es gibt durchaus Notfallpläne dafür und durch den Einschlag von 2013 sind Politiker etwas für die Sache sensibilisiert, so dass Gelder für die Erforschung der Asteroiden-Frühwarnung und Abwehr bereitgestellt werden.
Hoffen wir, dass die Asteroidchen, mit denen wir es zu tun bekommen,, wirklich nur Sternschnuppen sind, die uns erfreuen
und unsere Wünsche erfüllen.
Darüber berichte ich aus gegebenem Anlass dann in vierzehn Tagen.
Wer das Thema der Asteroidenabwehr vertiefen möchte, dem sei Folge 71 des Podcasts @raumzeit von Tim Pritlove sehr empfohlen. Neben Wiki, habe ich diese Folge auch zur Erstellung dieses Artikels heran gezogen.
Asteroidenabwehr

Bis zum nächsten Mal grüßt
Euer Gerhard.

Sommersonnenwende

Liebe Leserinnen und leser,

Hach, wie ist das praktisch, wenn man einen Text recyceln kann.

Bevor der beginnt, habe ich eine Frage:

Wieso fand, zumindest bei uns in Rheinstetten und anderswo die Sonnwendfeier diesmal schon am Samstag vor dem 21.06. stadt, und nich erst am 23.06., was viel näher dran wäre?

Genau, weil am Samstag, Deutschland spielt.

 

Und nun kommt der renovierte Text:

Für Sehende mag dieser Text eine etwas besondere Leseerfahrung sein, weil er nicht bebildert ist, was im Falle der Veranschaulichung sicher als sehr hilfreich empfunden würde. Lasst euch einfach mal auf diese verbalisierte Version ein. Es geht auch ohne Bilder…

 

Die meisten, die hier mitlesen wissen, was Sonnwend ist und wie unser Jahreslauf funktioniert,  Zumindest glauben sie es. Meine Erfahrung hierzu ist aber auch, dass vieles dazu dann doch nicht ganz so bekannt ist, wenn man auf den Zahn fühlt.
Deshalb hier das wichtigste zu Sonnwend und Jahreslauf.
Unsere vier Jahreszeiten rahmen unser Jahr ein.
Der Astronomische Frühling liegt immer um den 20.03. herum. Das ist dann auch der Tag, der Tag-Nacht-Gleiche. Das bedeutet, dass von diesem Tag an bis Sommersonnwend, um den 21.06. herum, die Tage stets länger als die Nächte sind. Nach Sonnwend kehrt sich der Prozess dann wieder um. Die Tage sind zwar bis zur Herbst-Tag-Nacht-Gleiche noch immer länger als die Nächte, werden aber stets kürzer.
Ab dem Herbst-Equinox, wie man diese Punkte auch nennt, sind dann die Nächte länger, als die Tage.  In Equinox steckt Equi für gleich.
Das verstärkt sich dann, bis zur Wintersonnenwende am 21.12. Von da an werden die Tage dann wieder länger. Im nächsten März, bei der Tag-Nacht-Gleiche beginnt dann der beschriebene Zyklus von vorn.

Dass Neujahr nicht mit einem dieser Equinox-Punkte zusammenfällt, hat historische Gründe.
Hier einige Spielarten für den Neujahrstag, die man normalerweise nicht so kennt:
• der Circumcisionsstil (von lateinisch circumcisio = Beschneidung Jesu am 8. Lebenstag) lässt das Jahr am 1. Januar von Weihnachten aus gesehen, beginnen
• der Annuntiationsstil (von lat. annuntiatio = Verkündigung der Empfängnis an Maria) am 25. März
• der Weihnachtsstil am 25. Dezember
• der Paschalstil (von lat. pascha = Ostern) zwischen dem 22. und 23. März und dem 25. April

Dies aber nur am Rande. Kehren wir zurück zur Sommersonnenwende und dem Lauf der Jahreszeiten.
Die offensichtlichste Bewegung unserer Erde ist ihre Drehung um sich selbst. Tagsüber nimmt man sie durch den Lauf der Sonne wahr und in der Nacht, indem sich die Sphäre der Sternbilder dreht.

Da man nicht spürt, dass sich die Erde dreht, ist es logisch, wenn man von einer ruhenden Erde, Geozentrisches Weltbild ausgeht.

Dass wir diese Drehung körperlich nicht wahrnehmen liegt daran, dass wir relativ zur Erde uns in Ruhe befinden.

Wieso die Annahme, dass die Erde ruht, nicht haltbar blieb, soll Inhalt eines anderen Beitrages über den Wandel des Weltbildes, werden.

 

Jeder bekommt es mit, dass die Tages- und Nachtlänge im Jahreslauf variiert und dass die Sonne im Sommer deutlich höher steigt, als im Winter. Das gilt für alle Erdbewohner nur mit dem Unterschied, dass wenn die einen Winter, die anderen Sommer haben.

Am wenigsten wirkt sich das am Äquator aus. Innerhalb des nördlichen und südlichen Wendekreises variiert der Sonnenhöchststand quasi nicht. Auf der Erde sind die Wendekreise die beiden Breitenkreise von je 23° 26′ 05″ (23,43472°) nördlicher (Wendekreis des Krebses) und südlicher (Wendekreis des Steinbocks) Breite. Auf ihnen steht die Sonne am Mittag des Tages der jeweiligen Sonnenwende im Zenit. Die Wendekreise haben vom Äquator je einen Abstand von 2609 km. Der Gürtel zwischen nördlichem und südlichem Wendekreis wird als die Tropen bezeichnet.

 

Wer einen Globus, ein Modell der Erde, hat, sieht, dass seine Dreachse stets schief zum Tisch, auf welchem der Globus steht, ist. Das ist auch im Weltall so. Die Erdachse ist gegenüber der Scheibe, Ekliptik, auf welcher sich alle Planeten bewegen, um ungefähr 23,4 Grad geneigt.
Wieso das so ist, kann man nicht genau sagen. Ein Planet kann gekippt werden z. B. durch einen Einschlag eines großen Asteroiden. Der Mond zieht und zerrt auch an der Erde.
Die Venus steht vermutlich durch so eine Katastrophe auf dem Kopf, denn sie dreht sich falsch herum und sehr langsam dazu um sich selbst. Außerdem muss sie ein Inferno erlebt haben, das ihren enormen Treibhauseffekt auslöste. Vielleicht sind durch einen Einschlag dann alle Vulkane auf ihr gleichzeitig hoch gegangen oder so.
Neptun ist so stark gekippt, dass er quasi auf seiner Bahn entlang rollt.

Aber alles der Reihe nach.

