Tischgepolter


Meine lieben,
erinnert ihr euch noch? Vor sechs Jahren hatte ganz Deutschland bundesweit am 31. Oktober, am Reformationstag also, frei. Der Grund dafür war, dass sich die Reformation zum 500sten male jährte.
Damals schrieb ich einige Worte auf dem Vorläufer dieses Blogs zu Bruder Martin Luther und seinem Weltbild. Lasst uns einiges davon zum heutigen Reformationstag nochmal aufwärmen und nachhaltig für die Ewigkeit rezyklen.

Tischgepolter

Beginnen wir mit einem Zitat:

Dieser Narr will die ganze Kunst Astronomiae umkehren

soll Luther bei Tische gepoltert haben, Und begründete seinen Ausbruch mit:

aber Josua hieß die Sonne stillzustehen und nicht das Erdreich.

Damit ist die Bibelstelle, Josua 10, Vers 12, gemeint, nach der die Sonne und der Mond stillstanden, bis das heilige Volk Rache an seinen Feinden genommen hatte.
Diese Vorstellung lässt astronomisch tief blicken:
Die Sonne kann nur bei einem geozentrischen Weltbild stehen bleiben, bei einem Weltbild also, dessen Zentrum und Mittelpunkt nicht die Sonne, sondern die Erde darstellt.

Was genaues weiß man nicht

Mit „Narr“ war in dem Fall zweifellos Kopernikus gemeint, der fast zeitglich zu Luther lebte, und die Abkehr vom erdzentrierten- zum sonnenzentrierten Weltbild einleitete.
Martin Luther war ein Aufklärer und Reformator. Es ist aber sehr fraglich, ob er überhaupt etwas von Kopernikus gewusst hat. Beide lebten ja relativ zeitgleich und Kopernikus veröffentlichte sein Buch erst kurz vor seinem Tode.
Hier kurz die wichtigsten Daten:

  • Martin Luther, 10. November 1483 in Eisleben, Grafschaft Mansfeld; † 18. Februar 1546 ebenda.
  • Nikolaus Kopernikus, 19. Februar 1473 in Thorn; † 24. Mai 1543 in Frauenburg
  • Veröffentlichung von Kopernikus Buches De revolutionibus orbium coelestium. Nürnberg 1543.

Somit dürfte bis da hin die kopernikanische Lehre von der Sonne als Mittelpunkt der Welt nur Insidern bekannt gewesen sein.
Besagte Tischrede ist von 1539, wurde aber erst Jahrzehnte später gedruckt,  und zwar von jemandem, der nicht selbst dabei gewesen ist. Im Tagebuch des damaligen Luther-Vertrauten Anton Lauterbach findet sich auch kein Hinweis auf eine derartige Äußerung.
Ein gewisser Physiker und Wissenschaftshistoriker, Andreas Kleinert, der Universität Halle, bezeichnet diese Tischrede als „Geschichtslüge“. Kleinert weist nach, dass Luther erst im 19. Jahrhundert von zwei katholischen Historikern zum Anti-Copernicaner gemacht worden ist, während des Kulturkampfes zwischen Kaiserreich und katholischer Kirche.
Ob diese Aussage so stimmt, muss man auch vorsichtig betrachten. Sie könnte sozialistisch gefärbt sein.

Tatsache ist, dass sich nichts in Luthers Lebenswerk finden lässt, das belegen würde, dass Bruder Martin sich überhaupt mit Astronomie befasst hätte.

Die Bedeutung des gestirnten Himmels

Der Himmel, sowohl der Göttliche, als auch der astronomische, galten zu jener Zeit als so unveränderlich und perfekt, dass man sich im Mittelalter hierzulande kaum damit beschäftigte.
Und allgemein kann man zur damaligen Bedeutung und Rolle des gestirnten Himmels auch noch festhalten, dass Die Sonne und alle Sterne, Konstellationen und Himmelskörper zwar in der Antike als Götterwesen galten, die in mythologischen Geschichten beschrieben wurden.
Das Weltbild der Bibel setzt die neue Auffassung dagegen, dass es sich um „Lampen am Himmel handelt“, eben Himmelskörper, und es jedenfalls nur einen Gott gibt. Ähnliches haben sonst nur die „Wissenschaftler“ der Chaldäer geschafft, deren Wissen auch in der Himmelsscheibe von Nebra Niederschlag gefunden hat. Die Himmelsscheibe von Nebra ist das erste Bild des Sternenhimmels, das einen Text braucht, um verstanden zu werden.
Da es aber damals in der Bronzezeit noch keine Schriftsprache gab, ist dieses Wissen wieder untergegangen. Aber überall sonst, und zu allen Zeiten haben abergläubische Erklärungen von Himmelsphänomenen immer wieder fröhlich Renaissance gefeiert. Und wenn ich mir so ansehe, was teilweise heute noch oder wieder geglaubt wird, scheint es mir manchmal, dass sich das bis heute nicht geändert hat…

Trotz Reform rückwärts gewandt

Ob Tischgepolter, oder nicht.
Zumindest taten sich später die Protestanten mit der Umstellung von Julianischen auf den Gregorianischen Kalender schwer. In reformierten und protestantischen Gegenden fand die Anpassung des Kalenders später statt. Diese Regionen waren nicht „papstgläubig“ und lehnten daher damals diese päpstliche Reform ab. Für das Jahr 1700 war aufgrund der verschiedenen Schaltjahrregelungen ein weiterer Tag Differenz zu befürchten. Daraufhin einigten sich 1699 die protestantischen deutschen Territorien auf dem Reichstag in Regensburg und führten einen Verbesserten Kalender ein, der nur unwesentlich vom katholischen abwich.

Und die Moral von der Geschichte

Ob kirchliche und oder weltliche Reform. Am Ende ging es dann doch nicht ohne moderne Astronomie und Mathematik.

Eine Blase voller Sterne


Meine lieben,

ganz in Ruhe lassen mich die Planetarien noch nicht. Ich habe ja mit euch noch nicht geteilt, was ich damit erleben durfte. Außerdem ist eine Sorte von Planetarien noch gar nicht zur Sprache gekommen, die für Wissenschaftskommunikation und Bildung eine ganz erhebliche und wichtige Rolle einnehmen.
Wer den Artikel zu 100 Jahre Planetarien noch nicht gelesen hat, sollte dies vielleicht noch tun, denn es kann sein, dass hier Beegriffe vorkommen, die ich in besagtem Artikel schon erklärt habe. Ich möchte mich hier nicht wiederholen.
Fangen wir also an.

Mein erster Kontakt

Mein erstes Erlebnis mit Planetarien war ein Besuch 1987 des Planetariums Stuttgart. Ich weiß gar nicht mehr, welche Show dort gegeben wurde, weil ich nur damit beschäftigt war, die hellsten Sterne zu erspähen. Ich konnte tatsächlich manchmal welche sehen, wenn sie durch mein Blickfeld zogen. Damals reichte mein Sehrest dafür noch aus. Das war ein großartiges Erlebnis, denn am wirklichen Himmel konnte ich ohne Hilfsmittel nicht mal den Vollmond sehen. Den sah ich zum ersten mal, als wir in der Schule die Kamera eines Bildschirm-Lesegerätes darauf richteten. Ganz erstaunlich, wie schnell der über den Bildschirm raste und dann weg war, weil wir keine Nachführung hatten.
Wer mein Buch gelesen hat, weiß, dass ich später nochmal mit einem Teleskop die Gelegenheit dazu hatte.

Planetarium in Wernigerode

Als ich dort Mitte der 90er Jahre einmal in einem Haus für Menschen mit Blindheit Urlaub machte, ergab sich die Gelegenheit ein ganz kleines altes Planetarium zu besuchen. Ich glaube, es gehörte zu einer Schule. Das war ein krasser Gegensatz zu Stuttgart. Dort war schon alles modern Neben dem Sternenprojektor und den mechanischen Planeten kamen hier schon Diaprojektoren zum Einsatz. Nicht so in Wernigerode. Das war ein absolut mechanischer Sternenprojektor mit umlaufenden Planeten. Angetrieben wurde es von Hand. Der Vorführer kurbelte es, um verschiedene Sternkonstellationen einzustellen. Man konnte die Zahnräder und alles deutlich hören. Es gab auch keine Musik und keine Sprecher über Lautsprecher. Er sprach selbst. Ein Mikrofon war nicht notwendig, weil die Kuppel sehr klein war. Ich glaube, wir waren nicht mehr als 15 Personen darin. Mich hat hier das Geräusch des Räderwerkes wirklich beeindruckt. Je nach dem, welches Geburtsdatum er einstellte, musste er wirklich sehr lange die Kurbel drehen. Leider durfte ich das Getriebe und den Projektor nicht berühren, aber unvergesslich ist das Urlaubserlebnis dennoch.

Orgelfabrik Durlach

Und nun kommen wir zu der Sorte von Planetarien, die ich oben ankündigte.

Im Zusammenhang der Veröffentlichung meines Buches wurde Matthias auf mich aufmerksam, der hier auf dem Blog zum Thema Orreriys zu Gast war. Er erzählte mir von Gernot Meiser und seinem mobilen Planetarium. Bis dato wusste ich gar nicht, dass es mobile Planetarien überhaupt gibt. Dieses sollte nun in der großen Orgelfabrik Durlach gastieren.
Ich wurde also eingeladen, dort meine „Inklusion am Himmel“ zu präsentieren. Das war eine große Herausforderung, denn bei diesem Vortrag sollten passende Dinge an diesen künstlichen Leinwandhimmel präsentiert werden, und meine Weltraumsounds sollten über die 3D-Soundanlage abgespielt werden. Normalerweise sind einige Folien an der Wand das höchste der Gefühle, das ich anbiete. Meistens zeige ich keine, weil es bei meiner Mission ja genau darum geht, einfach mal nichts zu sehen…

Vor allem in der Vorbereitung unterschied sich der Vortrag wesentlich von den meisten anderen. Ich musste ihn, wie ein Drehbuch verfassen, damit den Technikern des Planetariums klar war, wann welche Objekte an den Leinwandhimmel geworfen werden sollen. Es wurden sogar Schlüsselwörter vereinbart, damit das Script um einen Schritt weiter fuhr.
Außerdem wurden einige Weltraumsounds direkt in das Steuerscript des Vortrags eingebaut und surround abgespielt. So liefen die Planeten akustisch um die ganze Kuppel. Dieser 3D-Sound hat mich sehr beeindruckt.

Nun war ich sehr gespannt, wie so ein Planetarium überhaupt aussieht. Trotz, dass es mobil war, passten ja immerhin 80 Personen unter die Kuppel. Das braucht dann schon eine riesige Halle, um es unterzubringen.

Das Planetarium fühlte sich für mich tatsächlich, wie ein Zelt an. Es hatte schon ein stützendes Gerüst aus Stangen. Richtig rund wurde die Kuppel aber durch ein Gebläse, dass einen leichten Überdruck im Inneren erzeugte. die Kuppel bestand aus zwei Lagen, zwischen welchen ein Vakuum herrschte, damit nichts Falten wirft.
Das Gebläse hörte man kaum, und der Überdruck erzeugte keinen Druck in den Ohren, wie man das z. B. im Flugzeug erlebt. Vom Wind des Gebläses merkte man auch nichts. Nur die Türe in die Kuppel mit Reißverschlüssen war recht klein, damit nicht die ganze Luft gleich wieder entweicht, wenn sie geöffnet wurde. Dieses Planetarium hatte keinen klassischen Sternenprojektor und auch keine mechanisch umlaufenden Planeten. Hier kommen sehr moderne Beamer zum Einsatz, die von Computern angesteuert werden. Ein Bild ohne Verzerrung in eine Kuppel zu projizieren ist eine große technische Herausforderung, und pixellig sollte das Bild für die Insassen ja auch nicht werden. Digital sind diese Probleme aber gut lösbar. Ich glaube, es waren drei Beamer im Einsatz.
So saß und redete ich unter einem Zelt der besonderen Art. Es war großartig und mein Vortrag wurde damals sehr gelobt.

Im Theater in Saarlouis durfte ich den Vortrag im selben Planetarium einige Jahre später nochmals halten. Bei dieser Gelegenheit lernte ich dann auch das Weltraumatelier und die Sternwarte St. Wendel kennen. Die stellten auch barrierefreie Angebote vor. Das war eine schöne Gelegenheit, sich zu vernetzen. Vielleicht ergibt sich ja mal wieder die Gelegenheit, für solch ein mobiles Planetarium etwas anzubieten. Nun ja, so ganz mobil ist das Planetarium von Gernot dann doch nicht. Er benötigt dafür sicherlich einen Sprinter o. ä., um es zu transportieren. Die Kuppel war schließlich so hoch, dass man darunter bestuhlen konnte. Aber, meine lieben, es geht noch mobiler.

