Meine lieben Mitlesenden,
unsere heutige Station beginnen wir mit einer Frage:
Kennt ihr Bombur?
„Ja, genau.“, mag mancher sich erinnern, „Das war doch einer der Zwerge aus dem kleinen Hobbit.“
Stimmt genau. Und dieser Zwerg hatte eine besondere Eigenschaft. Er wird als ungeheuer fett und schwer beschrieben. OK, Fett sind die Zwerge, um die es heute gehen wird nicht, aber unbeschreiblich schwer.
Wir erinnern uns, dass wir am Ende von Station sieben darüber sprachen, welch Schicksal unsere Sonne am Ende ihres Lebens, am Ende aller Kernfusion in ihrem Inneren nehmen wird. Sie, und damit die Mehrzahl aller Sterne, werden so enden. Sie werden zu weißen Zwergen. und diese bilden die vorletzte Etappe auf unserer Reise zu den schwarzen Löchern.
Was ist ein Weißer Zwerg
- Ein Weißer Zwerg ist ein kleiner, sehr kompakter alter Stern. Er hat trotz seiner hohen Oberflächentemperatur nur eine sehr geringe Leuchtkraft, Der hohen Temperatur verdankt er seine weiße Farbe,
- Die Tatsache, dass man diesen Objekten nur mit den besten Teleskopen bei kommt legt den Schluss nahe, dass es sich tatsächlich bei ihnen um sehr kleine aber schwere Objekte handeln muss.
- Während Sterne, bei denen noch Wasserstoff zu Helium wird, Durchmesser, z. B. im Fall unserer Sonne, von 1,4 Mio Kilometer besitzen, beträgt der Durchmesser eines Weißen Zwerges mit 14000 bis 28.000 km nur 1 bis 2 Erddurchmesser.
- Dennoch haben Weiße Zwerge die Masse eines Sterns. Sie bestehen im Normalfall aus einem Kern aus heißer entarteter Materie von extrem hoher Dichte, umgeben von einer dünnen, leuchtenden Photosphäre.
- Weiße Zwerge sind nach dem Ende jeglicher Kernfusion das Endstadium der Entwicklung der meisten Sterne, deren nuklearer Energievorrat versiegt ist. Sie sind die heißen Kerne Roter Riesen, die übrig bleiben, wenn jene ihre äußere Hülle abstoßen. Voraussetzung dafür ist, dass die Restmasse unterhalb eines Schwellenwertes von 1,44 Sonnenmassen bleibt, der sogenannten Chandrasekhar-Grenze. Andernfalls entsteht nach einem Supernova-Ausbruch ein Neutronenstern oder (bei einer Kernmasse von mehr als 2½ Sonnenmassen) gar ein Schwarzes Loch.
Als kleiner Vorgriff auf die nächsten Stationen unserer Reise sei folgendes angemerkt.
Wie ein Stern endet, hängt immer von der Masse ab, die zu dem Zeitpunkt übrig ist, wenn in seinem Innern gar nichts mehr geht. Was er vorher war und auf die Waage brachte, spielt kaum eine Rolle.
Neutronensterne und Schwarze Löcher setzen relativ massive und massereiche stellare Vorgänger voraus mit mindestens acht Sonnenmassen, da die Sterne gegen Ende ihrer Existenz einen hohen Masseverlust erleiden. Daher erreicht die Kernmasse entsprechend selten die benötigten 1,44 Sonnenmassen, um ein anderes Objekt als einen Weißen Zwerg entstehen zu lassen. Weiße Zwerge sind somit deutlich häufiger anzutreffen, als jene Objekte, über welche wir noch sprechen müssen.