Stellen wir uns im ersten Schritt vor, dass die Erdachse senkrecht auf der Ekliptik steht. Was geschieht dann mit unseren Tag-Nacht-Rhythmus. Genau. Alle Tage wären gleich lang. 12 Stunden wäre es Tag und 12 Stunden Nacht. Wir hätten weder Sommer noch winter, sondern etwas dazwischen. Es wäre immer Tag-Nacht-Gleiche und gäbe kein Sonnwend.

Im nächsten Schritt kippen wir die Erdachse um 23,4 Grad der Sonne entgegen. Das bedeutet, dass die Nordhalbkugel mehr Sonne abbekommt, als die Südhalbkugel. Wir hätten somit immer Sommer und diejenigen auf der Südhalbkugel immer Winter. Wir hätten in diesem Falle quasi immer die Situation einer Sommersonnenwende.

Nun lassen wir die Erde um die Sonne laufen, um zu unseren Jahreszeiten mit Sonnenwenden und Equinoxien zu gelangen.
Beim Umlauf der Erde um die Sonne, ändert die Drehachse ihre Richtung nicht.
Die Bewegungen überlagern sich

Stellen wir uns ein großes Ziffernblatt vor, in dessen Mitte die Sonne ruht.
In Anlehnung an die Beschreibung eines Esstellers, und was sich wo darauf befindet, greifen wir auf die für Menschen mit Blindheit bekannte Uhrzeit-Beschreibung zurück.
Somit beschreibt das Ziffernblatt von eins bis zwölf Uhr den Jahreslauf.
Welche Ziffer welcher Monat ist, spielt hier keine Rolle, da es mir hier eher um die Veranschaulichung geht.
Stellen wir uns die Erde auf sechs Uhr liegend vor und ihre Nordachse mit 23,4 Grad zur Sonne, der Mitte des Ziffernblattes,  zeigend.
Lassen wir nun die Erde links herum um die Sonne laufen, zeigt die Nordachse stehts von uns weg, wenn auch nicht mehr auf die Sonne.
Steht die Erde, wie in unserem Beispiel auf sechs Uhr, so hat die Nordhalbkugel maximale Sonneneinstrahlung. Auf drei Uhr scheint die Sonne direkt auf den Äquator, da die Erdachse quer zu ihrem Licht liegt.Das wäre dann der Herbstanfang.

Auf zwölf, haben wir winter und die Südhalbkugel maximal Sonne. Nun zeigt die Nordachse aus dem Ziffernblatt hinaus.
Auf neun Uhr ist die Situation ähnlich, wie auf drei Uhr. Auf neun Uhr wäre Frühlingsanfang, Tag-Nacht-Gleiche, auf sechs Uhr dann Sommersonnenwende Auf drei Uhr Herbst-Tag-Nacht-Gleiche und auf zwölf Uhr Wintersonnenwende.
Es ist schon seltsam, dass unsere Uhren sich rechts herum drehen, wo sich im Sonnensystem eindeutig alles links herum dreht. Auch mathematisch gesehen, wäre eine Uhr, die links herum läuft richtiger, wenn man den Verlauf von Funktionsgrafen betrachtet.

Zunehmende Steigung bedeutet, links herum. Abnehmende, dagegen rechts.

 

Zur Erdachse kann man sagen, dass das nicht ganz stimmt, dass sie sich nicht bewegt. Bedingt durch den Mond und die anderen Planeten, eiert die Erde etwas auf ihrer Bahn. Das bedeutet, dass die Erde prezediert, wie ein Spielzeug-Kreisel. In einigen tausend Jahren, wird die Nordachse nicht mehr auf den Polarstern zeigen. Somit wandert auch der Frühlingspunkt der Erdachse durch die Sternbilder. Hieraus resultiert die Aussage, dass wir jetzt gerade im Zeitalter des Wassermannes sind. So ein Sternbildwechsel geschieht ungefähr alle 3000 Jahre und Esoteriker sehen hierin dann immer neue Zeiten, anbrechen, die große Umbrüche und Veränderungen mit sich bringen.

Die gekippte Erdachse bewirkt auch, dass die Mondsichel einem manchmal liegender und dann wieder aufrechter erscheint. Die Tage werden auch nicht gleichmäßig an beiden Enden länger bzw. kürzer. Das liegt eben auch daran, dass die Erde eine Kugel ist. Wer mag, kann sich mal mit Calscy, LunarSolCall oder einem sonstigen Kalender ansehen, Wie es sich durch den Jahreslauf hindurch mit den Sonnenaufgängen, den Sonnenhöchstständen und den Sonnenuntergängen verhält.

Das ist sehr spannend und verblüffend. Vorsicht! Sommer- und Winterzeit muss berücksichtigt werden, ansonsten hat man mir nichts, Dir nichts, einen Stundenfehler in seinen Beobachtungen.

Da die Erde pro Tag ungefähr auch ein Grad auf ihrer Jahresbahn weiterläuft, verschiebt sich täglich alles. Könnte man der Sonne bei ihrem Tageslauf zu Fuß folgen, käme man nie mehr dort heraus, wo man den Lauf begonnen hat.
Eine Sonnenuhr muss deshalb immer wieder neu ausgerichtet werden, damit ihr Zeiger um 12 Uhr Mittags keinen Schatten wirft. Stets hängt auch an jeder Sonnenuhr eine Formel, mit welcher man die Ungenauigkeit herausrechnen kann. Diese Formel sieht je nach Breitengrad, wo die Sonnenuhr steht, etwas anders aus.

Außer den Zircumpolaren Sternbildern verändern sich Sternauf- und Untergänge im Jahreslauf erheblich. Vor allem im Bezug auf den Horizont.

Die Cirkumpolarsterne sind so nahe am Polarstern, dass sie nicht auf oder unter gehen, z. B. der große Wagen. Je nach Ansicht und Zeit, sieht man sie aber perspektivisch auf dem Kopf. Der Große Wagen verhält sich so.

 

Alle diese Beobachtungen und noch viele weitere Planetenbewegungen führten letztlich dazu, dass ein geozentrisches Weltbild unhaltbar war.

Kopernikus befand, dass alle Bewegungen am Himmel deutlich einfacher zu erklären waren, wenn man die Sonne in die Mitte setzt und die Erde sich um diese Dreht.

 

Als letztes möchte ich hier nochmal ganz klar stellen. Dass wir Jahreszeiten haben, hat lediglich mit der gekippten Erdachse zu tun. Dass die Erde sich auf einer elliptischen Bahn bewegt, (mal näher und mal sonnenferner) trägt nichts zu den Jahreszeiten bei. Paradochserweise ist es sogar so, dass Neujahr ungefähr mit dem Perihel (sonnennächster Punkt) der Erdbahn, zusammen fällt und es bei uns winter ist. Die Erdbahn ist fast kreisrund.
Jetzt wünsche ich euch eine gute Zeit und dass ihr gut durch die heißen Tage und die Fußball-Wm kommt.