Das Planetarium auf dem Rad

Eine der prominentesten Planetariumsdirektorinnen ist zumindest für mich, Ruth Grützbauch aus Österreich. Ihr Planetarium hat sie nach einer Anleitung aus dem Internet selbst gebaut. Es ist so mobil, dass es in Taschen verpackt sogar auf ein gewöhnliches Lastenrad passt. Damit fährt sie an Schulen und andere Einrichtungen, wo sie dann bis zu dreißig Kinder unter ihrem Sternenzelt versammelt, um sie für den Weltraum zu begeistern.
Die Kinder sitzen entweder auf Kissen oder liegen darunter.
Aber auch viele Erwachsene konnte Frau Grützbauch damit schon erreichen.

Ihr Planetarium passt in quasi jede Turnhalle. Es hat nur wenige Meter Durchmesser und in seinem inneren kann man nicht aufrecht stehen
Auch diese Sternenblase wird von einem Gebläse aufgeblasen und rund gehalten. Ob es Zeltstangen zur Stabilisierung benötigt, weiß ich jetzt nicht genau. Als Projektor kommt auch hier kein sperriger Sternenprojektor, sondern ein moderner Beamer zum Einsatz. Gesteuert wird das ganze von einem Laptop aus, auf dem die kostenlose Software Stellarium läuft, die jeder sich frei herunterladen kann. Ein Soundsystem benötigt Frau Grützbauch vermutlich nicht, denn sie hat eine schöne laute Stimme.
Davon kann sich jeder überzeugen, der ihr Buch „Per Lastenrad durch die Galaxis“ als hörbuch hört, denn sie hat es mit schönem feinem österreichischen Akzent selbst ganz großartig aufgelesen.

In ihrem Buch beschreibt sie u. A. das Planetarium und seine Geschichte sehr genau und anschaulich.
Außerdem ist sie im Podcast „Das Universum“ mit Florian Freistetter und im Podcast WrinT von Holger Klein regelmäßig zu hören.

Und sie ist nicht die einzige, die so ein mobiles Planetarium betreibt. Da es Anleitungen für den Selbstbau im Netz gibt, steht diese Möglichkeit vielen offen.

Das Weltall für die Hosentasche

Es geht noch kleiner und mobiler:
Viele kennen sie, die zahlreichen Apps, womit ein Smartphone praktisch zum Taschenplanetarium wird. Nützt so etwas aber auch blinden Menschen, wo die Dinger doch absolut grafisch sind?

als Martin, der Entwickler von Universe2Go mich auf einem Vortrag, den ich in Hannover hielt fragte, ob ich es mir vorstellen könnte, dass wir so eine Art Audioguide für blinde Menschen entwickeln, sagte ich ihm ungefähr, dass ich es nicht glaube und mir nicht vorstellen kann. Aus diesen Grunde sollten wir es probieren.
Und jetzt ist es so, dass es funktioniert. Hier ein kurzes Beispiel:

Es gab im Mai 2016 einen Merkurtransit. Den habe ich akustisch mit Universe2Go beobachten können.
Es handelt sich dabei um eine Brille, in welche man sein Smartphone einlegt.
Diese Brille arbeitet mit Augmented Reality. Für Sehende Himmelsbeobachter werden passend zur Blickrichtung Zusatzinformationen und Sternkonstellationen eingespielt, so dass man sich am Himmel besser zurecht finden kann. Sie zeigt die Sterne auch, wenn sie nicht sichtbar sind.
Für Blinde werden die Himmelsobjekte akustisch angesagt. Es gibt sogar einen Suchmodus, der einen per Richtungsangaben zum gewünschten Objekt führt, wenn es sich über dem Horizont befindet.
Und so habe ich beobachtet:
Zunächst suchte ich im Planeten-Suchmodus die Sonne. Die hätte ich auch so gefunden, aber ich wollte es vollständig mit U2G machen.
Das funktionierte prima, denn sie ist so groß und auch so nah.
Im nächsten Schritt drehte ich mich wieder aus der Sonne und stellte die Suche auf den Merkur ein.
Und siehe da. Als ich ihn fand, knallte mir die Sonne voll ins Gesicht.
Natürlich wusste ich das, dass dem so sein würde, aber es mit einem Instrument nach zu empfinden und zu erleben, ist etwas anderes, als es einfach nur zu wissen.
Ich wiederholte den Versuch zu Beginn, gegen 14:00 Uhr, zur Mitte, gegen etwa 17:30 und zum Ende gegen 20:15 Uhr.
Mein Ziel war, die Wanderung des Merkur über die Sonnenscheibe zu erleben.
Ich bilde mir ein, den Unterschied von einem zum anderen Rand, erlebt zu haben, bin mir aber wirklich nicht sicher.
Die Erde hat sich ja auch beträchtlich in der zwischenzeit gedreht, Das habe ich natürlich in Richtung und Winkel zur Ekliptik durchaus mit U2G erlebt.
Die Wanderung des Merkurs kann ich aber wirklich aus rein wissenschaftlicher Sicht nicht ganz sicher belegen, aber gefühlt ist gefühlt und das ist auch OK so.
Ich habe gleichberechtigt mein Instrument und kann teilhaben.
Einfach großartig, wie inklusiv so ein bissel Technik und Software sind.

Fazit

als ich vor einigen Jahren Mitglied in der astronomischen Gesellschaft wurde, erfuhr ich im Outreach-Workshop, dass derzeit vor allem in Ostdeutschland viele Schulplanetarien und Schulsternwarten quasi verrotten, weil sie nicht mehr gepflegt werden, bzw. keine Lehrer mehr da sind, die so etwas begleiten möchten oder können. Schulsternwarten etc. hatten in der ehemaligen DDR eine große Tradition. Astronomieunterricht gab es in diesem Regime quasi überall. Auch in Westdeutschland gibt es immer weniger Astronomieunterricht. Das sollte man sich wirklich nochmal überlegen, ob es so sinnvoll ist, derlei abzuschaffen, wo wir doch gerade in dieser Zeit Kinder benötigen, die sich für Wissenschaft begeistern, und dadurch dann auch Dinge, wie den Klimawandel verstehen.
Ein Land, das über Fachkräftemangel in wissenschaftlichen und technischen Berufen klagt, täte gut daran, die Astronomie und verwandte andere Fächer wieder stärker zu fördern…

Gerade diese mobilen Planetarien erfüllen hier eine ganz großartige und wichtige Aufgabe. Sie sind mit ihren Betreibern großartige Vermittler und Multiplikatoren für Wissenschaft und begeistern viele. Für manches unserer Kinder kann ein derartiger Besuch eventuell ein Schlüsselerlebnis sein. Das ist meine Hoffnung.

Einhundert Jahre Planetarien


Meine lieben,

Da wäre mir doch fast ein Jubiläum entgangen. Dank der „@Astrozwerge“ wurde ich daran erinnert. Heute geht es, wie die Überschrift schon sagt, um einhundert Jahre Planetarium.
Mancher mag nun verwundert denken, was schreibt der blinde Blindnerd jetzt über Planetarien, wo er doch reichlich wenig davon hat. Ja, stimmt schon. Von einem Planetariumsbesuch bleibt mir leider immer nur die Audiospur. Dennoch, und das kann ich euch versprechen, ist die Geschichte dieser Himmelsmaschinen so spannend und aufregend, dass auch ein blinder Nert Schnappatmung davon bekommen kann.

Was ist ein Planetarium überhaupt

Unter einem Planetarium versteht man heute ein Gebäude mit einer halbkugelförmigen Kuppel, auf deren Innenfläche Bilder des Sternenhimmels von einem speziellen Projektor erzeugt werden. Diese Art Planetarium bezeichnet man als Projektionsplanetarium. Zu den wesentlichen Merkmalen gehört, dass der Projektor die Tages- und Jahresbewegungen zu einer beliebigen Zeit und für einen beliebigen geographischen Ort darstellen kann.
Als Erfinder des modernen Projektionsplanetariums gilt der Physiker Walther Bauersfeld, der es 1919 im Auftrag von Carl Zeiss Jena entwickelte und baute.
Ein Planetarium ist nicht mit einer Sternwarte zu verwechseln. Ersteres erzeugt einen simulierten Sternenhimmel, während man in einer Sternwarte die realen Himmelsobjekte beobachten kann.

Der Lange Weg

Seit über einem Jahrhundert vermitteln Planetarien die Faszination für den Kosmos und die Sterne auf beeindruckende Weise. Ihre Entwicklung und Verbreitung haben einen langen Weg hinter sich, seit das erste moderne Planetarium im Jahr 1923 in München eröffnet wurde.

Bereits in der Antike berichten Cicero, Ovid und Pappos über eine wahrscheinlich von Archimedes konstruierte mechanische Kugel aus Syrakus, die die Bewegungen von Sonne und Mond darstellen konnte.
Tellurien (von Tellus die Erde) dienen der Illustration der jahreszeitlichen Erscheinungen bedingt durch die Neigung der Erdachse, meist zusammen mit einem Lunarium, das den Mond in das Modell mit einbezieht.
Solche mechanischen Modelle werden auch als Orrerys bezeichnet, nach dem Grafen von Orrery, der um 1713 so ein Modell erhielt.
Zum Thema Orrerys gibt es auf meinem Blog einen wunderschönen Gastbeitrag von Matthias.

Ein mechanisches Modell der Galileischen Monde wird Jovilabium genannt.
Bei Armillarsphären werden die Umlaufbahnen mit Metallringen abgebildet.
Im Gottorfer Riesenglobus befindet sich ein Modell des alten, geozentrischen Weltbildes nach Ptolemäus. Es wurde zwischen 1650 und 1664 errichtet und gilt als ältestes begehbares Planetarium. Weltweit existieren vier solcher Hohlgloben.
Ein altes Mechanik-Planetarium befindet sich in Franeker (Friesland, Niederlande). Im Wohnzimmer eines wunderschönen friesischen Grachtenhauses
Es ist zwischen 1774 und 1781 vom Wollkämmer Eise Eisinga gefertigt worden: Am 8. Mai 1774 gab es eine für manche beängstigende Planetenkonstellation. Es wurde behauptet, dass diese Planeten zusammenstoßen würden. Dadurch sollte die Erde aus ihrer Bahn geschleudert werden und in der Sonne verbrennen. Eise Eisinga wollte mit dem Gerät zeigen, dass es keinen Grund zur Panik gab.

In den Anfängen bestand die Hauptaufgabe von Planetarien darin, den Menschen einen realistischen Einblick in den Himmel zu ermöglichen und sie über die Bewegungen der Sterne, Planeten und anderer Himmelskörper aufzuklären.

Meilensteine

Das weltweit erste, von Walther Bauersfeld entwickelte Projektionsplanetarium wurde am 21. Oktober 1923 im Deutschen Museum in München der Öffentlichkeit vorgestellt. Zwei Monate zuvor wurde es auf dem Zeiss-Werksgelände in Jena an einer 16-m-Kuppel getestet. Vor der endgültigen Installation wurde es von München zunächst erneut nach Jena zur Komplettierung geschickt und schließlich am 7. Mai 1925 offiziell in München in Betrieb genommen.

Das Planetarium Barmen war ein 1926 eröffnetes Planetarium in den Barmer Anlagen in Barmen, einem heutigen Stadtteil von Wuppertal. Bei seiner Eröffnung war es, abgesehen von einer Testinstallation des Projektorherstellers in München, das erste Planetarium weltweit und gehörte zu den Größten seiner Art.

Ein weiteres dieser frühen Planetarien, war das 1926 eröffnete Städtische Planetarium in Dresden, das nach den Plänen des Architekten Paul Wolf auf dem Städtischen Ausstellungsgelände gebaut wurde.