Ihre Entdeckung
Der zuerst entdeckte, aber nicht als solcher erkannte Weiße Zwerg war 40 Eridani im dreifach-Sternsystem 40 Eridani. Dieses Sternpaar wurde von William Herschel am 31. Januar 1783 entdeckt und erneut von Friedrich Georg Wilhelm Struve im Jahre 1825 sowie von Otto Wilhelm von Struve im Jahr 1851
Den dritten Partner, also den weißen Zwerg konnten diese Astronomen vermutlich mit ihren Teleskopen noch nicht sehen. Was sie aber sahen war, dass der „Tanz“ der beiden anderen sichtbar leuchtenden Sterne, den sie aufführten, von einem dritten unsichtbaren Partner beeinflusst werden musste. Die wellenartige torkelnde Bewegung ließ nur den Schluss zu, dass es sich hier um einen dunklen Begleiter mit ungefähr einer Sonnenmasse handeln müsse.
Damals hatten die Astronomen kein Problem mit dem Gedanken, dass es dunkle ‚Begleiter mit einer Sonnenmasse geben könnte. Heute wissen wir aber, dass sich eine Wasserstoff-Wolke mit der Masse einer Sonne nicht in Dunkelheit verbergen kann. Der Druck in ihrem Innern ist so hoch, dass das Wasserstoff-Brennen zu Helium einfach einsetzen muss. Und dieses geht nicht einher ohne dass dieses Objekt hell erstrahlt. Wenn es aber nun doch offensichtlich dunkle Objekte mit der Masse einer Sonne geben soll, dann müssen diese unter ganz anderen Bedingungen existieren und leben. In Betracht ziehen kann man natürlich auch, dass die Teleskope damals einfach zu lichtschwach waren, um ein eventuelles Leuchten dieses Objektes zu empfangen.
Im Jahre 1910 waren aber dann die Teleskope schon deutlich besser und empfindlicher.
In diesem Jahr entdeckten die Astronom*innen Henry Norris Russell, Edward Charles Pickering und Williamina Fleming, dass obgleich 40 Eridani B ein sonnennaher schwacher Stern ist, die üblicherweise Rote Zwergsonnen sind, jener offenbar eine Ausnahme bildet. Er leuchtet entgegen aller Erwartungen weiß und muss daher eine sehr hohe Oberflächentemperatur besitzen.
Der nächstgelegene Weiße Zwerg ist Sirius B, der winzige Begleiter des Sirius, der mit −1,5 Magnituden (Helligkeitsmaß für Sterne) den hellsten Stern am Nachthimmel darstellt.
Über die Helligkeitsmessung von Sternen schrieb ich in Im Dunkeln sieht man besser.
Den Sirius kennen wir vom Sternbild Hund her, nach welchem die Hundstage benannt sind.
Der 8,5 Lichtjahre entfernte, sehr heiße Sirius hat 2 Sonnenmassen und ist 22-mal heller als die Sonne. Sirius B hat zwar nur Erdgröße, aber besitzt 98 Prozent der Sonnenmasse und 2 Prozent ihrer Leuchtkraft. Er ist der am besten untersuchte Stern dieses Typs. Ein Teelöffel voll seiner Materie hätte eine Masse von über 5 Tonnen.
Entdeckt wurde er 1844 indirekt durch winzige Unregelmäßigkeiten in der Eigenbewegung des Sirius, aus denen Friedrich Bessel auf einen Doppelstern mit etwa 50 Jahren Umlaufzeit schloss.
Wir erinnern uns an Station zwei und Station drei, wo wir zunächst die Erde und dann andere Himmelskörper wogen. Es kreist nicht ein Körper nur um einen anderen, sondern beide umkreisen ihren gemeinsamen Schwerpunkt.
Teleskopisch konnte Sirius B erst 1862 nachgewiesen werden, weil er vom 10.000-mal helleren Hauptstern meistens völlig überstrahlt wird.
Dem Astronomen Alvan Graham Clark gelang die Entdeckung bei der Prüfung eines neuen, Objektivs. Wenn man durch ein neues Teleskop schaut, das man eventuell sogar selbst gebaut hat, und plötzlich ein Lichtpünktchen sieht, wo eigentlich keines sein sollte, dann muss man genau beobachten um auszuschließen, dass es kein Fehler des Instruments selbst ist. Erscheint das Pünktchen beispielsweise immer an der selben Stelle im teleskop, ist ein Fehler sehr wahrscheinlich. Bewegt es sich aber gegen den Himmelshintergrund, dann könnte man tatsächlich stolzer Entdecker etwas neuem sein. Dieser Astronom entdeckte nun, dass sein Lichtpünktchen, das sehr schwach leuchtet, genau dort hin passt, wo man durch Beobachtung von Sirius und durch Berechnungen den dunklen Begleiter vermuten würde, der offensichtlich doch nicht so ganz finster ist.