Es grüßt euch

Euer Gerhard.

Gedenken an die erste Raumstation der Welt

Liebe Leserinnen und Leser,

alle Welt fiebert dem Start von Alexander Gerst entgegen. Das ist wirklich unglaublich, was der für ein Medienstar geworden ist. Gut ist vor allem, dass hier der Sinn einer Raumstation, wie der ISS mal der breiten Öffentlichkeit vermittelt wird.

Auch ich fiebere mit und hoffe inständig, dass alles beim Start klappt. So ein Start ist kein Spaziergang und bleibt immer ein Risiko.

Wie immer, werde ich hier nicht wiederholen, was andere über diese bevorstehende Mission schon geschrieben oder gesagt haben, bzw. noch werden. Ich schreibe dann über die ISS, wenn alle anderen darüber schweigen.

Unser Kontrastprogramm führt uns vierzig Jahre in die Vergangenheit. Zu dieser Zeit befand sich auch eine Raumstation im All. Es war die erste überhaupt. Um sie, soll es heute mal gehen.

Die Quellen, aus denen ich hierzu schöpfe, sind Wikipedia, mein eigenes Buch und das Buch “Die Sonne, der Stern von dem wir leben – den Geheimnissen der Sonne auf der Spur” von Prof. Rudolf Kippenhahn.

Wie ich die Mission als Kind erlebte:

Im Gegensatz zur Mondlandung, war ich zu dieser Zeit schon auf der Welt, und habe vor allem den medienwirksamen Absturz der Skylab, so war ihr Name, erlebt.

Kurz bevor Skylab, die erste Raumstation der Welt, am 11. Juli 1979 nach sechs Jahren im Weltall wieder in die Erdatmosphäre eintrat und abstürzte, war es nachts möglich, sie bei guten Bedingungen zu sehen. Meine Mutter, von Beruf Hausfrau, bemühte sich sehr, eine solche Nacht nicht zu verpassen, und erzählte mir davon. Sie hatte ein natürliches, angeborenes Interesse an derlei Vorkommnissen. Sie arbeitete sich rasch in neue Technologien ein, war dafür begeisterungsfähig und hätte, wenn sie noch leben würde, sicherlich auch am Internet und Smartphone ihre Freude. (Siehe Blind zu den Sternen, Astronomische Erlebnisse, S. 24)
In der Zeit des bevorstehenden Absturzes der Raumstation bekam ich deutlich mit, dass dieses Ereignis immer wieder im Radio angesprochen wurde. Es schien wirklich wichtig zu sein. Auch im Pausenhof und Internat war das Thema stets präsent.

So intensiv erlebte ich dieses bevorstehende Ereignis, dass es dem nahe kam, wie intensiv ich die Entführung von Hans-Martin Schleyer erlebte. Ich weiß, das ist irgendwie ein komischer Vergleich, aber als Kind unterscheidet man da vielleicht nicht so.

Planung und Bau

Lasst uns nun auch dieser ersten Raumstation gedenken. Sie wurde alleine von den USA betrieben und bestand quasi aus dem Rest, was von den Apollo-Missionen zum Mond übrig geblieben war.

Die ersten Ideen zu einer Raumstation gehen bis 1965 zurück. Dort wurde sogar ein Saturn-Apollo-Office der NASA gegründet.

Man wollte damit weitere Anwendungsgebiete für die Apollo-Hardware, wie z. B. Raketen, Raumkapsel etc. finden, um das Knowhow der Ingeniere zu erhalten.

Heute nennt man so etwas Nachhaltigkeit.

Ja, die Apollo-Raketen waren schon eine extreme Materialschlacht. Somit kam man auf die Idee, eine dritte Brennstufe einer Saturn-V-Rakete quasi auszuhölen, um darin eine Raumstation einzurichten. Dort, wo sich normalerweise der Wasserstoff- und der Sauerstofftank befanden, arbeiteten, wohnten und schliefen nun die Astronauten.
In die Raketenwand wurden Fenster eingesetzt, so dass man auch nach draußen sehen konnte.
Die Skylab war für drei Astronauten ausgelegt, wobei auf der ISS sieben gleichzeitig leben können. Dies ist der Tatsache geschuldet, dass zur Rückkehr die Apollo-Kapseln verwendet wurden, die ebenfalls nur drei Astronauten aufnehmen konnten.
So entschloss man sich schließlich 1965 für den Plan, die Raumstation zu bauen und dann, wie eine normale Apollo-Mission zu starten. Allerdings trugen hier nur die beiden unteren Brennstufen zum Antrieb bei, weil ja in der dritten Brennstufe die Raumstation und kaum Treibstoff war.
Es wurden zwei Versionen der Skylab hergestellt. Eine blieb als Trainings-Simulator auf der Erde.

Aufbau der Station:

Ich schrieb schon, dass der Behälter für das Raumlabor aus einer ausgebeinten dritten Brennstufe einer Saturn-Rakete bestand.
Die Besatzung wohnte und arbeitete im Wasserstofftank mit einem nutzbaren Innenvolumen von 275 m³. Der Sauerstofftank wurde mit einer Schleuse ausgestattet und als Abfallgrube genutzt. Im hinteren Teil der Brennstufe befanden sich die Ausrüstung, alle Essensvorräte, die gesamten Wasservorräte und die Drucktanks für den Treibstoff zur Lageregelung. Neben den Wohn-, Schlaf- und Sanitätsräumen wurden dort auch Experimente durchgeführt, vor allem Erdbeobachtung durch ein Fenster und medizinische Untersuchungen. Es gab auch zwei kleine Schleusen für Experimente auf der der Sonne zu- und abgewandten Seite der Station; erstere wurde für die Reparatur des Thermalschutzes dauerhaft belegt. Das bewohnbare Volumen war mehrfach in Ess- und Ruhezonen sowie individuelle Schlafkabinen unterteilt, insbesondere mit gitterartigen Fußböden, in die sich die Astronauten mit speziellen Schuhen einhaken konnten. Durch den großen Durchmesser war ein Volumen von 280 m³ bewohnbar. Dieses Volumen wurde erst von der Mir in ihrer Endausbaustufe übertroffen.

