Liebe Leserinnen und Leser,
heute stelle ich euch mal ein weiteres Gesicht unseres Muttersterns vor.
Schon in vorigen Beiträgen fiel immer mal wieder das Wort „Radiosonne“, bzw. dass bei Missionen auch Instrumente zur Messung von Radiostrahlung der Sonne mit an Bord waren. Die Entdeckung, dass die Sonne Radioprogramm sendet, wurde aber bereits hier auf Erden gemacht.
Die Radiostrahlung der Sonne gehört zum sog. Weltraumwetter.
In Droht Gefahr durch unsere Sonne beschrieb ich, dass es durchaus für uns aus verschiedensten Gründen gefährlich sein kann, wenn uns ein von einem Radiosturm begleiteter Ausbruch der Sonne erreicht.
Folgende Geschichte, die sich 1942 im zweiten Weltkrieg zugetragen hatte, markiert eindeutig den Beginn der Erforschung der Radiosonne. Was war geschehen:
Die Geburt der Radio-Astronomie
Der große Radiosturm von der Sonne im Februar 1942 markiert den
Anfang der modernen Entwicklung der Radioastronomie.
Gegen 7 Uhr mitteleuropäischer Zeit bewegt sich der Verband auf der Höhe von Cherbourg. Vizeadmiral Otto Ciliax ist zufrieden. Bald werden sie die zwei Stunden Verspätung aufgeholt haben. Aber der schwerste Teil der Wegstrecke steht den drei Schlachtschiffen noch bevor. Erst vier Stunden nach dem Auslaufen in Brest war den Besatzungen der Scharnhorst, der Gneisenau und der Prinz Eugen das Ziel der von
Hitler angeordneten Operation bekanntgegeben worden. Das war vor
fünf Stunden. Die drei Schlachtschiffe sind auf ihrem Weg durch den
englischen Kanal nach Wilhelmshaven, um in der Nordsee zum Schutz der Erztransporte von Norwegen nach Deutschland eingesetzt zu werden. Noch hat sie das englische Radarsystem nicht bemerkt. Tatsächlich
wird der Verband erst um 13.18 Uhr ausgemacht. Da hat er bereits die
engste Stelle des Kanals passiert. Die dann folgenden Angriffe können
nicht mehr verhindern, dass die Operation, die unter dem Decknamen
„Cerberus“ läuft, erfolgreich beendet werden kann. Die Schiffe erreichen planmäßig ihre deutschen Bestimmungshäfen. Das englische Radar hatte am 12. Februar 1942 versagt.
Die Deutschen rühmten danach die sorgfältige Vorbereitung, bei der man schon vorher regelmäßig Störsendungen ausgestrahlt hatte, damit die Engländer bei einer starken RadarstÖrung während der Stunden, auf
die es am 12. Februar ankam, keinen Verdacht schöpften. War das Unternehmen gelungen, weil die Deutschen das englische Radar gestört hatten? Winston Churchill hatte schon kurze Zeit nach dem Durchbruch der Schiffe durch den Kanal »atmosphärische Störungen« für das
Versagen verantwortlich gemacht. Einige Wochen danach wurde das
englische Radarsystem wieder gestört. Wollten die Deutschen angreifen? Alles war in Alarmbereitschaft, doch kein Angriff erfolgte. Inzwischen hatte sich ein junger Physiker, j. Stanley Hey, der Sache angenommen. Bald hatte er herausgefunden, dass die Störungen nicht deutschen Ursprungs waren, sondern von der Sonne kamen.
Inzwischen weiß man, dass die Sonne nicht nur Licht und Wärme aussendet, dass von ihr nicht nur die den koronalen Löchern entweichenden Gasmassen an der Erde vorbei strömen. Die Sonne beliefert
uns auch mit einem reichhaltigen Radioprogramm. Den Entdecker der
Radiostrahlung der Sonne aber, der sich vorher mit der Physik von
Kristallen befaßt hatte, ließ das neue Thema nicht mehr los. Stanley Hey
wurde ein angesehener Radioastronom.
Wie wird die Sonne zum Radiosender?
Woher kommen die Radiowellen der Sonne? Sie entstehen nicht anders als in einer Rundfunkstation. Die Antenne eines Rundfunksenders ist ein elektrischer Leiter. In ihrem Metall sind die den Raum zwischen den Ionen des Metalls ausfallenden Elektronen frei beweglich. Der Sender zwingt sie, längs des Antennendrahtes rhythmisch vor und zurückzuschwingen. Die bewegten Elektronen erzeugen einen
elektrischen Strom, der mit ihrer wechselnden Bewegung ständig seine Richtung ändert. Wie jeder Strom ist auch der Wechselstrom in der Antenne von einem Magnetfeld begleitet. Mit der wechselnden Stromrichtung polt sich das Feld ständig um. Radiowellen sind nichts anderes als Lichtwellen, nur sind ihre Wellenlängen größer. Statt bei zehntausendstel Millimetern liegen sie bei Millimetern bis zu Hunderten von Metern. Die in der Antenne entstehenden Radiowellen bewegen sich mit Lichtgeschwindigkeit in den Raum.