Wie funktioniert ein Planetarium

Die ersten richtigen Planetarien arbeiteten mit einem Projektor, der die Sterne in die Kuppel brachte. So ein Projektor besteht im wesentlichen aus zwei hohlen Metallkugeln, in welche alle 9600 darstellbare sichtbaren Sterne als Loch hinein gebohrt wurden. Man hatte eine Kugel für die Nordhalbkugel und eine für die Südhalbkugel. Diese Kugeln besaßen in ihrem Inneren eine Lampe, so dass das Licht durch die Sternenlöcher an die Kuppel fiel. Größere Löcher ließen mehr Licht durch, so dass diese Sterne dann auch heller erschienen. Unsere Planeten werden bei derartigen Projektoren mechanisch an Gestängen und Getrieben um den Projektor herum geführt. Oft spart man sich hier die Planeten Uranus und Neptun, weil man diese in der Regel mit bloßem Auge nicht wahrnehmen kann.
Viele Planetarien verfügen trotz modernerer Beamer-Technologie noch immer über solch einen Projektor, weil die schärfe, wie diese den Sternenhimmel darstellen, bis heute mit anderer Technologie unerreichbar ist.
Die Projektortechnik wurde in Jena entscheidend weiterentwickelt und die technische Ausstattung von Planetarien in aller Welt wurde zu einem wichtigen Exportprodukt des Unternehmens VEB Carl Zeiss Jena.
Mit der Zeit wurden die Technologien immer fortschrittlicher, was zu realistischeren und immersiveren Erlebnissen führte.
Die Sternprojektoren wurden zunächst um Dia-Projektoren erweitert, so dass man z. B. auch die Milchstraße und mehr an die Kuppel projizieren konnte.
Heute nutzen wir hochmoderne Projektionssysteme, wie z. B. Beamer und auch 3d-Soundsysteme, die die Möglichkeiten eines Planetariums weit über die Astronomie hinaus erweitern. Heute lässt sich in ein modernes Planetarium alles projizieren. Man kann beispielsweise eine virtuelle Reise durch unseren Körper machen, Erdbeben erleben, und Tauchfahrten ins Meer unternehmen.
Aus diesem Grund heißt das Planetarium in Kiel nun Mediendom.
Eines der größten und meist besuchten Planetarium ist das in Bochum. Und wenn wir schon von den größten sprechen, dann gibt es auch die kleinsten. Die passen in zwei Koffer und sind mobil. Aufgebaut werden sie oft in Turnhallen, um an Schulen direkt Kinder zu erreichen. Wir erinnern uns eventuell an das Buch von Ruth Grützbauch „Per Lastenrad durch die Galaxis. Über diese mobilen Planetarien werden wir noch sprechen, denn ich hatte ganz besondere Erlebnisse mit ihnen. Lasst euch überraschen.

Fazit

Planetarien waren Anfang des 20. Jahrhunderts die Kathedralen der modernen Wissenschaft. Der Blick in das Universum vermittelt einer staunenden Öffentlichkeit die Erkenntnisse der Zeit und erlaubte einen Blick auf das Weltall, wie er sich in den staubigen Städten nur selten bot.

Planetarien dienen nicht nur der Astronomie, sondern auch der Bildung und Inspiration. Sie sind Orte des Lernens, der Neugierde und der Entdeckung, an denen Menschen jeden Alters die Wunder des Universums erleben können. Schulklassen, Familien, Wissenschaftsbegeisterte und Kulturinteressierte besuchen diese Einrichtungen, um mehr über Astronomie, Raumfahrt und die unglaublichen Phänomene des Universums zu erfahren.
Die Bedeutung von Planetarien in der modernen Welt liegt nicht nur in der Wissensvermittlung, sondern auch in ihrem Beitrag zur Sensibilisierung für Umweltfragen und den Schutz unseres Planeten. Sie verdeutlichen die Einzigartigkeit und „Zerbrechlichkeit“ der Erde im kosmischen Kontext.
In den kommenden Jahren werden Planetarien eine entscheidende Rolle spielen, wenn es darum geht, unser Verständnis für den Klimawandel zu schulen, und die nächste Generation von Entdeckern, Wissenschaftlern und Träumern zu inspirieren. Mit innovativen Technologien und einem wachsenden Interesse an Weltraumerkundung wird die Zukunft der Planetarien zweifellos noch spannender und aufregender werden.
Und für alle, die das Thema jetzt gepackt hat, gibt es hier noch zwei Links, die ich wärmstens empfehlen kann.

  1. @Tim @Pritlove mach seit Jahren den Podcast @CRE mit Interviews, die die Bereiche Gesellschaft, Technik und Kultur berühren. In vom 13.02.2015 hatte er den Leiter des Großplanetariums Berlin, Florian Horn zu Gast. Er ist ein absoluter Visionär, was die Zukunft von Planetarien betrifft.
  2. Gleicher Journalist macht auch den Podcast @raumzeit. Auch hier gibt es zum Thema
    Reichlich Informationen.
  3. Wer nun Lust bekommen hat, mal ein Planetarium in seiner Nähe aufzusuchen, dafür gibt e auf Wikipedia die Liste aller Planetarien Deutschlands.

Das galaktische Katzenauge


Meine lieben,
und gleich geht es wieder tierisch auf Blindnerd weiter.

Einleitung

heute Nacht ist mir plötzlich siedendheiß eingefallen, dass wir ja mit unseren süßen Kätzchen am Himmel noch gar nicht fertig sind. Ich erinnerte mich an eine Podcastfolge des Podcasts @wrint (Wer redet ist nicht tot) von Holger Klein und der Astronomin Rut Grützbauch, die das hörens- und lesenswerte Buch „Per Lastenrad durch die Galaxis“ geschrieben und selbst als Hörbuch aufgelesen hat.
Außerdem passt das Thema gerade sehr gut, weil ich am Wochenende quasi mein musikalisches Come Back bei einer Charity-Veranstaltung feiern durfte, deren Erlös an den Verein „Katzenstimme“ ging, der sich um Katzen kümmert, die kein Zuhause haben.
Das war nach der ganzen Pandemiepause mal wieder richtig schön für mich, mit meiner Gitarre und meiner Mundharmonika mal wieder in ein Mikrofon zu schreien…
Ich hatte nach der dreijährigen Pause richtig Angst davor, aber nach drei Gitarrengriffen und einigen Stößen in meine Bluesharp war der Rampensau-Modus wieder aktiviert, als wäre nichts gewesen.
Aber nun zu unserer Katzengeschichte.

das Auge der galaktischen Katze

Der Katzenaugennebel, auch unter der Katalogbezeichnung bekannt als NGC 6543 ist ein bemerkenswertes astronomisches Objekt, das sich im Sternbild Drache befindet. Er ist einer der eindrucksvollsten planetarischen Nebel am Nachthimmel und fasziniert Hobbyastronomen und Wissenschaftler gleichermaßen.

Kleine Anmerkung am Rande

Das Wort „Planetarer Nebel“ hat nichts mit Planeten zu tun. Vermutlich kam man zu dem Begriff, weil es sich dabei immer um einen Stern handelt, der mindestens von einer Hülle umgeben ist.

Namensgebung

Der Name Katzenaugennebel leitet sich von der markanten Erscheinung ab, die an die Pupillen eines Katzenauges erinnert.
Weil er sich fast am Nordpol der Erdbahn befindet, wird er manchmal auch als Polarnebel oder Ekliptik-Nordpolnebel bezeichnet.
Wenn man ihn mit einem Teleskop beobachtet, sieht man In seinem Inneren einen hellen Punkt, der dann von einem Halo umgeben ist. Und das ganze wird dann noch von einer weiteren Hülle umgeben. Das kommt einem Auge mit Pupille sehr nahe. Und wie wir wissen, leuchten Katzenaugen in der Dunkelheit.

Entdeckung

Der Katzenaugennebel wurde erstmals im Jahr 1786 von dem Astronomen William Herschel entdeckt. Der baute damals die besten Teleskope der Welt und hatte in seiner Schwester die beste Assistentin, die er sich hätte wünschen können. Diese Frau muss man in diesem Zusammenhang immer würdigen, weil sie sich in dieser Männer dominierten Naturwissenschaft durchsetzte und großen Ruhm erlangte. Ich würdigte sie in meinem Artikel Weltfrauentag 2018.

Ort und Sichtbarkeit

Der Katzenaugennebel befindet sich etwa 3.000 Lichtjahre von uns entfernt im nördlichen Sternbild Drachen und ist somit ein Teil unserer Milchstraßengalaxie.
Leider hat er nur eine Helligkeit von 8,1 Magnituden. Das bedeutet, dass er mit bloßem Auge nicht sichtbar ist. Mit unbewaffnetem Auge kann man gerade noch am unverschmutzten Himmel Sterne der Größenklasse fünf erkennen. Darüber sprachen wir bereits im Die Himmelskatze. und noch mehr Informationen zur Messung der Helligkeit und Lichtverschmutzung findet ihr bei mir in Im dunkeln sieht man besser.

Was ist aber nun der Katzenaugennebel.

Er ist im Grunde das, was unserer Sonne noch bevorsteht, ein roter Riese im Übergang zu einem weißen Zwerg. Ein Stern, am Ende seines Lebens also. Ja, wir sehen diesem Stern beim Sterben zu.

Die meisten Sterne enden als Weißer Zwerg. Andere werden zu Neutronensternen oder gar zu einem schwarzen Loch.
Der Stern, aus dem der Katzennebel wurde, hat seine Kernverschmelzung von Wasserstoff zu Helium in seinem Inneren bereits beendet. Auch das dann einsetzende Heliumbrennen zu Stickstoff, Sauerstoff, Kohlenstoff und anderen Elementen, die leichter als Eisen sind, das ihn zu einem roten Riesen aufblähte, ist vorüber. Nun kommt es dazu, das solch ein Stern sich in einer fulminanten Explusion schlagartig eines Großteils seiner Masse entledigt, und dass der innere Kern, der nun nichts mehr der Schwerkraft entgegen zu setzen hat, eben zu einem sehr massereichen weißen Zwerg kollabiert. Weiß ist er deshalb, weil er sehr heiß ist und dadurch weißes Licht absondert. Ein Teelöffel voll seines Materials wiegt mehrere Tonnen. Die abgestoßene Hülle bildet nun den planetaren Nebel. Wer mehr über diese Zwerglein wissen möchte, findet das bei mir im Artikel Bombur, dem schweren Zwerg aus dem kleinen Hobbit.
Seine Erscheinung macht den Katzennebel so interessant für die Wissenschaft.

In der Mitte des Nebels befindet sich der helle, weiße Zentralstern, der das intensive Licht und die Energie abgibt, um die umgebenden Gase zum Leuchten zu bringen. Diese Gase sind hauptsächlich Wasserstoff und Helium, die von der energiereichen Strahlung des Sterns ionisiert werden.
Der Nebel hat eine zweischichtige Struktur: Eine innere Sphäre aus heißem Gas und eine äußere Hülle aus kühleren, expandierenden Gasen. Die innerste Sphäre besteht aus ionisiertem Gas, das vom Zentralstern ausgestoßen wurde. Dieses Gas ist so heiß, dass es bläulich erscheint. Die äußere Hülle besteht aus kühlerem, expandierendem Gas, das eine rote Färbung aufweist.

Beobachtung und Erforschung

Der Katzenaugennebel ist ein beliebtes Ziel für Hobbyastronomen, da er mit Teleskopen gut sichtbar ist. Seine charakteristische Struktur und auffällige Farben machen ihn zu einem beeindruckenden Anblick. Professionelle Astronomen verwenden moderne Teleskope und Instrumente, um detaillierte Untersuchungen der Gase, Strukturen und des Zentralsterns des Nebels durchzuführen.
Die Beobachtung und Erforschung von Nebeln wie dem Katzenaugennebel tragen zur Erweiterung unseres Verständnisses der stellaren Evolution und der Entstehung von Nebeln bei. Zudem ermöglichen sie Einblicke in die Entwicklungsprozesse von Sternen und den Kreislauf von Materie im Universum.

Wer möchte und kann, findet bei Wiki sehr viele Bilder und noch detailliertere physikalische Beschreibungen, die ich uns hier erspare.
Und wer sich noch mehr für weiße Zwerge und sonstige „Sternleichen“ interessiert, wird bei mir in den Artikeln zu Den Schwarzen Löchern entgegen fündig.

Die Himmelskatze


Meine lieben,
und hiermit meldet sich der Blindnerd nach einer etwas längeren Sommerpause zurück.

ich weiß, dass viele in meinem Umfeld Katzen mögen oder auch besitzen. Ich habe zwar keine eigene, mag sie aber sehr. Ich kann mich noch sehr gut daran erinnern, dass ich zum Leidwesen meiner Mutter gerne eine Katze in mein Bett nahm. Unser Kinderzimmer war unbeheitzt und wir hatten im Winter Eisblumen an den Fenstern. Da war so ein kuscheliges warmes schnurrendes Kätzchen schon etwas sehr schönes.
Neulich diskutierten wir über eventuelle Inhalte eines Buches. Da kam die Idee auf, eventuell mal eine Anthologie über Katzengeschichten zu schreiben.
Sollte es tatsächlich mal dazu kommen, dann bin ich am Himmel bestens vorbereitet, denn fast hätte es die Katze tatsächlich als Sternbild an den Himmel geschafft.