Also die hatten dort richtig viel Platz. An den Arbeitsraum schloss sich der Instrumentenring der Brennstufe an. Den brauchte man, um den Start zu kontrollieren. Später übernahmen dann die Computer im Inneren der Station.
Nach diesem Teil folgte die 22 t schwere Luftschleuse, das Airlock Module (AM). Sie enthielt eine Luftschleuse zum Ausstieg, riegelte den Wohn- und Arbeitsraum vom Docking-Adapter ab, enthielt die Steuerung der Teleskope und alle Gase für die Station in Drucktanks. Ihre Breite ging von 6,7 auf 3,04 m zurück. Sie hatte eine Länge von 5,2 m und ein Innenvolumen von 17,4 m³.
Es folgte der zylinderförmige Multiple Docking Adapter (MDA). Er war 3,04 m breit, 5,2 m lang und hatte eine Masse von 6260 kg. Er hatte zwei Andockstellen für Apollo-Kommandokapseln: eine seitlich und eine in der Verlängerung der Längsachse. Die seitliche Andockstelle war für eine Notkapsel vorgesehen, die dann gestartet werden sollte, wenn eine Rückkehr mit der ersten Kapsel nicht möglich gewesen wäre,
Zur Sonnenbeobachtung, die ein wichtiges Ziel von Skylab war, verfügte die Raumstation zudem über ein Observatorium, das Apollo Telescope Mount (ATM), das nach dem Erreichen des Orbit in eine Position seitwärts ausgefahren wurde. Es wog 11.066 kg, war 6 m breit und 4,4 m hoch. Seine Sonnenteleskope konnten auf 2,5 Bogensekunden genau ausgerichtet werden. Die Filme für die Kameras, mussten im Rahmen eines Außenbordmanövers (EVA) gewechselt werden.
Die Energieversorgung war mit vier Solarmodulen und zwei weiteren am Hauptmodul geplant. Alleine die Solarpanele des ATM hatten eine Spannweite von 31 m. Das ATM benutzte Komponenten der Mondlandefähre und richtete mit seinen Drallrädern auch die gesamte Station aus.
Drallräder sind Schwungräder. Die sorgen dafür, dass die Raumstation gut ausgerichtet blieb. Viele Raumsonden verfügen bis heute über Drallräder. Wie diese genau funktionieren, sollte ich mal in einem gesonderten Artikel beschreiben. Viele werden noch den Versuch in der Schule kennen, wo man ein Rad eines Fahrrades beschleunigt, und es dann an den Achsen haltend versucht, zu kippen. Es geht nur schwer. Wer das moderne Spielzeug Fidgetspinner kennt, kann das auch ausprobieren. Es ist schwer, das Ding auszulenken, wenn es sich schnell dreht.

Zuletzt gab es noch das angekoppelte Apollo-Raumschiff als Command and Service Module (CSM). Das CSM übernahm die gesamte Kommunikation mit der Erde, da Skylab, abgesehen von seiner Bordtelemetrie, keinen eigenen Sender hatte. Weiterhin mussten die Lebenserhaltungssysteme des CSM einmal pro Monat die Gasreinigung übernehmen, wenn die Molekularsiebe von Skylab ausgeheizt wurden. Das CSM war daher integraler Bestandteil der Station. Das CSM war das, was bei den Apollo-Missionen dann letztlich mit den drei Astronauten wohlbehalten ins Wasser fiel.

Die Masse der Station betrug über 90 Tonnen. Insgesamt war Skylab wesentlich größer als die sowjetische Raumstation Saljut 1, die im April 1971 gestartet worden war. Bei günstigem Sonnenstand war das Skylab mit bloßem Auge als leuchtender Punkt auch am Taghimmel zu beobachten.

Ich muss ganz ehrlich sagen, dass ich mir ohne Modell nicht ganz vorstellen kann, wie hier alles zusammengesetzt ist. Einen Teil kenne ich von meiner Mondrakete, Siehe “Einmal mit Lego auf den Mond und zurück” in diesem Blog.
Vielleicht wird manches klarer, wenn mein Apollo-Artikel mal fertig ist.

Startund Probleme

Der Start von Skylab erfolgte planmäßig am 14. Mai 1973 vom Startkomplex 39-A in Cape Canaveral.
Die Saturn V SA-513, die für Skylab 1 verwendet wurde, war etwas kürzer als die Modelle, die für die Mondflüge verwendet worden waren. Sie hatte keine Rettungsrakete, kein Apollo-Raumschiff und keinen Adapter für die Mondlandefähre. Außerdem nutzte diese Rakete nur zwei Stufen. An Stelle der dritten Stufe transportierte sie die Raumstation mit einer kegelförmigen Verkleidung an der Spitze.
Auch hier sei nochmal auf den Lego-Artikel verwiesen, dann kann man sich das ganze vielleicht etwas besser vorstellen.

Es gab bei Skylab einige Probleme, so dass ihr Start durchaus unglücklich verlief.
Bereits 63 Sekunden nach dem Start empfing die Bodenstation alarmierende Telemetriesignale. Beim Durchbrechen der Schallgrenze riss innerhalb von nur drei Sekunden der gesamte Mikrometeoritenschutzschild ab, wodurch auch zwei Solarmodulträger beschädigt wurden. Spätere Untersuchungen zeigten, dass der Fehler durch mangelnde Koordination der Konstruktionsabteilungen entstanden war. Die Raumstation erreichte zwar die geplante Umlaufbahn, war aber nicht funktionsfähig. Zwar gelang es der Flugleitung, die vier Solarmodule des Solarobservatoriums auszufahren, doch schien es Probleme mit den beiden anderen Modulen zu geben, so dass insgesamt nur etwa die halbe elektrische Leistung zur Verfügung stand. Der fehlende Meteoritenschutzschild hätte auch als Wärmeschutz dienen sollen, weshalb in der Station die Temperatur stark anstieg, so dass befürchtet werden musste, dass Lebensmittel, Medikamente und Filme verdorben sein würden.
Da man die Station zunächst ohne Mannschaft startete, musste man jetzt die ersten beiden Flüge zur Station so umgestalten, dass die Reparaturen durchgeführt werden konnten.
So führte die hohe Temperatur im inneren der Station
dazu, dass Instrumente, die aus dem Lager geholt wurden, nicht mehr in die dafür vorgesehenen Halterungen passten. Sie mussten erst abkühlen. So mussten spezielle Reparaturpläne, Werkzeuge und vieles mehr entwickelt werden. Die Astronauten mussten lernen, damit umzugehen, was sie im Wassertank simulierten.
Es gelang den Mannschaften während der Missionen Skylab 2 und Skylab 3, die Schäden zu reparieren. Die Station war anschließend voll funktionsfähig.

Ziele der Mission:

Die ersten beiden bemannten Flüge zur Station wurden zur Reparatur der Raumstation benutzt. Danach, als die Station voll einsatzfähig war, kann man die wissenschaftlichen Ziele so zusammenfassen.