Normalerweise sorgen die starken anziehenden Kräfte zwischen den negativen Elektronen und den positiven Ionen des Sonnenplasmas dafür, dass das Plasma stets neutral ist. Sind irgendwo die positiven Ladungen im Überschuß,
dann ziehen sie aus der Nachbarschaft Elektronen herbei, die mit ihren negativen Ladungen den positiven Überschuss neutralisieren. Wenn ein Plasma sich selbst überlassen bleibt, dann wird es elektrisch neutral.
Zu derartigen Ladungsverschiebungen kommt es schon alleine dadurch, dass die Sonne brodelt, wie ein Kessel mit kochendem Wasser und dass sie in verschiedenen Schichten sogar unterschiedlich rasch rotiert.
Werden aber die Elektronen und Ionen gegeneinander bewegt, etwa durch äußere Einflüsse, dann kann dieses Ladungsgleichgewicht gestört werden. Versuchen die starken elektrischen Kräfte die Neutralität wiederherzustellen, so beginnen die Elektronen gegen die Ionen zu schwingen. Da sie mit Bewegungen von Ladungen verknüpft sind, rufen sie Ströme und Magnetfelder hervor. Die Frequenz des Hin- und Her schwingens der Elektronen nennt man die Plasmafrequenz. Sie liegt
um so höher, je dichter die Elektronen stehen. In der Sonnenkorona liegt
die Plasmafrequenz bei zehn Millionen Schwingungen in der Sekunde.
Dabei entstehen Radiowellen mit Wellenlängen von 30 Metern. In der
Nähe der Sonnenoberfläche liegt die Plasmafrequenz wegen der höheren Elektronendichte bei hundert Milliarden Schwingungen in der Sekunde. Die dazugehörenden Radiowellen liegen bei Wellenlängen von MilliMetern und weniger.
Wenn in unterschiedlichen Schichten der Sonne, bzw. Tiefen Wellenlängen unterschiedlicher Länge entstehen, bedeutet das, dass man je nach dem, in welcher Welle man die Sonne betrachtet, unterschiedlich tief in sie hinein schauen, bzw. hinein hören kann.
Aber nicht nur bei regelmäßigen Schwingungen strahlen Elektronen Radiowellen aus, sondern auch wenn sie unregelmäßig bewegt, etwa an einem Hindernis in ihrem Flug gebremst werden. Das kann zum Beispiel geschehen, wenn ein Elektron in die Nähe eines Ions, also eines Atoms, kommt, dem ein oder mehrere Elektronen fehlen. Die Anziehung, die das positive Ion auf das negative Elektron ausübt, lenkt es von seiner geraden Bahn ab. je nachdem, wie nahe die beiden Teilchen aneinander vorübergehen und wie rasch sie sich aneinander vorbeibewegen, wird das Elektron mehr oder weniger gebremst. Bei jeder Änderung seines Fluges sendet es einen kleinen Strahlungsblitz aus. Bald begegnet es dem nächsten Ion oder einem anderen Elektron. Wieder
wird es abgelenkt. Ständig sendet es daher Radiowellen aus. In jedem
Gramm des heißen Sonnengases gehen in jeder Sekunde von Milliarden und Abermilliarden Elektronen Strahlungsblitze aus. Doch wegen der schlechten Durchlässigkeit des Gases der Sonnenatmosphäre erreicht uns nicht alle Strahlung, die dort erzeugt wird.
Die Sonne als Radiospiegel
Eine wichtige Eigenschaft des Plasma-Zustandes, in welchem sich die Sonnenmaterie befindet ist, dass man nicht so einfach von außen magnetische Felder in ein Plasma einbringen kann. Das bedeutet, dass von außen kommende Radiowellen von der Sonne reflektiert werden, wie von einem Spiegel. Somit sollte sich das Weltall in ihr spiegeln, wie das Wohnzimmer in einer Christbaumkugel.
Ob dem so sei, wurde im September 1958 in folgendem Versuch ausprobiert.
Es ging darum, Radioechos von der Sonne zu empfangen.
