Liebe Leser*innen,
Vor einigen Wochen erhielt ich plötzlich eine Mail von meinem alten Schulfreund Oli aus Marburg. Von 1989 – 1992 besuchten wir gemeinsam die Oberstufe der Blindenstudienanstalt in Marburg zwar auf unterschiedlichen Schulzweigen, aber so kam es, dass wir doch manche Kurse gemeinsam belegten. Ganz besonders sind mir die gemeinsamen Physik-Kurse in der 12 und in der 13 in Erinnerung. Ein Kurs drehte sich sogar um Grundlagen der Astronomie, insbesondere der Himmelsmechanik. Oli verschlug es dann in die Psychologie und mich in die Informatik. Ich trieb von uns beiden die Astronomie aber einfach bis heute weiter. Oli gedachte meiner und fragte mich an, ob ich mir vorstellen könne, für die Fachgruppe Mathematik, Informatik und Naturwissenschaften (MINT) des Selbsthilfevereins Deutschen Verein für Blinde und Sehbehinderte in Studium und Beruf (DVBS) einen Astronomie-Vortrag halten würde. Sie wollten gerne mal etwas über das übliche MINT hinaus anbieten. Er schlug das Thema Schwarze Löcher vor. Da ich noch nie einen Vortrag darüber hielt, nahm ich diese Herausforderung gerne an. Für mich war es eine Gelegenheit, mich mal systematisch an dieses Thema heran zu wagen und mich daran zu versuchen, dieses populärwissenschaftlich zu vermitteln. Dazu kam natürlich der Umstand, dass momentan ja noch alles online stattfinden muss. Auch mit Folien konnte ich an dieser Stelle nicht arbeiten, weil viele der teilnehmenden Menschen sie sowieso nicht hätten sehen können. Natürlich habe ich im Laufe meiner 30jährigen Astronomie-Tätigkeit schon einiges über diese schwarzen „Monster“ gelesen, aber ich merkte sehr bald schon, dass es gar nicht so einfach ist, sich dieser Dinger Schritt für Schritt zu nähern.
Mich trieben die Fragen um:
- Welche Grundlagen sind für das Verständnis nötig?
- Was kann man voraus setzen?
- Was muss man erklären?
- Wie gehe ich den Spagat, so viel Mathematik wie nötig, aber so wenig wie möglich einzusetzen? Den musste ich dringend finden, denn bis auf wenige Tatsachen spreche ich die Sprache der Mathematik selbst zu schlecht, um Einstein in seinen Einzelheiten je verstehen zu können.
Ein grundsätzliches Prinzip meiner Vorträge ist, dass ich nur wenig ansprechen möchte, das ich nur ablesen müsste, weil ich es selbst nicht besser weiß. Somit vermittle ich nur das, was ich selbst verstanden habe und zeige immer an, wo mein Verständnis aufhört. Alles andere wäre unehrlich und unfair. Also stürzte ich mich in mein Archiv, in meine Bücher, auf meine Artikel und suchte zusammen, was passen könnte.
Warum es eine Serie wird
Das Interesse der Teilnehmenden war nach dem Vortrag so groß, dass ich mich dazu breit schlagen ließ, ihnen etwas aus meiner Stichwortliste, mit der ich den Vortrag hielt, anzubieten, damit sie es nochmal nachlesen könnten. Ich ahnte nicht, worauf ich mich da einließ.
Bald schon merkte ich, dass das, was wir in diesen fast drei Stunden streiften, auf keinen Fall in einen einzigen Artikel auf dem Blog passen würde.
Aus diesem Grund entschied ich mich für eine Serie von Artikeln, die die Reise zu den schwarzen Löchern beschreiben wird.
Dies ist nun Station 1.
Fangen wir bei den alten Griechen an.
Die Legende
Alles beginnt mit einem Ausruf.
„Heurek!!!a“ ist altgriechisch und heißt „Ich habe [es] gefunden“. Der Spruch ist vor allem im Zusammenhang mit Archimedes von Syrakus überliefert und bekannt. Er lebte um 200 v. Chr. und war Hofmathematiker am Hofe des Königs Hieron II
Archimedes hatte die Aufgabe, den Goldgehalt einer vom seines Herrscher den Göttern geweihten Krone zu prüfen, ohne sie jedoch zu beschädigen. Der König verdächtigte den Goldschmied, ihn betrogen zu haben.
Archimedes soll der Legende nach die Lösung, das Archimedische Prinzip genannt, beim Baden entdeckt haben. Aus seiner randvollen Wanne sei jene Wassermenge ausgelaufen, die er beim Hineinsteigen ins Bad mit seinem Körpervolumen verdrängte. Glücklich über seine Entdeckung soll er mit oben erwähnten Ausruf „Heureka!“ nackt auf die Straße gelaufen sein.
Ob die Legende stimmt, weiß man nicht genau. Es gibt durchaus Kritiker, die bezweifeln, ob man damals mit den Möglichkeiten der Volumens- und Gewichtsmessung schon auf dieses Archimedische Prinzip hätte kommen können.
Er entdeckte, dass er mit seinem Körper Wasser verdrängte, weshalb die Wanne überlief. Aus der Tatsache heraus, dass er dennoch nicht unterging, sondern schwamm, schloss er vermutlich, dass die verdrängte Wassermenge genau seinem Körpergewicht entsprechen sollte.