Sonnenbeobachtung über das Apollo Telescope Mount (ATM) und Erdbeobachtung sowie Erkenntnisgewinn in den Bereichen Raumphysik, Werkstoffforschung und Biomedizin.
Diese Themen treiben die Forscher auch heute noch um und werden mittels Experimente auf der ISS erkundet.

Nutzung der Station

Drei Besatzungen aus jeweils drei Astronauten verbrachten insgesamt 513 Manntage im All. Da der Start von Skylab als Mission 1 gezählt wurde, beginnen die bemannten Missionen mit der Nummer 2.
Hier ein kurzer Überblick über die Besatzungen und die Dauer der verschiedenen Missionen:
• Skylab 2:
• 25. Mai 1973 – 22. Juni 1973
• Besatzung: Charles Conrad, Paul J. Weitz, Dr. Joseph P. Kerwin
• Skylab 3:
• 28. Juli 1973 – 25. September 1973
• Besatzung: Alan L. Bean, Dr. Owen K. Garriott, Jack R. Lousma
• Skylab 4:
• 16. November 1973 – 8. Februar 1974
• Besatzung: Gerald P. Carr, Dr. Edward G. Gibson, William R. Pogue

Aufgabe und kontrollierter Absturz

Nachdem die Station, wie man oben leicht sehen kann, mehrere Jahre quasi unbeachtet und aufgegeben um die Erde kreiste, weil man wegen der veralteten Technologie keine Verwendung mehr für sie hatte,
Wurde der Kontakt im März 1978 zu Skylab wieder aufgenommen. Offenbar rotierte die Station weitgehend unkontrolliert mit einer Periode von sechs Minuten pro Umdrehung, und die Funkgeräte arbeiteten nur, wenn die Solarmodule im Sonnenlicht waren. Nach einer Woche gelang es, mehrere Batterien ferngesteuert zu laden. Der Zentralcomputer arbeitete noch zufriedenstellend, die Lageregelung war aber durch den Ausfall eines Sternensensors und den Teilausfall eines der drei Drallräder erheblich beeinträchtigt.
Ein Sternsensor ist in der Lage Sternkonstellationen zu erkennen, was die Ausrichtung unterstützt.

Es stellte sich heraus, dass Skylab schneller als berechnet sank. Grund dafür war die durch hohe Sonnenaktivität unerwartet ausgedehnte Hochatmosphäre der Erde und die dadurch erhöhte Abbremsung.
Die Aktivität der Sonne variiert gemeinsam mit dem Auftreten von Sonnenflecken in einem elfjährigen Zyklus. Auch dieses wird mal demnächst behandelt. Es ist längst schon auf meiner Liste, eine Serie über die Sonne zu starten.

Am 19. Dezember 1978 gab die NASA bekannt, dass man Skylab nicht retten könne, man aber alles unternähme, um das Risiko von Absturzschäden zu minimieren. Hierzu arbeitete die NASA eng mit der Überwachungsbehörde North American Aerospace Defense Command (NORAD) zusammen. NASA und NORAD verwendeten unterschiedliche Berechnungsmethoden für den Wiedereintritt und kamen deshalb auf unterschiedliche Ergebnisse für Zeit und Ort des Niedergangs.
Die NASA plante, durch die Ausrichtung der Raumstation die atmosphärische Reibung steuern zu können, um den Absturz zu verzögern oder zu beschleunigen. Durch Fernsteuerung sollte Skylab dann zu einem bestimmten Zeitpunkt in Rotation mit bekannter Aerodynamik versetzt werden. Damit konnte in engen Grenzen die Gefahrenzone verlagert werden.
Der Absturz erfolgte dann am 11. Juli 1979. Der letzte Orbit von Skylab führte größtenteils über Wasserflächen, und die NASA gab das letzte Steuerungskommando, um die Gefahrenzone von Nordamerika weg auf den Atlantik und den Indischen Ozean zu verlagern. Tatsächlich zerbrach die Station erst später als berechnet in mehrere Teile, so dass das Absturzgebiet weiter östlich als geplant lag. Betroffen war die Gegend südöstlich von Perth in West-Australien bei Balladonia, wo Trümmer in den dunklen Morgenstunden niedergingen, ohne jemanden zu verletzen.
Und hier noch eine nette Anekdote dazu:
Die Behörden der australischen Gemeinde Esperance Shire schickten der NASA wegen unerlaubter Abfallentsorgung einen Bußgeldbescheid über 400 Dollar. Die NASA lehnte eine Bezahlung ab; erst 2009 wurde der ausstehende Betrag von einer US-Radiostation beglichen.

Die gesamte Mission kostete etwa 2,6 Milliarden US-Dollar.
Das geht eigentlich, wenn man bedenkt, was mittlerweile das James-Webb-Weltraumteleskop
kosten soll.

Man darf an dieser Stelle gespannt sein, wie man die ISS eines Tages abstürzen lassen möchte. Sie ist deutlich größer und schwerer, als die Skylab. Die bestand im wesentlichen ja nur aus einer Raketenstufe. Die ISS besteht aus vielen dosenförmigen Modulen, die über eine Metallkonstruktion miteinander verbunden sind.
Ich glaube, dass hierzu noch verschiedene Pläne im Rennen sind, wie das ablaufen könnte.

So, das war mal eine Rückbesinnung auf die erste Raumstation der Welt.
Vor uns liegt aber nun der Start von Alexander Gerst und seiner Crew. Ich wünsche Ihnen einen Bilderbuchstart und dass alles glatt gehen möge. Wir dürfen auch gespannt sein, wie Astro-Alex mit seiner fliegenden “Alexa”, dem Roboter Cimon, zurecht kommen wird. Der soll ein richtiges KI-Wunder sein.

Ich beneide all jene, die life beim Start anwesend sein können. Ich freue mich jetzt schon auf die entsprechenden Podcast-Folgen…
Jetzt drücke ich die Daumen und hoffe, dass der Beitrag etwas Freude macht.
Bis zum nächsten Mal grüßt euch
Euer Gerhard.

Mein astronomischer Jubiläums-Monat Mai

Liebe Leserinnen und leser,

Heute auf den Tag genau, am 18.05.2013, erhielt ich mein erstes astronomisches 3D-Modell. Es war unser Mond.

Außerdem feiere ich in diesem Monat mein fünfjähriges Jubiläum meiner Mitgliedschaft bei der Deutschen Astronomischen Gesellschaft.

Nicht zuletzt fielen Mitte May vor fünf Jahren die Würfel. Ich entschloss mich, mein Buch zu schreiben.