Hier kommt also eine astronomische Katzengeschichte.
Die Katze (lat. felis) ist ein Sternbild des Südhimmels, das nicht zu den 88 von der Internationalen Astronomischen Union (IAU) anerkannten Sternbildern zählt.
Die Katze ist Teil des offiziellen Sternbildes Wasserschlange. Sie liegt südwestlich des Stern μ Hydrae (42 Hya) und besteht nur aus lichtschwachen Sternen bis maximal 5m Größenklasse.

Die Größenklasse ist ein sehr konservatives astronomisches Maß für die Helligkeit der Sterne. Lasst uns kurz darauf eingehen.

Aus babilonischer Tradition heraus, wo die Zahl sechs eine besondere Rolle spielte, teilte man die Helligkeit der Sterne in sechs Größenklassen ein, was Hiparch für seinen Sternenkatalog, in welchem 900 Fixsterne verzeichnet waren, übernahm.
Klasse eins umfasst die hellsten Sterne. und sechs diejenigen, welche man gerade noch so mit bloßem Auge am unverschmutzten Himmel sehen kann.

Bemerkenswert ist, dass unsere Sonne damals nicht als Stern gezählt wurde. Ansonsten hätte man doch wohl ihr die eins zugeordnet.

Spätestens, als man das Teleskop erfunden hatte, und klar war, dass auch die Sonne einen gewöhnlichen Stern darstellt, musste man die Skala nach beiden Seiten hin erweitern, denn mit diesen Instrumenten konnte man nun auch noch Objekte wahrnehmen, die jenseits dessen in der Skala lagen, was man mit bloßem Auge noch sehen konnte. Außerdem gibt es Objekte am Himmel, die deutlich heller, als die Objekte der Klasse eins sind, wie z. B. unsere Sonne eben.
Die Helligkeitsskala wurde 1850 von Norman Pogson logarithmisch so definiert, dass ein Stern erster Größe (1,0 mag) genau hundertmal so hell ist wie ein Stern sechster Größe (6,0 mag), und dieser hundertmal heller als ein Stern elfter Größe
(11,0 mag).
Die Eichung der Skala erfolgte an sogenannten Standardsternen.
Sehr große Teleskope reichen visuell bis etwa zur 22. Größe, moderne Astrofotografie zur 25. Größe. Im Hubble Extreme Deep Field sind noch Galaxien mit einer Helligkeit von 31,5 mag erkennbar.
Hellere Objekte als die 0. Größe erhalten ein negatives Vorzeichen, z. B. die Venus −4,4 mag oder die Sonne −26 mag.

Na so was. Da hat die Sonne tatsächlich ein negatives Vorzeichen. Das meine ich eben mit den konservativen Astronomen. Da benutzen sie einfach die alten Maßeinheiten aus Babylon weiter und wursteln sich damit so durch. Für unsere Katze bedeutet das jedenfalls, dass sie mit bloßem Auge gerade noch so zu sehen ist, wenn man sich auf der Südhalbkugel befindet.
Südlich von der Katze liegt das Sternbild Luftpumpe und westlich von ihr das Sternbild Kompass.
Und diese technischen Namen für Sternbilder, sind geschichtlich sehr spannend.
Im Zusammenhang der Kolonialisierung, Ausbeutung und dem grenzenlosen Glauben an Technik und Fortschritt entrissen wir den auf der Südhalbkugel lebenden indigenen Völkern auch ihren Himmel, ihre Sterne, ihre damit verbundenen Geschichten und somit ihre Kultur. Diese Hybris drückt sich dann in Namen für Sternbilder, wie Luftpumpe, Kompass, Chemischer Ofen, etc. aus. Welch unfassbare abendländische Arroganz.

Aber zurück zur Katze.
Eingeführt wurde das Sternbild „Felis“ von Jérôme Lalande in seiner Himmelskarte von 1799 und es ist unter anderem im berühmten Sternkatalog von Johann Elert Bode zu finden. Eine Motivation dafür mag gewesen sein, den Dichter Voltaire zu ärgern, der keine Katzen mochte und des Öfteren lästerte, dass sie die Aufnahme unter die 33 Sternbild-Tiere nicht geschafft hatten. Lalande jedenfalls nannte als Begründung: Ich mag Katzen. Soll diese Katze an den Himmelskarten kratzen. Der Sternenhimmel hat mich genug Sorgen gekostet, jetzt kann ich auch einen Scherz damit haben.

Ein kleiner Trost zum Schluss:
Wenn auch die Hauskatze heutzutage unter den 88 anerkannten IAU-Sternbildern fehlt, so stellen immerhin drei der IAU-Sternbilder taxonomisch Katzen dar: Löwe, Kleiner Löwe und Luchs. Das muss allen Katzenfreunden genügen.

Die Chancen stehen gut


Es ist mal wieder so weit. Sternschnuppenzeit im August.
Und diesmal ohne störenden Vollmond und mit besten Wettervoraussagen.
Über dieses Ereignis habe ich zwar schon in der Vergangenheit geschrieben, aber es ist immer wieder einige Worte wert, und ihr glaubt ja gar nicht, wie viel ich von einem mal auf das nächste Ereignis, an den Artikeln schraube. Einfach nur kopieren und nochmal veröffentlichen is nich…
Also dann:
Jedes Jahr im August erreicht der Nachthimmel seinen Höhepunkt an Schönheit und Faszination, wenn die Perseiden, auch bekannt als „Tränen des Laurentius“, über uns hinwegziehen.
Dieser jährliche Meteoroidenschauer ist vermutlich das von Medien und Amateurastronom:innen am meisten erwartete und beobachtete Himmelsereignis in unserem Jahreslauf.

Namensgebung

Der scheinbare Ursprung dieses Stroms, liegt im namensgebenden Sternbild Perseus.
Das Sternbild soll die Gestalt des griechischen Helden Perseus darstellen, der die tödliche Medusa besiegte. Der Stern Algol repräsentiert das abgeschlagene Medusenhaupt, das er in der Hand hält.
Der Name „Perseiden“ leitet sich also von diesem Sternbild ab, aus dem heraus die Meteore zu strömen scheinen.
Tatsächlich stammen die Meteore aber aus den Hinterlassenschaften des Kometen 109P/Swift-Tuttle. .
Sie erscheinen uns aufgrund der Perspektive nur so, als kämen sie aus der Richtung des Sternbildes Perseus.
Da das Erscheinen der Perseiden mit dem Fest des Märtyrers Laurentius am 10. August zusammenfällt, der im Jahre 258 das Martyrium auf einem glühenden Rost erlitt, werden sie im Volksmund auch Laurentiustränen oder Tränen des Laurentius genannt. Kurz vor seinem Tod soll Laurentius der Legende nach seinem Widersacher, dem römischen Kaiser Valerian, die folgenden Worte gesagt haben:

Du armer Mensch, mir ist dieses Feuer eine Kühle, dir aber bringt es ewige Pein.

Hach, wie ist das einfach nett, wenn man in der Astronomie so schön vom Höckchen auf’s Stöckchen kommt.

Beobachtung

Perseus gehört zu den 48 klassischen Sternbildern, die von Ptolemäus beschrieben wurden.
Die erste überlieferte Beobachtung der Perseiden fand vor etwa zwei Jahrtausenden in China statt. Danach gibt es Berichte aus Japan und Korea. In Europa stammt die erste bekannte Beobachtung aus dem Jahr 811.
Bereits im Mittelalter hatten arabische Astronomen die eigenartige Verdunklung des Sterns Algol beobachtet. Der Name leitet sich aus dem arabischen Ras al Ghul ab und bedeutet Haupt des Dämonen.

Vom 17.Juli bis zum 24. August kann jedes Jahr vermehrt mit Sternschnuppen gerechnet werden.
Das Maximum findet immer um den 12. August herum statt.

Am besten beobachtet man die Sternschnuppen an einem möglichst dunklen Ort auf dem Land, wo kein Stadtlicht stört. Man legt sich am besten auf eine Wiese auf den Rücken und wendet nach Mitternacht den Blick gen Osten, also in Richtung Erddrehung. Man dreht sich dann quasi mit der Erde in den Meteorschauer hinein. Das ist dann etwa so, als führe man mit einem Auto schnell durch den Regen. Dann bekommt die Windschutzscheibe ja auch deutlich mehr Regen ab, als die Heckscheibe.
Im Gegensatz zu letztem Jahr haben wir 2023 das Glück, dass der Mond die Beobachtungen nicht durch seine Helligkeit stören wird.
Am besten sichtbar sind die Perseiden auf der Nordhalbkugel.

Was sind nun die Perseiden?

Die Perseiden bestehen aus dem, was der Komet 109P/Swift-Tuttle. bei seinen letzten Besuchen durch erwärmung, schmelzen etc. verloren hat.
Er erscheint ungefähr alle 130 Jahre und entfernt sich dann stets etwas schlanker, als er vorher war. Das nächste Mal wird er um das Jahr 2126 erwartet. Ganz genau kann man das bei Kometen nie sagen, weil ihre Bahn von den Planeten gestört werden können, bzw. sie selbst ihre Bahn ändern, wenn sie aktiv sind. Dann wirkt sich die Aktivität wie kleine Schubdüsen aus.
Die Erde kreuzt auf ihrer Bahn immer um den 12. August die Staubspur, die dieser Komet im All hinterlässt, wenn er vorbei kommt. Die Staubteilchen treffen dabei mit hoher Geschwindigkeit auf die Atmosphäre und bringen die Luftmoleküle zum Leuchten. Die Sternschnuppe ist daher nicht das verglühende Staubkorn selbst, sondern wird durch das Rekombinationsleuchten der ionisierten Luft sichtbar.

Momentan werden die zu erwarteten Sternschnuppen jedes Jahr immer weniger, weil zum einen schon viel in der Erdatmosphäre verglühte und zum anderen sich der Kometenstaub, immer mehr verteilt und somit ausdünnt.
Es wird Zeit, dass er mal wieder vorbei kommt, und seine Bahn für uns mit neuem „Sternenstaub“ auffüllt.
Eines Tages wird der Komet vollständig aufgelöst sein.
Dann wird es die Perseiden nicht mehr geben, weil kein Nachschub an Staub mehr kommt.

Sternschnuppen hören

Hörbar sind die Perseiden zumindest für Amateurfunker, die einen Empfänger und eine passende Antenne besitzen, auch.
Diese Disziplin des Amateurfunks nennt man Meteor Scatter.
Wer einen passenden Empfänger und eine Antenne besitzt, kann das Französische Radar-Signal des Weltraumradars GRAVES benutzen. Dieses französische Radarsystem sendet auf 143,050 MHz einen Dauerträger, Dauerton, der über Phasenarray-Antennen den Himmel “abtastet”. Meteoriten, aber auch andere Objekte (Flugzeuge, Satelliten, die ISS, der Mond) reflektieren das Signal und streuen es in alle Richtungen, und diese Reflexionen können dann in Europa gut empfangen werden. Anhand der Doppler-Abweichung erkennt man dann, welches Objekt das Funksignal reflektiert hat: der Mond oder Flugzeuge bewirken eine sich nur langsam ändernde Dopplerabweichung, bei Objekten in Erdumlaufbahn ändert sich die Abweichung schnell, und bei Meteoriten extrem schnell.
Und wie sich Sternschnuppenanhören findet ihr in
„diesem Link“.