Weil sich Sirius B damals auf seiner Elliptischen Bahn zunehmend von Sirius A entfernte, konnte er bald auch von anderen Beobachtern wahrgenommen und bestätigt werden.
Im Jahre 1917 entdeckte Adriaan van Maanen den sogenannten Van Maanens Stern. Er ist ein isolierter Weißer Zwerg im Abstand von 13,9 Lichtjahren. Der teilt unser Sonne Schicksal Einsamkeit, denn die meisten Sterne kommen in Doppelstern-Systemen vor, in denen sich zwei Sterne um ihren gemeinsamen Schwerpunkt bewegen. Es kann durchaus sein, dass unsere Sonne ihr Geschwisterchen in der Galaxis verloren hat. Man sucht tatsächlich danach. Fände man einen Stern, der von seiner Zusammensetzung, seiner Größe und Masse und seiner chemischen Signatur der Sonne entspräche,dann wäre es tatsächlich möglich, dass das Schwesterchen gefunden wäre. Zusammen bringen könnte man die beiden aber leider nicht…
Diese drei Weißen Zwerge sind die drei zuerst entdeckten Weißen Zwerge und werden auch als die klassischen Weißen Zwerge bezeichnet.
Was wissen wir
Wie weiße Zwerge entstehen, haben wir ja in Station sieben schon vorweg genommen.
- Dass ihre Materie entartet ist,
- ein Teelöffel dieses Materials über fünf Tonnen wiegt,
- ihre Atome bereits in Protonen und Elektronen zerfallen sind
- Die Atomkerne schon sehr nahe zusammen gerückt sind,
- und dass sie eine sehr heiße Oberfläche besitzen,
Wollte ich hier näher darauf eingehen, wie so ein Zwerglein in seinem Innern aufgebaut ist, dann müssten wir uns mit Kernphysik, Quantenmechanik und ganz intensiv mit der Relativitätstheorie von Albert Einstein beschäftigen.
Unter diesen gravitativen Kräften, die in so einem weißen Zwerg herrschen, sind die Verhältnisse nur noch mathematisch und kaum noch mit Worten ausdrückbar.
Die letzte Frage
Bleibt an dieser Stelle für den Moment nur noch die Frage, was denn nun aus so einem armen Zwerglein wird.
Er wird ganz langsam, wir sprechen hier von Milliarden von Jahren, abkühlen.
Da hört man doch immer, es wäre so kalt im All. von Minus 270 Grad oder drei Kelvin ist da die Rede. Da sollte so ein kleiner Körper doch rasch auskühlen, wie hier auf Erden der Pudding auf der Fensterbank im Winter.
Im All kann der Zwerg aber das meiste seiner Wärme an nichts abgeben, weil es nichts dort gibt. er verliert lediglich etwas seiner Temperatur über sein weißes Licht, das sich als elektromagnetische Welle durch das Vakuum bewegen kann. Unser Pudding gibt aber seine Wärme rasch an die Metallschüssel, an die Fensterbank und an die kalte Winterluft ab, die sich dadurch etwas aufheizt. Das alles kann der Zwerg nicht. Dennoch, auch der leuchtet nicht ewig. Er kühlt, wie schon gesagt in Äonen von Jahren aus. Sein Licht wird röter und röter, irgendwann ist es nur noch unsichtbares Infrarot und dann wird er dereinst als unsichtbarer schwarzer Zwerg durch das All vagabundieren. Wenn er Glück hat, wird er noch von etwas eingefangen, das er umkreisen darf, oder ein Schwarzes Loch zieht ihn rein, was aber sehr unwahrscheinlich ist.