Lasst mich mit euch Jubiläum feiern.

Hierfür möchte ich euch mal einen kleinen historischen Abriss über diese Entwicklungen geben. Es findet sich auch einer in meinem buch, aber das ist mittlerweile drei Jahre alt und die Sachen haben sich weiter entwickelt.

Also los:

In meiner Schulzeit gab es fast keine Modelle zu Astronomie. Ein taktiler Globus, ein Kurbelmodell für die Jahreszeiten und vielleicht noch eine schematische Darstellung des Sonnensystems in 2D, waren das einzige, woran ich mich erinnern kann. Da ich mich schon immer für Modelle und Karten aller Art interessierte, kann man wohl davon ausgehen, dass ich nichts vergessen habe.

Somit startete ich meine Freizeiten etc. quasi mit leeren Händen, was Modelle betraf.

Einzig eine Spezialfolie, auf welche man taktil malen kann, und eine Magnettafel zur Veranschaulichung von Planetenkonstellationen  oder Sternbildern, standen mir taktil zur Verfügung. Da das ausführlich in meinem Buch steht, wie wir damals noch improvisierten, springe ich jetzt mehr als fünfzehn Jahre vorwärts, direkt hin zu den 3D-Modellen.

Wir befinden uns nun im Jahr 2013.

Anfang dieses Jahres 2013 hörte ich entweder in einer Radiosendung, oder in einer Hörausgabe der Spektrum der Wissenschaft von der Deutschen Astronomischen Gesellschaft. 
Zur DAG

Ich interessierte mich sofort dafür, weil eines der Hauptanliegen der AG es ist, die Astronomie mehr in Schule und Bildung einzubringen. Da dachte ich mir, das will und tue ich ja auch schon seit zwanzig Jahren. Könnte ich mich dort nicht einfach mal um eine Mitgliedschaft bewerben?

Ich hatte ja keine Ahnung, wie dieser Prozess abläuft. Und so schrieb ich einfach eine Initiativ-Bewerbung, in welcher ich meine Arbeit vorstellte und meinen Mitgliedswunsch äußerte. Nun ist das gar nicht so einfach, Mitglied zu werden, wenn man dort niemanden kennt. Man braucht nämlich zwei Mitglieder, die für einen quasi bürgen, also davon überzeugt sind, dass der Anwärter nützlich für die Arbeit der AG sein könnte.

Somit wurde mein Antrag in die nächste Vorstandsitzung eingebracht. Meine Bewerbung stieß auf so großes Interesse, dass sich sofort spontan zwei Professoren fanden, die für mich bürgen wollten. Somit wurde ich das erste, und meines Wissens bis heute das einzige blinde Mitglied der Deutschen Astronomischen gesellschaft.

Der Zeitpunkt, dort Mitglied zu werden, hätte gar nicht günstiger sein können.

Ich war keine Woche Mitglied, als ich über die AG eine Anfrage rein bekam. Ein Techniklabor aus Alikante in Spanien, http://observatori.uv.es/, wollte mit einer Universität in Lateinamerika, Astronomie für blinde Menschen zugänglich machen. Sie hatten aber niemanden, der sich damit auskannte, und somit wendeten sich die Astronomen an die AG. Wie gesagt, war meine Mitgliedsbescheinigung noch druckwarm, und schon hatte ich eine Aufgabe.

Die Spanier erstellten 3D-Modelle von Erde, Mond, Mars und mittlerweile auch Venus und Merkur. Die Bilder, die nachher zu sehen sind, entsprechen nicht mehr den ersten Modellen. Sie sind überarbeitet und verbessert.

Das Kuriosum war leider, sie hatten keinen 3D-Printer, um die Modelle auszudrucken und mit blinden Menschen zu testen.

Sie suchten gerade Sponsoren dafür.

Bei mir war es umgekehrt. Ich habe Zugriff auf 3D-Drucker, hatte aber keine astronomischen 3D-Dateien, die ich hätte drucken können, und schon gar keine, die speziell taktil aufbereitet gewesen wären.

Zum glück arbeite ich am Studienzentrum für Sehgeschädigte (SZS) des Karlsruher Institutes für Technologie (KIT), http://szs.kit.edu.

Wir haben taktile Drucker zur erstellung tastbarer farbiger  Studienmaterialien, und wir haben 3D-Drucker im Einsatz, um Modelle für technische Fächer zu erstellen.

Das ist es aber noch nicht alleine.

Ich habe Vorgesetzte, die meine Arbeit zur Astronomie unterstützen und mit tragen. Somit bekomme ich dann und wann auch mal Druckzeit im Labor, wobei die Studierenden und deren Druckaufträge natürlich immer vorgezogen werden, und die anderen Arbeiten am Institut, die ich zu erledigen habe, gehen immer vor.

Ich könnte mir überhaupt nicht vorstellen, an einem anderen Ort zu arbeiten.

Also starteten wir unsere Kooperation.

Ich schickte ihnen mit der Schneckenpost einige Exemplare meiner taktilen Astromappen

und sie schickten mir über den schnelleren Mail-Weg aufbereitete Dateien von Mars, Mond und einer nördlichen Himmelsphäre mit den wichtigsten Sternbildern.

Ich sollte die Dateien drucken und Verbesserungsvorschläge einbringen.

Und an dieser Stelle geht es auch nur mit einem guten Team weiter. Ein 3D-Modell lässt man nicht einfach so aus dem Drucker, wie ein Blatt Papier.

Oft müssen die Modelle noch für den Drucker mit Spezialsoftware eingerichtet werden. Viele Parameter bestimmen die Qualität und den Erfolg des Druckes.

Das geht also nur dann, wenn man Leute hat, die das zum einen können und beherrschen, und die sich die Zeit für mich und mein Hobby neben ihrer Arbeit nehmen. Ohne meine Teamkollegen aus dem Drucklabor ginge das hier alles nicht.

Außerdem dauert so ein Planet ungefähr vierzig Druckstunden.

Als erstes druckte mein Kollege also die beiden Mondhälften, und klebte sie zur Mondkugel zusammen.

IMG_0133
3D-Modell Mond

Besonders ist an diesem Mond, dass er überzeichnet ist. Das bedeutet, dass die Berge und Krater überhöht dargestellt sind. Man kann sagen, der taktile Kontrast wurde künstlich angehoben.

Täte man das nicht, würde man auf diese Größe nichts ertasten können. Die Modelle sind alle mit einem Durchmesser von 15 cm gedruckt. Diesem Kompromiss ist geschuldet, dass ich mit den Modellen im Koffer oft mit der Bahn mobil unterwegs bin, weil ich keine Fahrer habe.