Fazit

Die Perseiden bieten eine großartige Gelegenheit, die Wunder des Universums zu bestaunen und gleichzeitig Einblicke in die faszinierende Welt der Astronomie zu gewinnen. Obwohl wir meist von störendem selbstgemachten Kunstlicht, Lichtverschmutzung, umgeben sind,
welches uns oft von den Schönheiten des Nachthimmels trennt, erinnert uns dieses alljährliche Naturschauspiel daran, wie klein wir im Vergleich zum Universum sind und wie viel es noch zu entdecken gibt. Also schnappt euch eine Decke, sucht euch einen gemütlichen Ort und lasst euch von den Tränen des Laurentius verzaubern.
Und bitte auch das Wünschen nicht vergessen…

Von Wasser, äther, Spiegeln, Zahnrädern und Licht


Meine lieben,
Gerne lese ich dann und wann Weltraumbücher für Kinder, weil ich in ihnen immer mal wieder auf ganz verblüffende kindgerechte Erklärungen physikalischer oder astronomischer Phänomene stoße. Diese Ideen verwende ich dann für meine Kinderveranstaltungen.

gestern hörte ich in dem Astronomiebuch „Hat der Weltraum eine Tür“ für Kinder und Jugendliche der Kinderuniversität Tübingen zum ersten mal von einem spannenden Versuch, mit welchem die Lichtgeschwindigkeit gemessen wurde.
Dieser geniale Versuch ist der Anlass zu diesem Artikel.

In Station sechs zu meiner Serie zu den schwarzen Löchern streiften wir die Messung der Lichtgeschwindigkeit zwar kurz, sind dort aber eher auf weitere Eigenschaften des Lichtes eingegangen. Heute schauen wir uns an, wie man sich allmählich der Lichtgeschwindigkeit mittels verschiedener Versuche annäherte.

Galileis Misserfolg

Sehr frühe Diskussionen über die Geschwindigkeit des Lichts stammen aus dem 17. Jahrhundert. Galileo Galilei war einer der ersten, der versuchte, die Geschwindigkeit des Lichts zu messen. Er nutzte dabei eine Methode, die auf der Beobachtung der Laternensignale entfernter Beobachter basierte. Obwohl er einige Schätzungen machte, war sein Ansatz unzureichend, da die Lichtgeschwindigkeit extrem hoch ist und die technischen Mittel der damaligen Zeit nicht ausreichten, um eine präzise Messung vorzunehmen.
Wie sein Versuch genau ablief, konnte ich nicht herausfinden.

Ein Mond verspätet sich

Im Jahr 1676 stellte der dänische Astronom Ole Roemer fest, dass die Zeiten zu welchen der Mond IO seinen Planeten, Jupiter, verdeckt, je nach der Position der Erde zum Jupiter bis zu mehreren Minuten variierten. Das passte so gar nicht zu den Zeiten, die man mittels Tabellen und Formeln vorausberechnet hatte. Man kann sich gut vorstellen, dass er mit seiner beunruhigenden Beobachtung sofort zu seinem Vorgesetzten, dem großen und berühmten Astronomen Giovanni Domenico Cassini, der zu der Zeit Direktor des Pariser Observatoriums war, ging, um ihm davon zu berichten.
Aus diesen Abweichungen schloss nun Römer, dass das Licht eine endliche Geschwindigkeit haben muss, wenn die Verzögerungen vom Abstand zwischen Jupiter und der Erde abhängig sind. Je nach Position von Erde und Jupiter braucht das Licht einfach länger, bzw. wieder kürzer, um von dem Ereignis der Bedeckung von Jupiter durch seine Monde zu künden. Ja, auch Schatten breitet sich mit Lichtgeschwindigkeit aus…
Und so formulierte er 1676 also die Hypothese, dass die Lichtgeschwindigkeit endlich sein müsse.
Der von Roemer ermittelte Wert für die Geschwindigkeit des Lichtes wich nur um 30 % vom tatsächlichen Wert ab.
Sein Vorgesetzter, Cassini, stimmte zunächst zu und widersprach anschließend, weil er ein Anhänger der damals vorherrschenden Annahme einer augenblicklichen Lichtausbreitung war, die auf René Descartes zurück ging.
Cassini war eine sehr illustre und konservative Persönlichkeit, in welcher sich das alte geozentrische Weltbild, das neue von Kopernikus und so manch andere Ansichten vermischten. Er ist bei Gelegenheit mal einen eigenen Artikel wert.

Von Zahnrädern, Spiegeln und Lichtquellen

Und jetzt kommen wir zu dem in oben erwähnten Kinderbuch beschriebenen Experiment.
Der französische Physiker Armand Fizeau führte 1849 ein bahnbrechendes Experiment durch, das eine präzisere Annäherung an die Lichtgeschwindigkeit ermöglichte.
1849 nahm Fizeau Messungen der Lichtgeschwindigkeit in verschiedenen Medien vor. Seine erste Untersuchung galt der Lichtgeschwindigkeit in Luft, wofür er eine von Galileo Galilei erdachte Methode verfeinerte. Mit einem rotierenden Zahnrad und mit Hilfe zweier Fernrohre konnte er aus der Umdrehungsgeschwindigkeit des Rads und der vom Licht zurückgelegten Strecke die Lichtgeschwindigkeit annähernd berechnen.
Ein Lichtstrahl wurde auf den Spiegel gerichtet und von dort zum rotierenden Zahnrad reflektiert. Abhängig von der Rotationsgeschwindigkeit des Rades konnte der zurückkehrende Strahl entweder durch eine Zahnlücke passieren oder wurde blockiert. Indem er die Rotationsgeschwindigkeit anpasste, konnte Fizeau die Geschwindigkeit des Lichts auf ungefähr 313.000 Kilometer pro Sekunde bestimmen – ein Wert, der erstaunlich nah an der heutigen akzeptierten Lichtgeschwindigkeit von etwa 299.792 Kilometer pro Sekunde liegt.
Der ermittelte Wert, der um fünf Prozent zu hoch war, wurde später von Foucault korrigiert.
Ebenfalls 1849 berechnete Fizeau mit der Methode der Spiegelrotation die Lichtgeschwindigkeit in unbewegtem Wasser, 1851 folgte die Messung in bewegtem Wasser. Anhand der Messergebnisse konnte Fizeau zeigen, dass die Lichtgeschwindigkeit in Wasser geringer ist als in Luft. Die Abhängigkeit der Lichtgeschwindigkeit von der Strömungsrichtung des Wassers ließ sich nicht mit dem Additionsgesetz der Geschwindigkeiten der klassischen Mechanik vereinbaren, weshalb die Fizeau’schen Messungen später von Albert Einstein als experimentum crucis (entscheidendes Experiment) für die spezielle Relativitätstheorie gewertet wurden.

Die Tatsache, dass Licht sich in verschiedenen Medien mit unterschiedlicher Geschwindigkeit bewegt, und dass diese dann auch noch davon abhängt, ob das Medium strömt, oder in Ruhe ist, führt uns unmittelbar zu unserem nächsten Versuch.

Das Grab des Äthers

Bevor wir den besprechen, müssen wir einen kleinen Umweg über die alten Griechen nehmen. Der Zusammenhang wird bald deutlich werden.


Aristoteles verwarf aus einigen Gründen die Idee der Atome und des leeren Raumes.
Dass hier auf Erden leichte Gegenstände langsamer als schwere fallen, schrieb er der Tatsache zu, dass es keinen leeren Raum gäbe, ansonsten müssten in ihm alle Gegenstände gleich schnell fallen. Der hätte Augen gemacht, wenn er 1971 hätte sehen Können, wie ein Astronaut gleichzeitig eine Feder und einen Hammer aus Hüfthöhe auf den Mond fallen ließ. Beide Teile, Hammer und Feder erreichten gemeinsam die Mondoberfläche…
Aristoteles erfüllte das Vakuum mit Äther. Diesen Äther, nicht zu verwechseln mit der stark riechenden chemischen Verbindung gleichen Namens, hielt man für eine dünne, universelle Substanz, die den gesamten Raum und auch alle materiellen Körper durchdringen, die sich aber nicht messen lasse. Als Idee hielt sich der Äther bemerkenswert lange und lebte auch dann noch weiter, als der Grund entfallen war, der Aristoteles ursprünglich dazu veranlasst hatte, ihn zu postulieren.

Und hier schließt sich nun der Kreis zur Ausbreitung von Licht in ruhenden oder strömenden Medien. Damals war der „Äther-Glaube“ noch topp aktuell. Sollte es ihn tatsächlich geben, dann sollte sich das Licht gegen oder mit der Bewegung der Erde um sich selbst und um die Sonne mit unterschiedlicher Geschwindigkeit ausbreiten.

1887 führten die beiden Amerikanischen Physiker Michelson und Morley einen Versuch durch, der das Grab des Äthers werden sollte.
Ausgangspunkt ihres Versuches war genau die oben schon erwähnte Idee, dass wenn es einen Äther gäbe, sollte man in Bewegungsrichtung der Erde durch ihn hindurch eine Art Äther-Wind nachweisen können. Das ist dann vergleichbar mit einem Schiff, das durch das Wasser pflügt. Wellen breiten sich gegen die Fahrtrichtung des Schiffes mit weniger Geschwindigkeit aus, als in Fahrtrichtung.
Das sollte mit in den Äther einfallendem Licht nicht anders sein.
Es sollte gegen den Äther-Wind langsamer sein, als mit ihm.
Solch einen Effekt jedoch konnten die beiden Wissenschaftler nicht nachweisen. Das bedeutet, dass sich Licht mit konstanter Geschwindigkeit von 300.000 km/s durch den Raum, durch das Vakuum bewegt und dass das Vakuum letztlich nicht von einem Äther erfüllt ist.
Licht genügt das Vakuum als Medium.
Es benötigt keinen weiteren Stoff hierzu, wie beispielsweise der Schall die Luft.

Wikipedia erklärt den Versuchsaufbau in aller Kürze so:

Um die Relativgeschwindigkeit von Erde und Äther festzustellen, wurde ein Lichtstrahl über einen halbdurchlässigen Spiegel auf zwei verschiedene Wege getrennt, reflektiert und am Ende wieder zusammengeführt, sodass sich ein Interferenzmuster stehender Lichtwellen bildete (Michelson-Interferometer). Aufgrund der Bewegung der Erde im Äther ergäbe sich, dass ein Lichtstrahl in Bewegungsrichtung länger benötigt als ein Strahl senkrecht dazu. Da sich der Apparat als Teil der Drehung der Erde um die Sonne relativ zum vermuteten Äther bewegte, erwartete man Verschiebungen der Interferenzstreifen, wenn der Apparat gedreht wird. Albert A. Michelson führte das Experiment, das wegen der im Verhältnis zur Lichtgeschwindigkeit c geringen Bahngeschwindigkeit v der Erde nicht einfach war, zuerst 1881 durch, jedoch war hier die Genauigkeit nicht ausreichend, denn Michelson hatte in seinen Berechnungen die Veränderung des Lichtweges senkrecht zur Bewegungsrichtung nicht einbezogen. 1887 wiederholten er und Edward W. Morley das Experiment mit ausreichender Genauigkeit. Obwohl das Ergebnis nicht vollständig negativ war (zwischen 5 und 8 km/s), war es nach Einschätzung von Michelson und anderen Physikern jener Zeit viel zu gering, um etwas mit dem erwarteten Ätherwind zu tun zu haben. Wenn nicht nur die Relativgeschwindigkeit der Erde zur Sonne von 30 km/s berücksichtigt wird, sondern auch die – zu Michelsons Zeit noch unbekannte – Rotationsgeschwindigkeit des Sonnensystems um das galaktische Zentrum von ca. 220 km/s und die Relativgeschwindigkeit zwischen dem Sonnensystem und dem Ruhesystem der kosmischen Hintergrundstrahlung von ca. 377 km/s, so wären nochmals größere Werte zu erwarten. Darüber hinaus haben spätere, bis in die heutige Zeit durchgeführte Messungen die ursprüngliche Methode Michelsons weiter verfeinert und lieferten im Rahmen der Messgenauigkeit vollständige Nullresultate.

Danke Wiki…
Irgendwie erinnert mich der Versuchsaufbau fast an den Aufbau der Messgeräte zum Nachweis von Gravitationswellen. Und die Frage, die mit diesem Versuch an das Licht gestellt wird, ist eindeutig eine Wellen-Frage. Hier ist das Licht also Welle und nicht Teilchen.
Ist das nicht schön?

Fazit

Und hier kommt noch ein kleines Fazit von mir und ChatGPT:

Wir haben erlebt, dass die Messung der Lichtgeschwindigkeit eine sehr spannende Reise durch die Physik ist. Würde man alles vertiefen, was wir hier leider nur streifen konnten, dann könnte man damit locker ein dickes Buch füllen.
Von den frühen Schätzungen und Annäherungen bis hin zu den hochpräzisen modernen Techniken hat die Bestimmung der Lichtgeschwindigkeit unser Verständnis des Universums und der Naturgesetze revolutioniert. Die Lichtgeschwindigkeit bleibt ein wesentlicher Bestandteil der modernen Physik und wird auch in Zukunft weiterhin eine Quelle der Inspiration für Wissenschaftler auf der ganzen Welt sein.