Das Areal der Radaranlage der Universität in Stanford in Kalifornien bestand damals aus vier Einzelantennen, die über eine rechteckige Fläche von etwa fünf Hektar verteilt waren. Da die Anlage nicht bewegt werden kann, stand die Sonne fast nie in ihrer Blickrichtung. Nur für wenige Tage im Jahr, jeweils im April und im September wies der nach Osten gerichtete Radarstrahl fÜr etwa 30 Minuten auf die Sonne. Diese Gelegenheit wurde im September 1958 zum ersten Mal genutzt. Bei
einer Wellenlänge von 11.7 m wurden Radarsignale zur aufgehenden Sonne geschickt. Die Botschaft war denkbar einfach. Für 30 Sekunden wurde ein gleichförmiges Signal gesendet. Danach folgten 30 Sekunden Funkstille, wieder 30 Sekunden Signal und wieder 30 Sekunden Schweigen. Das wurde 15 Minuten lang fortgesetzt. Dann wurde die
Antenne vom Sender abgekoppelt und mit dem Empfänger der Anlage verbunden.
Die Zeitdauer von 15 Minuten war nicht zufällig gewählt. Ein Signal, das sich wie eine Radarwelle mit Lichtgeschwindigkeit bewegt, benötigt etwa acht Minuten, um von der Erde zur Sonne zu gelangen. Die gleiche Zeit braucht es für den Rückweg. Etwa eine Minute nach dem Umschalten war also – wenn alles gutging – das erste Radarecho von der Sonne zu erwarten. Im Prinzip hätte man die gesamte Sendung der letzten Viertelstunde im Echo wieder hören müssen: 30 Sekunden Signal, dann Stille, Signal, Stille usw.
So einfach ging es nicht. Die Sonne sendet ja selbst Radiowellen aus,
auch solche im Bereich der Betriebsfrequenz der Anlage. Diese Störstrahlung lässt die Echos nur schwer erkennen. Man erhielt in erster Linie die Radiowellen der äußersten Koronaschichten. Das schwache Echo der von Menschen erzeugten Signale war darin nur schwer auszumachen. Die Schwierigkeit gleicht der eines Mannes, der aus dem Lärm eines Münchner Oktoberfestzeltes den Zuruf eines mehrere Tische entfernt sitzenden Bekannten herauszufiltern versucht.
Mit Hilfe von modernen statistischen Methoden gelang es aber nicht nur, das Echo wirklich zu erkennen, sondern auch herauszufinden, wie die Sonne die Signale bei der Reflexion verändert hat. Wenn sich die
reflektierende Materie bewegt, dann ändert der Doppler-Effekt die
ursprüngliche Frequenz. Kommt der das Signal zurückwerfende Stoff auf die Radaranlage zu, so ist das Echo kurzwelliger als die ursprünglich ausgesandte Welle. Bewegt er sich weg, ist das Echo langwelliger. Die
Echos von der Sonne kommen aber von der mit der Sonne rotierenden Korona. Die Drehung bewirkt, dass das Radarsignal sowohl auf die Stellen der Korona trifft, die sich infolge der Rotation von uns wegbewegen,
wie auch auf den Teil, der sich gerade auf uns zu dreht. Ein Teil des
Echos zeigt also eine größere Wellenlänge, der andere Teil eine kleinere als das Ausgangssignal. Das Echo enthielt also auch Information über die Rotation der Sonnenkorona.
Zum anderen gelang es, aus dem Echo etwas über die Bewegungen in der Korona selbst zu erfahren. Wir wissen bereits, dass Materie in der Korona längs der magnetischen Feldlinien von der Sonne nach außen
fliegt und zum Sonnenwind wird. Deshalb herrscht in der Korona eine einheitliche Windrichtung, von innen nach außen. Die Radarechos wurden auch durch diese Bewegung beeinflußt.
Sie waren im Mittel kurzwelliger, ein Zeichen, dass Materie, die sich auf
uns zu bewegt, die irdischen Signale zurückgeworfen hat. So gelang es, die Geschwindigkeit des Sonnenwindes in der Korona zu messen. Man fand, dass er mit mindestens 20 km/s nach oben bläst.
Misst man die Radiostrahlung bei Sonnenausbrüchen, geben sie viel Information über den Ausbruch selbst. Man hat hier beispielsweise zur Kathegorisierung der Flares die Radioausbrüche in verschiedene Typen eingeteilt, aber das ist richtig komplizierte Sonnenphysik und Radioastronomie.
Heute hat sich die Radioforschung an der Sonne längst zur Radioastronomie entwickelt, da es noch deutlich mehr Radioquellen als nur die Sonne oder andere Sterne in unserem Universum gibt. Über diese werden wir uns sicher noch in anderen Artikeln unterhalten.
Nun zum Schluss noch eine Ankündigung einer kleinen Feier auf Blindnerd. Der nächste Beitrag wird der hundertste Artikel sein. Dafür überlege ich mir, wie ich das mit euch zelebrieren kann.
Bis dahin
Alles gute
Euer Blindnerd.