Eine Mondscheibe von 30 cm Durchmesser, wie Sehende sie im Teleskop sehen, fühlt sich fast glatt an, würde man sie unbearbeitet drucken. Selbst die Wölbung wäre kaum zu tasten.

Auch meine taktile Mondkarte ist überzeichnet, damit alles auch für sehende Betrachter plastischer wird.

mondkarte hochkant mit Rakete
Reliefkarte Mond

Zum Vergleich besitze ich seit neuestem einen weiteren taktilen Mond, der auch aus dem 3D-Drucker kommt. Hierbei handelt es sich um eine Mondlampe, ein Highlight für die Kinder in meinem Workshops, weil er leuchtet und Farbe und Helligkeit wechseln kann. Bei diesem Mond sind die Strukturen deutlich schwächer, weil er als Lampe und nicht als Modell für blinde Menschen, konzipiert ist.

Eine weitere Besonderheit dieser Modelle ist, dass die Pole gut fühlbar dargestellt sind. Es gibt ein klares Symbol für Nordpole und eines für Südpole, so dass die Ausrichtung der Planeten immer klar ist.

Außerdem ist beim Mond eine Art Äquator dargestellt, die die uns zugewandte Seite von der sog. “Dark Side”, trennt.

Man muss somit zur Veranschaulichung den Mond so hinstellen, dass der umlaufende Äquator aufrecht steht.

Dunkel ist diese Seite durchaus nicht. Wenn wir Neumond haben, ist sie in der prallen Sonne…

Bei den anderen Planeten ist immer der Nullmeridian eingezeichnet und die Äquatoren ergeben sich durch die Nähte der geklebten Halbkugeln.

Ich erinnere mich noch gut daran, wie erhebend dieses Gefühl war, als ich den Mond zum ersten Mal in die Hand nahm. Ich war gerührt und hatte etwas Pippi in den Augen, glaube ich.

IMG_0133
3D-Modell Mond

Der Unterschied des Mars zur Erde verblüffte mich. Was natürlich sofort auffällt ist, dass er keine Plattentektonik besitzt, wie unser Globus.

Man fühlt etwas die verkraterte Landschaft. Der Olymp Monts ist sofort erkennbar. Auch der Gale-Krater, in welchem sich der Rover Curiosity tummelt, ist unverwechselbar zu ertasten.

kleinere Details, wie Flussbette etc. lassen sich bei dieser Größe und Auflösung nicht darstellen.

Natürlich weiß ich, dass der Mars z. B. keine Kontinente hat, aber selbst ertasten, erfahren und erleben, ist dann doch immer noch etwas ganz anderes. Wissen ist das eine, aber das haptisch- körperliche Erlebnis, das andere.

IMG_0120
3D-Modell Mars

Bei unserem Globus-Modell, mussten wir das Wasser der Meere quasi etwas ablassen. Ansonsten wäre der Unterschied zwischen Wasserfläche und Land, nicht tastbar gewesen.

IMG_0123
3D-Modell Erde

Ich finde, dass Merkur und Venus sich haptisch sehr ähnlich anfühlen. Da muss man sich ein gutes markantes Gebirge oder einen Krater finden, damit man sie unterscheiden kann. Man fühlt auf jeden Fall, dass den beiden beim großen Bombardement übel mitgespielt wurde, ähnlich unser Mond.

Natürlich ist hier der Steinplanet der Venus ohne ihre dicke Wolkenschicht gedruckt.

Aktuell machen wir uns darüber Gedanken, wie man Gasplaneten, die Sonne und vielleicht sogar die Ringe des Saturns, drucken könnte.

Ganz erstaunlich fand ich den Ausdruck des Kometen 67P/Tschurjumow-Gerassimenko, zu welchem die Mission Rosetta führte, die dann den Lander Philae auf dem Kometen landete.  Er sieht wirklich aus, wie eine Badeente oder ein Elefantenschuh.

IMG_0134
3D-Modell Juri

Ein weiteres Jubiläum ist, dass ich mich in Alikante, wo ich auch im May 2013 in Urlaub war, entschloss, mein Buch zu schreiben, dessen Veröffentlichung dann noch zwei Jahre dauern sollte. Das war ein riesiges Projekt.

So, ich denke, jetzt habe ich meinen Jubiläums-May 2018 würdig mit euch gefeiert.

Es Grüßt euch bis zum nächsten Mal

Euer Gerhard.

Mit dem Ohr am Teleskop

Liebe Leserinnen und Leser,

nun melde ich mich mit einer neuen Idee für meinen Blog zurück.

hier soll in unregelmäßigen Abständen eine kleine Serie von Artikeln entstehen, die sich mit Audio-Astronomie beschäftigt, “Das Ohr am Teleskop”.

Selbstverständlich kann so direkt nichts durch das Weltall klingen, denn dort herrscht ein Vakuum. Schall benötigt aber im Gegensatz zu Licht, ein Medium, durch welches er sich fortpflanzen kann. Dennoch gibt es im wesentlichen vier Möglichkeiten, sich gewisser astronomischer Phänomene oder Vorstellungen akustisch anzunähern.

* Verklanglichung von Bewegungen am Himmel

* Sonifizierung gewonnener Daten

* Radioastronomie und ihre Sounds

* Beben der Raumzeit

Beginnen wir heute mit der Klang-Idee des Himmels und der Bewegung seiner Objekte, der ältesten Idee von Klang und Astronomie.

Dies ist eine sehr alte, von Menschen gemachte Idee. Sie geht zurück auf Pythagoras (570 – 510 v. Chr.) Er glaubte und suchte nach der Lehre der absoluten Harmonien. Er fand sie in der Mathematik und in der Musik, indem er auf einem Monochort die Seite verschieden teilte. Teilt man sie in der Hälfte, erhält man die Oktave, das Tonverhältnis 1 zu 2. Drittelt man sie, entsteht die Quinte und so weiter. Man kommt so durch die gesamte Obertonreihe.

Hier könnt ihr hören, was ich meine.

https://www.youtube.com/watch?v=Oy-0kXXqHqk

Pythagoras hielt den Himmel für dermaßen Perfekt und unveränderlich, dass er davon überzeugt war, dass die Bahnen der Planeten nichts anderem gehorchen konnten, als der absoluten Harmonie der ganzen Zahlen, Zahlen ohne Rest.