Und wer sich noch mehr für Licht, Interferenz, seine weiteren Eigenschaften, , Äther, und das Vakuum interessiert, dem empfehle ich meine Artikel

Ein Kosmischer Milchkaffee


Meine lieben,

gerade bin ich durch Twitter darauf aufmerksam gemacht worden, dass am 01.06.2023 der diesjährige Kosmologie-Tag stattfinden soll. Bisher wusste ich gar nicht, dass es so einen Tag überhaupt gibt, zumal er nie am selben Datum begangen wird.

Dann nehmen wir den doch zum Anlass, mal etwas über die Kosmologie im allgemeinen zu schreiben. Am Ende gibt es dann noch eine kleine kuriose Geschichte.
Ein Novum ist heute außerdem auf dem Blog, dass ich das erste Mal mit einer Partnerin zusammen arbeite, die einige von euch bereits kennen gelernt haben dürften. Sie heißt ChatGPT und soll mir Fakten für diesen Artikel liefern.
Schauen wir mal, wie sie sich anstellt.

Was ist die Kosmologie?

ChatGPT sagt:

Die Kosmologie ist ein Zweig der Physik, der sich mit dem Studium des Universums als Ganzes befasst. Sie beschäftigt sich mit Fragen zur Entstehung, Entwicklung, Struktur und dem Schicksal des Universums. Die Kosmologie versucht, die grundlegenden Eigenschaften des Universums zu verstehen, einschließlich seiner Größe, Form, Zusammensetzung, Energieinhalte und Verteilung von Galaxien und anderen astronomischen Objekten.
Die moderne Kosmologie basiert auf Beobachtungen, theoretischen Modellen und Experimenten. Eine wichtige Grundlage der Kosmologie ist das allgemeine Relativitätsgesetz von Albert Einstein, das die Gravitation als Krümmung von Raum und Zeit beschreibt. Im kleinen findet hier die Quantentheorie ihre Anwendung.
Die kosmologischen Modelle basieren oft auf der Annahme, dass das Universum homogen und isotrop ist, was bedeutet, dass es in großem Maßstab einheitlich und in jeder Richtung gleich aussieht.
Ein wichtiges Konzept in der Kosmologie ist der Urknall, eine Theorie, die besagt, dass das Universum vor etwa 13,8 Milliarden Jahren aus einem extrem heißen und dichten Zustand entstanden ist. Seitdem hat sich das Universum ausgedehnt und abgekühlt, und es hat sich eine Vielzahl von Strukturen gebildet, darunter Galaxien, Sterne und Planeten.

Die Kosmologie befasst sich auch mit anderen wichtigen Fragen, wie der Dunklen Materie und der Dunklen Energie, die zusammen den Großteil der Masse und Energie im Universum ausmachen sollen, aber bisher nicht direkt beobachtet wurden. Die Erforschung dieser Themen und die Entwicklung von Theorien und Modellen, um die Eigenschaften des Universums zu erklären, sind zentrale Aufgaben der Kosmologie.

Das hat diese neue künstliche Intelligenz doch gar nicht schlecht erklärt, finde ich. Nur weniges habe ich verändert oder ergänzt.
Allerdings beleidigt sie damit auch mein Schreiberherz, weil sie das so gut kann…
Aber ganz ohne Zweifel. So einer wichtigen Wissenschaft kann man durchaus mal einen Tag widmen, um auf diese und deren Inhalte aufmerksam zu machen.

Der Kosmologietag

Meine KI-Partnerin sagt:

Der Tag der Kosmologie ist ein jährlich stattfindendes Ereignis, das die Wissenschaft und das Interesse an der Kosmologie feiert. Es ist ein Tag, an dem Menschen weltweit zusammenkommen, um über die faszinierenden Aspekte des Universums zu diskutieren, Forschungsergebnisse zu präsentieren und das allgemeine Bewusstsein für die Kosmologie zu erhöhen.
Der genaue Tag der Kosmologie kann je nach Initiative, Organisation oder Region variieren.

Während des Tags der Kosmologie finden oft verschiedene Veranstaltungen statt, darunter Vorträge, Konferenzen, Workshops, Ausstellungen, öffentliche Beobachtungen des Himmels, Wettbewerbe und mehr. Ziel ist es, das Interesse der Menschen an der Kosmologie zu wecken, Wissen zu vermitteln, Diskussionen anzuregen und die Bedeutung der Erforschung des Universums zu betonen.
Es ist wichtig anzumerken, dass der Tag der Kosmologie kein offizieller Feiertag ist, sondern eine Initiative von Wissenschaftlern, Astronomen, Bildungseinrichtungen, Sternwarten und anderen Organisationen, die die Faszination für das Universum teilen und verbreiten möchten.

ChatGPT schwurbelte und fabulierte hierüber noch weiter, rutschte dann aber in die Esoterik und fast schon in die Astrologie ab. Das wurde mir dann zu viel und zu wage. Ja, das muss man wissen, wenn man sich mit dieser Dame einlässt. Niemals würde sie zugeben, etwas nicht zu wissen. Meistens phantasiert sie dan einfach weiter, wenn man ihr kein Einhalt gebietet.
Kommen wir nun also zu unserer Geschichte mit dem Milchkaffee.

Welche Farbe hat das Universum?

Das Universum kann man sich durchaus für diese Frage als eine Art Flüssigkeit denken, in welcher alle seine Bestandteile durcheinander wirbeln. Diese Flüssigkeit sollte, wenn man sie aus ungeheurer Ferne betrachtet, doch auch ungefähr eine einheitliche Farbe besitzen.

Auf diese Frage gibt es keine einfache Antwort. Das liegt daran, dass das Universum in seiner Gesamtheit keine eindeutige Farbe hat, wie wir sie von alltäglichen Objekten kennen.
Die Farbe eines Objekts hängt von der Art des Lichts ab, das es emittiert, reflektiert oder durchlässt, und wie dieses Licht von unseren Augen und unserem Gehirn interpretiert wird. Im Falle des Universums besteht es aus einer Vielzahl von Objekten wie Sternen, Galaxien, Gaswolken und interstellarem Staub, die unterschiedliche Farben haben können.
Wenn wir das gesamte sichtbare Lichtspektrum betrachten, würden wir verschiedene Farben sehen, die von den unterschiedlichen Arten von Objekten im Universum erzeugt werden. Sterne können verschiedene Farben haben, abhängig von ihrer Temperatur. Zum Beispiel erscheinen heißere Sterne bläulich-weiß, während kühlere Sterne eher rötlich erscheinen. Galaxien können ebenfalls verschiedene Farben haben, je nach den enthaltenen Sternen und der Menge an Staub und Gas.
Es gibt jedoch auch Bereiche des Universums, die außerhalb des sichtbaren Lichtspektrums liegen, wie zum Beispiel die Mikrowellenhintergrundstrahlung, die als Überbleibsel des Urknalls betrachtet wird. Diese Strahlung hat eine charakteristische Farbe im Mikrowellenbereich.
Zusammenfassend lässt sich sagen, dass das Universum keine einheitliche Farbe hat, sondern vielmehr eine Vielzahl von Farben aufgrund der verschiedenen Arten von Objekten und Strahlung, die darin existieren.

Damit wollten sich aber einige Wissenschaftler:innen nicht zufrieden geben. Zumindest eine statistische Farbe, ähnlich einer gut durchmischten Flüssigkeit, sollte man wenigstens berechnen können.

Diese Idee führt uns unmittelbar zu unserem kosmischen Milchkaffee.
Lassen wir dazu nochmal meine Assistentin zu Wort kommen.

Cosmic Latte ist eine informelle Bezeichnung für die durchschnittliche Farbe des Universums. Im Jahr 2002 führten Astronomen des Johns Hopkins University Physics Laboratory eine Studie durch, um die gesamte Farbe des sichtbaren Lichts im Universum zu bestimmen. Dabei analysierten sie das Licht von mehr als 200.000 Galaxien und kombinierten diese Daten, um eine repräsentative Farbe zu ermitteln.
Das Ergebnis dieser Analyse ergab eine leicht gelblich-weiße Farbe, ähnlich der Farbe von Kaffee mit Milch. Die Astronomen nannten diese Farbe humorvoll „Cosmic Latte“. Es war eine anschauliche Art, die durchschnittliche Farbe des Universums zu beschreiben.
Es ist jedoch wichtig anzumerken, dass Cosmic Latte keine wissenschaftlich anerkannte oder exakte Farbbezeichnung ist. Die Farbe des Universums kann je nach den untersuchten Daten und den verwendeten Analysemethoden variieren. Dennoch hat sich der Begriff Cosmic Latte als eine populäre und leicht verständliche Art etabliert, die Durchschnittsfarbe des Universums zu beschreiben.

Mir als Blindnerd stellt sich natürlich jetzt die Frage, wie sich wohl der Gesamtklang des Universums anhören mag…
Und es gibt übrigens einen ganz wunderbaren Podcast, der sich Cosmic Latte nennt. Den kann ich euch nur empfehlen.

Eine Finsternis, ein Sonnenforscher und ein Lattenzaun


Meine lieben,

erinnert ihr euch noch?
vor vielen Monaten habe ich euch eine Serie versprochen, die einige Sonnenfinsternisse enthalten wird, die Astronomiegeschichte geschrieben haben.
Im ersten Artikel dieser Serie wurde anhand einer Finsternis geklärt, ob die Protuberanzen, die man während einer totalen Sonnenfinsternis sieht, zur Sonne, oder zum Mond gehören.

Die Indische Finsternis, um welche es heute geht, führte letztlich dazu, dass man die Protuberanzen heute am Tag und auch trotz heller Sonnenscheibe beobachten kann.
Am 18.08.1868 bewegte sich der Kernschatten einer Sonnenfinsternis über die indische und die malaiische Halbinsel.
Der Astronom und Fotograf Pierre Jules César Janssen nahm also die beschwerliche Reise auf sich, um von Guntur in Indien aus diese Finsternis zu beobachten und zu fotografieren.
Während der kurzen Dunkelheit erkannte er im Spektroskop, dass die Protuberanzen hauptsächlich bei den Wellenlängen des Lichtes des Wasserstoffs abstrahlen. Man bedenke, dass es damals durchaus noch nicht klar war, woraus die Sonne hauptsächlich besteht. Das erklärte uns erst die Frau mit dem Sonnenstoff.

Aber Spektralaparate waren bereits erfunden und man entdeckte auch die Lichtsignaturen der chemischen Elemente.
Als nach kurzer Zeit die Sonne wieder hinter der Mondscheibe hervortrat und die Protuberanzen verblassten, soll Janssen ausgerufen haben:
„Diese Linien will ich auch außerhalb der Finsternisse beobachten.“

Am nächsten Tag richtete er sein mit einem Spektroskop ausgestattetes Fernrohr gleich nach Sonnenaufgang auf die Stelle des Sonnenrandes, an der er während der Finsternis eine besonders helle Protuberanz gesehen hatte.
Wenn janssen in seinem Spektroskop nur auf die Alpha-Linie des
Wasserstoffs schaute, dann war er für nahezu alles andere Licht blind. Sonnenbeobachter bis heute betrachten die Sonne gerne in diesem Licht und blenden alles andere mit Filtern weg.
Tatsächlich konnte er das Licht der Spektrallinien der Protuberanzen auch am hellen Taghimmel ausmachen. Durch den Spalt des Spektroskops
am Fernrohr sah er im Licht der roten Wasserstofflinie einen schmalen Streifen der über den Rand der Sonnenscheibe herausragenden leuchtenden Gasmassen. Wenn er das Fernrohr leicht bewegte, dann verschob sich der Spalt und bot den Anblick eines benachbarten schmalen Streifens der Protuberanz. So konnte janssen am Spektroskop Streifen
für Streifen des Sonnenrandes abtasten, zeichnen und zu einem Bild der gesamten Protuberanz zusammensetzen.