Dieses nur am Rande. Es gibt ein Szenario mit Doppelsternsystemen, bei welchem ein weißer Zwerk unter bestimmten Bedingungen sein Leben nochmal verlängern kann, aber viel nützt ihm auch diese vorübergehende Verjüngung nicht. Irgendwann trifft es auch ihn, wie oben beschrieben.
Momentan ist das Universum noch zu jung, dass es schon ausgekühlte weiße Zwerge gibt. Die haben alle noch etwas Dampf drauf und sind noch recht heiß.
Ausblick
Wer aufmerksam gelesen hat, wird oben den kleinen Vorgriff bemerkt haben. Wir geben nämlich noch keine Ruhe, indem wir wissen, was mit sterbenden Sternen passiert, die ungefähr eine Sonnenmasse besitzen. Wir wollen mehr.
Zwischen den weißen Zwergen und den schwarzen Löchern gibt es noch etwas, dem wir uns auf Station 9 widmen werden. Was das ist, wurde hier auch schon kurz erwähnt…
Es wird sogar im Station neun was auf die Ohren geben.
Lasst euch überraschen.
Hey Gerhard, danke für deinen interessanten Artikel, neu war für mich, dass noch alle weißen Sterne „Dampf drauf haben“. Da fühlt sich das Universum gleich viel jünger an 😉
Herzliche Grüße
Martin
Hallo Gerhard,
bei deinem Aufsatz wird man an den Spruch von Kant erinnert: „Zwei Dinge erfüllen das Gemüt mit immer neuer und zunehmender Bewunderung und Ehrfurcht, je öfter und anhaltender sich das Nachdenken damit beschäftigt: der bestirnte Himmel über mir und das moralische Gesetz in mir“ – wobei es mir aktuell nicht um das „moralische Gesetz“, sondern ausschließlich um den „bestirnten Himmel“ geht. Dass dieser so viele Geheimnisse beinhaltet und dass deren Entdeckungsgeschichte so spannend ist, war mir bisher nicht bewusst. Ich freue mich auf Station 9!
Herzliche Grüße
Dietmar
Mein lieber Freund, Geschichtslehrer, Mentor und Chorleiter,
Den guten alten Kant zu bemühen, war eine großartige Idee von Dir, denn der hatte sehr moderne Ansichten, was den Aufbau unseres Kosmos betrifft.
Der Blindnerd schrieb dazu in seinem Buch „Blind zu den Sternen“:
Die Allgemeine Naturgeschichte und Theorie des Himmels ist ein Werk von Immanuel Kant (1724-1804), das er 1755 verfasste und anonym veröffentlichte. Nach Kants Vorstellung ist unser Sonnensystem eine Miniaturausgabe der beobachtbaren Fixsternsysteme, wie zum Beispiel unser Milchstraßensystem und andere Galaxien. So entstehen und vergehen seiner Meinung nach Planetensysteme und Sternsysteme periodisch aus einem Urnebel, dabei verdichten sich die einzelnen Planeten unabhängig.
Mit dieser Theorie kam er den heutigen Vorstellungen über die Kosmogonie schon recht nahe. Zudem hat es große Auswirkungen auf Philosophie, Religion und Wissenschaft, wie man sich die Entstehung des Alls und was darin ist, vorstellt. So kam beispielsweise der Kirche die Theorie des Urknalls sehr entgegen. Passt sie doch zur Anschauung, dass alles einen eindeutigen Anfang hat, an welchem Gott „Es werde …“ sprach.
Hallo mein Freund,
heute bin ich endlich dazugekommen Deinen Beitrag zu lesen. Ich lerne immer mehr von Deinen Beiträgen. Freue mich immer auf den nächsten Beitrag.
Herzliche Grüße aus Berlin
von Mehmet
Hallo mein lieber Freund,
endlich kam ich heute dazu, Deinen Beitrag der Kapitel 8 heute zu lesen. Ich lerne immer mehr von Deinen Beiträgen. Ich freue mich, auf den nächsten Beitrag.
Herzliche Gruße aus Berlin von
Deinen Freund Mehmet