Selbst Johannes Kepler schrieb ein Buch über musikalische Harmonien und die Bewegung der Planeten. Auch er glaubte an derartige Gesetze. “Gäbe man dem Himmel Luft”, sollte wahrhaftig Musik erklingen, schrieb er sinngemäß in Harmonice Mundi. Schließlich musste er diese Meinung aufgeben, weil seine Daten zeigten, dass die Planeten sich auf elliptischen Bahnen und nicht auf perfekten Kreisbahnen bewegten. Seine Harmonielehre passte er diesbezüglich an, dass nun halt die Töne der Umlaufbahnen leicht variierten, je nach dem, wo der Planet sich gerade auf seiner Bahn befindet. Ist er nahe seines Perihels, dem sonnennächsten Punkt seiner Bahn, so bewegt der Planet sich etwas rascher, was seinen Ton höher klingen lässt. Ist er bei seinem Aphel, seinem sonnenfernsten Punkt, ist er langsamer, und sein Ton daher etwas tiefer. Keplers erstes Planetengesetz besagt, dass Planeten sich elliptisch um ihr Muttergestirn bewegen, deren einer Brennpunkt der Stern darstellt. Sein zweites Gesetz besagt, dass der Strahl, der den Planeten mit seinem Stern verbindet, stehts in gleicher Zeit, die gleiche Fläche überstreicht. Das geht nur so, indem er in Sternnähe schneller ist, als fern vom Stern.

 

Die Klangidee des Sonnensystems findet sich sogar auf den Golden Records, Das sind die mit Audio bespielten Schallplatten, die man den Voyager-Sonden I und II mitgegeben hat, in der Hoffnung, die außerirdischen Finder der Sonden, könnten diese Klänge als ein aus mehreren Planeten bestehendes Sonnensystems, interpretieren.

https://de.wikipedia.org/wiki/Voyager_Golden_Record

Bis in die Quantenphysik hinein wird bis heute vom kosmischen Tanz gesprochen.

Und wie funktioniert diese Klang-Idee?

Man setzt hier Himmelsbewegungen zueinander ins Verhältnis. So stellt beispielsweise das Verhältnis der Umlaufzeit von Erde und Mars, Mars braucht nahezu zwei Erdenjahre für seinen Umlauf, musikalisch fast die exakte Oktave dar.

Stimmt nicht ganz, da die Marsbahn deutlich exzentrischer ist, als die Erdbahn.

Da das Interval zwischen Erde und Venus durch die elliptischen Bahnen zwischen einer kleinen und einer großen Sechst schwankt, nannte Kepler dieses etwas traurig zwischen Moll und Dur schwebende jammernde Lied, das ewige Lied des Elends der Erde.

Es gibt noch viele andere Verhältnisse, z. B. 2/3, 3/4 etc. Genau, wie in der Musik gibt es auch Disonanzen, “Töne” die sich reiben und Resonanzen “Töne die sich aufschaukeln und immer lauter werden.

Das kann dazu führen, dass ein Himmelskörper, beeinflusst durch die Gravitation beispielsweise des Jupiters, durch dieses Resonanz-Verhältnis, auf eine andere Bahn gezwungen, oder gar aus dem Sonnensystem herausgeworfen wird. In manchen Parks stehen sog. Chinesische Brunnen. Das sind mit Wasser gefüllte Metallbecken bei denen man durch Reiben an in den Becken angebrachte Metallstangen, das ganze System in Schwingung versetzen kann. Die kann so stark werden, dass das Wasser Fontänenartig, das Becken verlässt.

https://www.youtube.com/watch?v=AIIcK9Cwx08

Bis heute ist die Klangmystik des Sonnensystems nicht tot. Manche esoterisch veranlagten Menschen glauben daran, dass man die Eigenschaften, die den verschiedenen Himmelskörpern zugeordnet werden, dadurch in sich spüren kann, indem man zu den Tönen der jeweiligen Himmelskörper meditiert.

Das simple Verfahren, diese Töne zu berechnen, stammt von Hans Cousto.

Wenn ein Vater mit seinem kleinen Kind ein Lied singt, so wird er es in der Regel ein bis zwei Oktaven tiefer singen. Niemand würde aber behaupten, das beide deshalb ein unterschiedliches Lied sängen. Es ist dasselbe lied. Wenn man nun die Umlaufzeit der Erde, den Tag-Nacht-Rhythmus oktaviert, also immer verdoppelt, dann kommt man so nach 20 oder mehr mal frequenztechnisch in den hörbaren Bereich. Die Erde steht für sich erden, sich verorten Grund unter den Füßen zu haben, wie ein Baum zwischen Himmel und Erde zu stehen, etc. Wer das glaubt, ist davon überzeugt, dass er oder sie diese Eigenschaften für sich empfängt, wenn man zu diesem sog. Erdenton meditiert.

Er klingt so:

https://www.youtube.com/watch?v=rVjQEsSWpk8

Dasselbe kann man mit dem Jahreslauf der Erde um die Sonne treiben. Sie steht für Licht, Wärme, Klarheit, Leben etc. Indische Tempelgongs sind häufig auf den Sonnenton gestimmt.

https://www.youtube.com/watch?v=WY3rrDyiLmo

Für viele spielt der oktavierte Mondton, der sich aus einem synodischen Monat ergibt, eine große Rolle. Teure Windspiele sind oft auf einen dieser Töne gestimmt.

https://www.youtube.com/watch?v=x6pnsEh1EuQ

Leider habe ich grad auf die Schnelle kein besseres Beispiel gefunden.

Tatsache ist, dass vor wenigen hundert Jahren, als der Kammerton noch tiefer war, als heute, die Mitte der Oktave, das G, mit dem Erdenton zusammen fiel.

Im zuge der technischen Entwicklung der Musikinstrumente zog deren immer höhere Brillanz mit der Zeit den Kammerton in die Höhe. Heute liegt er bei 440 Herz, 440 Schwingungen pro Sekunde. Früher betrug er eher nur 400 Herz.

Viele kennen noch die Tonleiter

“Do, Re, Mi, Fa, Sol, La, Si” und die Bewegungen, die man dazu machte.

Man beachte die Mitte der Tonleiter, den Grund, Sol.

Ich bin eher nicht so esoterisch. Ich denke aber schon, dass diese Grundempfindungen und Ideen für musikalische Menschen nicht ganz zufällig sind.

Wir sollten diese Ideen längst vergessen haben, wenn sie sich für überhaupt nichts und niemanden bewährten.

Auf jeden Fall waren diese alten pythagoräischen Gedanken ein Aufbruch zu einer neuen Astronomie, die gerade erst so richtig Fahrt aufnimmt. Deshalb sollten wir sie respektvoll und historisch betrachten, behüten und bewahren.

Im Nächsten Artikel dieser Serie wird es dann um die Verklanglichung von beobachteten und darauf fußend berechnete daten gehen.

Bis dahin grüßt euch ganz herzlich

Euer Gerhard.