Das Arbeiten während einer Finsternis ist stets durch Hektik bestimmt, da nur wenige Minuten Zeit bleiben und sich vielleicht für Jahre keine weitere Gelegenheit bietet. Doch jetzt hatte janssen Muße, mit dem Spektroskop am Fernrohr die Protuberanzen zu zeichnen und zu verfolgen, wie sie innerhalb von Stunden empor züngelten und wieder herabsanken, sich auflösten oder nach Tagen infolge der Rotation hinter dem Sonnenrand verschwanden. janssen war von dem faszinierenden Schauspiel so gefesselt, dass er erst einen Monat später der französischen Akademie der Wissenschaften eine Nachricht darüber zukommen ließ. Fünf Minuten bevor sein Brief die Akademie erreichte,
war dort aber bereits ein Schreiben Des Astronomen Lockyer verlesen worden, in dem dieser berichtete, wie es ihm gelungen war, Protuberanzen außerhalb einer Sonnenfinsternis zu beobachten. janssen hatte zwar als erster die Protuberanzen am hellen Taghimmel beobachtet, aber Lockyer hatte seine Ergebnisse fünf Minuten früher veröffentlicht. Die Akademie fasste daher den salomonischen Beschluss, eine Medaille prägen zu
lassen, um die Entdeckung zu würdigen. Eine Seite zeigt das Portrait von Lockyer, die andere das von janssen.

Die beiden konnten zwar Protuberanzen mit ihren Spektrographen und Teleskopen beobachten, die sich am Rand der Sonnenscheibe befanden, aber Protuberanzen auf der hellen Sonnenscheibe blieben einem anderen großen Astronomen vorbehalten.

Der erst 21jährige George Ellery Hale grübelte darüber nach, wie man trotz des störenden Lichtes der Sonne bessere Fotografien gewinnen und damit mehr
auf der Fotoplatte festhalten konnte.
Zur Idee seines neuen Instrumentes soll er gesagt haben, dass sie ihm in der Straßenbahn gekommen
sei, als er aus dem Wagen heraus auf die Latten eines Lattenzaunes blickte
und sich der dahinterliegende Garten scheinbar an den Zwischenräumen vorbei bewegte. Das war die Geburt des Spektroheliographen, wie Hale das Gerät nannte, das in diesem Augenblick in seinem Kopf
entstand.

Und so funktioniert es:

Ein Teleskop wirft ein Bild der Protuberanz auf den Spalt eines Spektographen.
Dieser Spalt schneidet aus dem Bild einen schmalen Streifen heraus, und nur
das Licht dieses Ausschnittes gelangt in das Innere des Spektrographen.
Dieser wiederum erzeugt auf einer Fotoplatte ein Bild des Spaltes in
allen Farben. Man kann nun einen zweiten Spalt an die Stelle des
Spektrums setzen, wo die dunkle Alpha-Linie des Wasserstoffs steht.
Durch diesen zweiten Spalt geht nur das Licht der Wasserstofflinie des
durch den ersten Spalt ausgeblendeten Streifens der Sonnenscheibe.
Eine Fotoplatte dahinter erhält dann nur das Bild, das der erste Spalt
aus der Sonnenscheibe und der zweite Spalt aus dem Spektrum herausschneiden
Würde man die Platte entwickeln, hätte man im Licht der herausgeblendeten Wellenlänge eine Fotografie der Protuberanz. Das Bild würde aber nur einen schmalen Streifen der Erscheinung zeigen, so, als müsse man in einer Galerie ein Rembrandt-Bild im
Nebenraum durch einen mehrere Meter entfernten schmalen Türspalt betrachten, man würde kaum etwas erkennen.
Deshalb arbeitete George Ellery Hale mit folgendem Trick: Während
man das Teleskop langsam relativ zur Sonne bewegt, wandert das Bild
der Protuberanz langsam über den Spalt.

Der schmale Streifen, der fotografiert wird, wandert langsam über die Protuberanz hinweg. Wenn man jetzt die Fotoplatte hinter dem zweiten Spalt im Spektrographen mit der richtigen Geschwindigkeit bewegt, so wird
Streifen neben Streifen auf die Platte gebannt. Auf der Schicht entsteht
so ein Bild der ganzen Protuberanz.

Später schrieb ein Freund Hales, daß die Erfindung zweifellos mehr zum
Verständnis der Vorgänge am Himmel beigetragen hatte als irgendeine
andere, seitdem Galilei sein Fernrohr zum Himmel gerichtet hat.

Es gäbe hier noch viel über diesen großen Mann zu berichten. Wie wichtig er war, kann man auf jeden Fall auch daran erkennen, dass man einen Kometen nach ihm benannte, den wir 1986 mit der Raumsonde Giottto besuchten.

Dank einer Erfindung des französischen Astronomen Bernard Lyot, ist zur Beobachtung der Protuberanzen heute kein Spektroheliograph mehr nötig. Man kann Filter herstellen, die nur Licht bei einer bestimmten Wellenlänge durchlassen.
Durch diese Erfindungen konnte man schließlich auch entdecken, dass es auf der Sonnenoberfläche recht arg zugeht. Aber das, und vieles mehr muss auf einen anderen Artikel warten.

Ein saftig langer Atem (Juice)


große Ereignisse werfen ihre Schatten voraus. Seit Wochen oder gar Monaten erscheint die Mission, Namens JUICE, in den Medien, vor allem auch in Podcasts, die ich persönlich schon seit Jahren höre.
Ich denke, dass es mal an der Zeit ist, so eine Mission genauer zu betrachten.
Nicht nur deshalb, weil es einfach unglaublich ist, was hier technisch geleistet wird, sondern auch wegen des langen Atems und der unendlichen Geduld, die man benötigt, bis aus einem einfachen Plan tatsächlich eine Mission wird, die dann hoffentlich noch gute wissenschaftliche Ergebnisse liefert.

Was soll JUICE?

JUICE ist eine komplexe Mission, die das Jupiter-System, vor allem aber den Jupitermond Ganymed im Detail untersuchen und neue Erkenntnisse über Europa und Kallisto bringen soll.
Es soll untersucht werden, ob diese Monde Leben ermöglichen und für Lebewesen bewohnbar sind. Die Mission beobachtet Jupiters Atmosphäre und Magnetfeld und untersucht, wie es mit den Jupitermonden interagiert. Untersucht wird die Dicke der Eiskruste auf Europa, zusätzlich sollen mögliche Landeplätze für künftige Missionen gesucht werden. Auf Ganymed wird die Oberfläche des Eises untersucht, aber auch die Schichtdicke und der innere Aufbau des Monds, inklusive des Ozeans unter dem Eis. Ganymed ist bisher der einzige Mond im Sonnensystem, von dem ein Magnetfeld bekannt ist. Die Mission wird dieses Magnetfeld genauer untersuchen. JUICE hat Instrumente zur Untersuchung der Eispartikel, die von Europa ausgestoßen werden, sowie zur Untersuchung der Exosphäre der Jupitermonde.
Die genauere Untersuchung des Jupitermonds Europa soll von der NASA-Mission Europa Clipper (geplanter Start 2024 / Ankunft 2031) erfolgen.

Der lange Atem:

Solche Missionen haben lange Vorbereitungs- und Laufzeiten und sollen die Forschung in neue Bereiche mit neuer Technologie weitertreiben.
JUICE ist das umgewidmete Projekt des Jupiter Ganymede Orbiters, der der Beitrag der ESA zur Europa Jupiter System Mission sein sollte. Da das Gemeinschaftsprojekt bei der NASA durch Budgetkürzungen gestrichen wurde, entschied sich die ESA für die Verwirklichung einer selbstständig durchgeführten Mission. Die Mission baut auf den interplanetaren Missionen Mars Express, Venus Express, Rosetta und BepiColombo auf und öffnet die Zukunft für weitere Missionen in das weiter entfernte äußere Sonnensystem, beispielsweise für eine Uranus-Mission. JUICE geht dabei weit über die Galileo-Mission der NASA hinaus und ergänzt die seit 2011 laufende JUNO-Mission.
Die Auswahl der JUICE-Mission wurde von der ESA am 2. Mai 2012 bekannt gegeben.
Am 14. April 2023 startete sie erfolgreich, nachdem ihr Start wegen Gewitters am Startplatz um einen Tag verschoben werden musste.
Am Jupiter wird sie aber wegen ihrer komplizierten Flugbahn erst in acht Jahren ankommen. Acht Jahre des Wartens. Naja, nicht ganz, denn man muss ja die Sonde auf ihrer komplexen Flugbahn überwachen, und sie kann durchaus unterwegs schon sehr spannende Bilder und Daten liefern, wenn sie an etwas spannendem vorbei fliegt.
Bei solchen Gelegenheiten kann man dann auch schon mal das ein oder andere Instrument kalibrieren und testen. Trotzdem. Die Wissenschaftler, die am Jupiter und dessen Monden forschen möchten, müssen sich tatsächlich bis 2031 gedulden.
Danach haben sie dann drei Jahre laut Plan Zeit, den Jupiter und dessen Monde zu erforschen. Was man an diesen langen Zeiträumen von der Planung, bis zur Durchführung deutlich sehen kann ist, dass so eine Mission für viele Beteiligte ein Generationenprojekt ist. Noch deutlicher wird das, wenn man bedenkt, dass sich der Start des James-Web-Space-Teleskop um zehn Jahre verzögerte, von der Kostenexplosion mal ganz zu schweigen. Viele, die an der Planung einer Mission beteiligt sind, erleben ihren Start, bzw. ihre Forschungsergebnisse höchstens noch im Ruhestand, oder überhaupt nicht mehr. Im Falle der in den siebziger Jahren gestarteten Sonden Voyager I und II musste man sogar die „alten Hasen“ aus ihrem Ruhestand reaktivieren, weil niemand mehr die Sonden programmieren konnte, und weil niemand damit rechnete, dass sie nach fast fünfzig Jahren noch immer einigermaßen Daten liefern. Damit muss man als Planer, Ingenieur, oder sonst wie beteiligter, erst mal klar kommen, dass die Wahrscheinlichkeit, dass man für die Nachwelt arbeitet, sehr hoch ist, und man eventuell den Erfolg und Ruhm nicht mehr genießen kann.
Daran sollten sich unsere Politiker mal ein Beispiel nehmen, denn diese planen oft nur von einer zur anderen Legislaturperiode. Damit löst man aber keine nachhaltigen Probleme, wie beispielsweise den Klimawandel.

Naja, derlei lange Projekte gab es schon in alten Zeiten, wenn man bedenkt, dass der Bau des Kölner Doms fast fünfhundert Jahre dauerte.
Was JUICE betrifft, so sieht man leicht, dass der Löwenanteil der Zeit, der Flug selbst ist. Das sollte doch zum Jupiter nicht so lange dauern. So weit ist der ja nun auch wieder nicht weg. Schauen wir uns also mal die Flugbahn und einige Stationen an, welche die Sonde passieren muss, bis sie endlich ankommt.

Mit viel Umweg zum Ziel:

So, wie das uns immer in Science-Fiction-Filmen gezeigt wird, kann man im Weltraum nicht fliegen. Im Weltall läuft nichts geradeaus, wie der Weg auf einer Autobahn. Das liegt daran, dass die Abstände zwischen den Zielen sehr groß sein können, z. B. Erde-Jupiter ungefähr 5,20 astronomische Einheiten. (1 AU ist Abstand Erde-Sonne, ungefähr 150 Mio Kilometer).
Dann kommt noch dazu, dass die Zielobjekte sich selbst bewegen., z. B. im Falle Jupiter um die Sonne, die ihrerseits auch nicht stille auf ihrem Platz verweilt. Außerdem wirken Kräfte auf die Raumsonde, welche sie versuchen, von ihrem Kurs abzubringen. Das sind in erster Linie Gravitationskräfte, die auf die Sonde wirken, wenn sie an anderen Himmelskörpern vorbei fliegt, aber auch das Sonnenlicht und der Sonnenwind wehen Sonden aus ihrer Bahn, wenn man ihren Kurs nicht ständig überwacht und korrigiert. Und dann gibt es noch das Treibstoff-Problem. Keine Sonde kann so viel Treibstoff mitnehmen, um aus eigener Kraft im Falle Jouice, den Jupiter zu erreichen. Sie wäre damit so schwer, dass sie mit heutigen Raketen überhaupt nicht von der Erde weg käme. Also macht man sich aus der Not eine Tugend. Man nutzt die Tatsache, dass man, wenn man es geschickt berechnet und anstellt, durchaus die Gravitationskräfte von Himmelskörpern entweder zum Schwung holen, bzw. auch zum Abbremsen nutzen kann. Davon macht Juice auf ihrem Weg reichlich gebrauch, und nimmt dafür große Umwege in Kauf, was halt dann acht Jahre dauert. Dafür hat man aber Energie und Kräfte benutzt, die sowieso im All vorhanden sind. Um in dem ungeheuren Schwerefeld des Jupiter zurecht zu kommen, musste die Sonde ohnehin genügend Treibstoff mitnehmen. Fast zwei Drittel ihres Gesamtgewichtes besteht aus Treibstoff.

Wie schon gesagt, startete die Mission erfolgreich am 14.04.2023 mit der letzten europäischen Ariane-Rakete von französisch Guyana aus, und begab sich auf ihre lange Reise.

Zunächst entfernt sie sich weit von der Erde, um sich dann wieder anzunähern. Im August 2024 wird sie zum ersten mal kinetische Energie mittels eines Vorbeifluges (Swing By) tanken.
Dadurch ist sie in der Lage, ihre Flugbahn derart zu ändern, dass sie im August 2025 den nächsten Swing By an der Venus durchführen wird. Das ist wirklich beachtlich, weil die Venus absolut in der Gegenrichtung zum Jupiter liegt. Sie ist der zweite Planet, und der Jupiter der fünfte. Das hätte ich so nicht gedacht. Im September 2026 benutzt sie dann unsere Erde zum ersten mal als weiteres Sprungbrett zu ihrem Ziel. Dann dreht sie eine Schleife, die sie dann im Januar 2029 erneut zur Erde führt, um nochmal Schwung zu tanken. Keine Ahnung, was sie so lange unterwegs treibt. Auf jeden Fall könnte ich derlei niemals berechnen. Nun kann sie ihr Ziel ansteuern. Im Juli 2031 schwenkt sie endlich in eine Umlaufbahn um den Jupiter ein.

Dort kann sie dann erst mal drei Jahre unseren größten Planeten erforschen, bevor sie dann im Dezember 2034 die günstige Gelegenheit ergreift, eine Umlaufbahn um den Jupitermond, Ganymed einzuschlagen.. Dort kann sie dann den Mond erforschen, bis sie dann mangels Treibstoff im Laufe des Jahres 2035 ihr Ende auf diesem Mond finden wird.

Schauen wir uns also nun noch an, was sie denn so für Augen, Ohren, Antennen und andere Sensoren im Gepäck hat, um uns Menschen weitere Erleuchtung zu bringen.

Die Sonde und ihre Instrumente

JUICE ist dreiachsenstabilisiert. Das bedeutet, dass sie sich nicht um sich selbst dreht, um sich zu stabilisieren, sondern ihre Lage mittels Schwungrädern und Startrackern kontrolliert.
Sie hat eine Leermasse von etwa 2400 kg und gewinnt ihre elektrische Energie durch Solarzellen mit hohem Wirkungsgrad. Die Sonde hat 10 Paneele in den Maßen 2,5 m × 3,5 m, wobei auf jeder Seite fünf kreuzförmig angeordnet sind. Insgesamt haben die Paneele ca. 85 $m^2$ Fläche. Zur Datenübertragung benutzt JUICE eine Parabolantenne, die eine Datenrate von mindestens 1,4 GB pro Tag ermöglicht.
JUICEs Antriebssystem verwendet als Treibstoff MMH und den Oxidator MON.

Für die Erfüllung ihrer Mission hat sie elf Instrumente an Bord, die ich hier kurz erwähnen möchte.

  1. Gravity & Geophysics of Jupiter and Galilean Moons (3GM)
    3GM ist ein radiowissenschaftliches Experiment mit einem Ka-Transponder und einem hochstabilen Oszillator. Dieses Instrument soll das Schwerefeld von Ganymed und die inneren Ozeane auf den Eismonden untersuchen. 3GM soll außerdem die Atmosphären und Ionosphären von Jupiter (0,1–800 mbar) und den Eismonden untersuchen. Betrieben von der Università di Roma „La Sapienza“ und ASI, Italien.
  2. Ganymede Laser Altimeter (GALA)
    Ganymed-Laserhöhenmesser. Soll die Topographie und die Verformungen, Hebungen und Senkungen der Oberfläche durch die Gezeitenkräfte beobachten. Der Laser bildet einen Strahl von 20 m Durchmesser. Die Auflösung ist 0,1 m bei 200 km Flughöhe. Betrieben vom DLR, Institut für Planetenforschung, Deutschland. Die Komponenten stammen von HENSOLDT Optronics GmbH, Fraunhofer IOF und JAXA.
  3. Magnetometer for JUICE (J-MAG)
    Dieses Instrument nutzt einen Arm aus 3 Segmenten, der ausgeklappt 10,5 m Länge erreicht und am äußersten Segment zwei Magnetometer und am Ende des Arms ein optisch gepumptes Quanteninterferenz-Magnetometer trägt, und soll damit das Magnetfeld Jupiters und die Interaktion mit dem Magnetfeld von Ganymed untersuchen. Es soll zur Untersuchung von verborgenen Ozeanen auf den Eismonden benutzt werden. Betrieben vom Imperial College London und UKSA, Vereinigtes Königreich.
    Fragt mich jetzt bitte nicht, was dieses letzte Instrument genau ist. Wenn jemand mehr darüber weiß, darf das gerne in die Kommentare geschrieben werden.
  4. Jovis, Amorum ac Natorum
    Undique Scrutator, camera system
    (JANUS) Was für ein Name für eine optische Kamera zur Kartierung der Eismonde. JANUS hat 13 Filter, ein Blickfeld von 1,3 Grad und eine räumliche Auflösung von 2,4 m auf Ganymed und 10 km auf Jupiter. Entwickelt von der Università degli Studi di Napoli „Parthenope“ und ASI, Italien.
    Diese Filter sind höchst interessant, weil man damit Bilder in verschiedenen Farben anfertigen, und diese dann übereinander legen kann.
  5. Moons and Jupiter Imaging Spectrometer (MAJIS)
    Hyperspektrales abbildendes Spektrometer. Es soll die Eigenschaften der Troposphäre auf Jupiter erkunden und die Eise und Mineralien auf der Oberfläche der Eismonde näher bestimmen. Die Wellenbereiche umfassen sichtbares und infrarotes Licht im Bereich zwischen 0,4 und 5,7 Mikrometer mit einer spektralen Auflösung zwischen 3 und 7 nm. Die räumliche Auflösung beträgt bis 25 m auf Ganymed und ungefähr 100 km auf Jupiter. Hergestellt vom Institut d’Astrophysique Spatiale und CNES, Frankreich.
    Immer, wenn ein Wort, wie Spektrum auftaucht, riecht es danach, dass man damit chemische Analysen durchführen möchte. Wir hatten das schon in einigen anderen Artikeln, wo es z. B. um die Analyse des Sonnenspektrums ging.
  6. Particle Environment Package (PEP)
    Teilchenspektrometer zur Messung von Dichte und Richtung von neutralen und geladenen Teilchen, thermalem Plasma und neutralen Gasen im Jupitersystem. Das PEP besteht aus zwei Einheiten mit insgesamt sechs unterschiedlichen Sensoren. Energiebereich von <0.001 eV bis >1 MeV. Zur Verfügung gestellt durch das Swedish Institute of Space Physics (Institutet för rymdfysik, IRF), Kiruna und SNSB, Schweden. Die Komponenten kommen von JAXA.
    Diese Teilchen kommen z. B. vom Sonnenwind. Es wird sehr interessant sein, zu erforschen, wie diese mit dem sehr starken Magnetfeld des Jupiters interagieren. Außerdem besitzt der Mond Ganymed ebenfalls ein Magnetfeld. Der einzige Mond im Sonnensystem, der eines hat.
  7. Radar for Icy Moons Exploration (RIME)
    Radar für die Eismonderforschung. Das Instrument benutzt eine 16-Meter-Antenne und soll damit die Eisoberfläche durchdringen und bis zu 9 km unter der Eisoberfläche messen können. Die vertikale Auflösung beträgt bis zu 30 Meter. Entwickelt von der Università degli Studi di Trento und ASI in Italien. Die Komponenten wurden von der NASA geliefert.
  8. Radio & Plasma Wave Investigation (RPWI)
    Radio- & Plasmawellenuntersuchung. Erforscht Radioemissionen und das Plasma in der Umgebung Jupiters und der Eismonde. Das RPWI basiert auf den vier Experimenten GANDALF, MIME, FRODO und JENRAGE. Es verfügt über verschiedene Sensoren und Langmuir-Sonden. Es soll elektrische und magnetische Felder im Radiobereich in Frequenzen von 80 kHz bis 45 MHz messen. Gebaut vom Swedish Institute of Space Physics (Institutet för rymdfysik, IRF), Uppsala und SNSB, Schweden. Komponenten wurden von NASA und JAXA beigesteuert.
    Wo Magnetfelder vorhanden sind, in welchen sich geladene Teilchen bewegen, entstehen auch Radiowellen. Darüber sprachen wir schon im Zusammenhang mit der Radiosonne.
  9. Planetary Radio Interferometer & Doppler Experiment (PRIDE)
    Planetarisches Radio-Interferometer- & Doppler-Experiment. Das Experiment nutzt das Kommunikationssystem der Sonde und VLBI für eine präzise Vermessung der Sondenposition und -geschwindigkeit, um das Schwerefeld von Jupiter und den Eismonden zu untersuchen. Hergestellt vom Joint Institute for VLBI in Europe, NWO und NSO, Niederlande.
  10. Sub-millimetre Wave Instrument (SWI)
    Submillimeterwelleninstrument. Superheterodynempfänger zur Untersuchung der Temperaturstruktur, Zusammensetzung und Dynamik der Stratosphäre und Troposphäre von Jupiter und der Exosphären und Oberflächen der Eismonde. Das Instrument benutzt eine 30-cm-Antenne und arbeitet in den zwei Bereichen (1080–1275 GHz und 530–601 GHz) mit einer spektralen Auflösung von ~107. Gebaut vom Max-Planck-Institut für Sonnensystemforschung und DLR, Deutschland. Komponenten kommen von JAXA.
  11. UV Imaging Spectrograph (UVS)
    Abbildendes UV-Spektrometer, soll die Zusammensetzung und Dynamik der Exosphären der Eismonde, die Aurora auf Jupiter und die Zusammensetzung und Struktur der oberen Atmosphäre untersuchen. Das Instrument wird nadir beobachten, aber auch für Sonnen- und Sternenbedeckungen eingesetzt werden, um die durchleuchtete Atmosphäre zu untersuchen. Die Wellenlänge ist 55–210 nm mit einer spektralen Auflösung von <0,6 nm. Die räumliche Auflösung ist 0,5 km auf Ganymed und bis zu 250 km auf Jupiter. Beitrag vom Southwest Research Institute und NASA, USA.

Fazit:

Ihr seht schon, dass man versucht alles zu messen, was so eine Umgebung her gibt. Von Licht, Radio, Plasma, Magnetfeldern, chemischen Zusammensetzungen, geologischen und seismographischen Veränderungen, sowie natürlich gravitative Wechselwirkungen wird alles gemessen, was ohne Landung auf diesen Körpern möglich ist. Wir dürfen gespannt sein, was uns diese Mission über uns und über die Entstehung unseres Sonnensystems noch verraten wird. Es sind bereits Folgemissionen in Planung, über die ich dann, sollte es diesen Blog noch geben, berichten werde.

Ich hoffe, ihr könnt euch auch an der Komplexität eines derartigen Gerätes erfreuen. Und wenn man so auf die Liste der Instrumente schaut, dann sieht man, wie international solche Missionen sind, wie viele Länder sich daran beteiligen und wie friedlich das dort zugeht. Die Raumfahrt beweist immer wieder, dass wir Menschen große Probleme lösen können, wenn wir Grenzen überwinden und Nationalitäten keine Rolle mehr spielen. Mögen wir zu dem werden, wozu wir geboren sind, zu Menschen, zu Terranern, und nicht zu Schwarzen, Weißen, Deutschen oder sonst was. Ich bin davon überzeugt, dass wenn wir diese Grenzen überwinden, dann bekommen wir auch solche Probleme, wie den Klimawandel in den Griff.
Und jetzt zum Schluss kommen noch einige Podcasts, die die Mission sehr schön behandelten.

  1. Der Podcast @Weltraumwagner veröffentlichte am 25.04.2023 eine ganz wunderbare Folge zu dieser Mission mit Interviews, der Verschiebung des startes und allem, was dazu gehört.
  2. Der Rege Podcast @Aufdistanz hat sogar drei Folgen mit Interviews zu dieser Mission gemacht. Das sind die Folgen 72, 74 und 75. Sehr hörenswert.
  3. Auch in der Sendung @Sternzeit vom Deutschlandfunk war diese Mission schon Thema. Diese Sendung kann man ebenfalls als Podcast abonnieren.