Und da kam ihm die Idee zur Lösung seiner Aufgabe, die er offenbar im Trockenen mit einer normalen Balkenwaage nicht lösen konnte. Die war damals sicherlich schon bekannt, denn man musste für den Handel schon immer Massen verschiedener Güter und deren Mengen miteinander vergleichen und deren Wert gegeneinander aufrechnen. Selbstverständlich war auch bekannt, dass alle Dinge etwas wiegen, also ein Gewicht, eine Masse besitzen. Und das tat Archimedes, um die Krone zu wiegen.
Der Versuch
Der König wusste, zu welchen Anteilen die Krone aus Silber und zu welchen sie aus Gold bestehen musste, denn er hatte sie ja nach seinen Vorgaben bei einem Goldschmied, dem er misstraute in Auftrag gegeben.
Archimedes nahm nun die Krone und jeweils einen Gold- und einen Silberbarren, die beide zusammen dem Gewicht der Krone und dem Mischungsverhältnis des in der Krone enthaltenen Gold und Silbers entsprachen.
Um nun die gestellte Aufgabe zu lösen, tauchte Archimedes zunächst die Krone und dann nacheinander den Gold- und den Silberbarren, die zusammen dem Gewicht der Krone entsprachen in ein randvolles Gefäß mit Wasser.
Nun maß er die Menge des überlaufenden Wassers. Die Krone verdrängte mehr Wasser als die beiden Barren. Dadurch war bewiesen, dass die Krone ein kleineres spezifisches Gewicht hatte und daher nicht ganz aus der Metallmischung gefertigt war, als der König es in Auftrag gegeben hatte.
Vielleicht setzte er auch zum Gegenversuch eine Balkenwaage ins Wasser, auf deren einen Seite die Krone und auf deren anderer Seite die zwei Barren lagen. Krone und Barren wogen also an Land gleich viel. Den Ausschlag für den Fehler gab also das unsichtbare unterschiedliche Volumen.
Ob die Legende jetzt stimmt, oder nicht. Für uns ist sie von höchster Bedeutung.
Masse und Volumen
Sie zeigt uns den Zusammenhang zwischen der Masse eines Körpers und dessen Volumen, der Dichte.
Dass Dinge unterschiedlich viel wiegen, kennen wir aus unserem Alltag. Vergleicht man zwei Körper des selben Materials, so ist klar, dass der schwerere von beiden auch der größere sein muss. Bei der Krone war das eben nicht so klar. Der Rauminhalt einer Krone ist unmöglich mit dem zweier Metallbarren zu vergleichen. Wasser, das sich flüssig um die Körper schmiegt, macht den Vergleich dann doch möglich.
Wegen dieses Vergleichs-Problems, hat man ein Maß (Masse pro Volumen), die Dichte eingeführt, um spezivische Gewichte miteinander vergleichen zu können.
Da Archimedes wusste, aus wieviel Gold und wieviel Silber die Krone bestehen sollte, und seine Waage auf dem Trockenen scheinbar Krone und Barren im Gleichgewicht anzeigte, versuchte er es mit wasser.
Er fand, wir erinnern uns, in seiner Badewanne heraus, dass ein Gegenstand in Wasser geworfen nur so viel Wasser verdrängen kann, das seinem eigenen Gewicht entspricht. Dabei hängt die Verdrängung vom Volumen des Körpers ab. Ein Schiff schwimmt, weil sein Volumen sehr groß ist. Würde man einen Stahlklumpen in Wasser geben, der dem Gewicht des Schiffes entspricht, so ginge er unter, weil sein kompaktes Volumen nicht in der Lage wäre, die Menge Wassers zu verdrängen, die seinem Gewicht entspräche.
Ob etwas schwimmt, schwebt oder sinkt, hängt somit nicht nur von der Masse ab, sondern auch vom Volumen.
Wasser gab man nun die Dichte 1. Ein Liter wasser wiegt ein Kilogramm und nimmt das Volumen von 10 * 10 * 10 =1000 $cm^3$ bei Raumtemperatur ein.
Ein Kubikmeter Luft wiegt dagegen 1,225 kg pro m³, bei Normaldruck und Raumtemperatur.
Der Gasriese Saturn mit seinen schönen Ringen würde mit seiner Dichte von 687 kg/m³ in archimedesens Badewanne schwimmen. Bei Gasen nimmt man oft die Maßeinheiten kg und M*3, weil man sich dadurch viele Nullen hinter dem Dezimalpunkt spart.
Die Volumina aller Körper, ob fest, flüssig oder gasförmig sind abhängig von ihrer Umgebungstemperatur.
Insbesondere Gase dehnen sich pro 1 Kelvin um etwa 1/273 ihres Volumen aus, bzw. ziehen sich zusammen bei Abkühlung.
So weit, so gut. Archimedes konnte jetzt Massen mit Wasser vergleichen. und das irdische Gewicht von Körpern auf der Erde bestimmen. Aber Masse an sich und vor allem über die Schwerkraft wusste er wenig.
Gravitation – Die Kraft zur Masse
Masse, Volumen und Gravitation sind, wie wir auf unserer Reise zu den Schwarzen Löchern noch sehen werden, eng miteinander verwoben. Deshalb lade ich euch zum Schluss dieses Artikels dazu ein, die zur Masse gehörende würdige Kraft, die heimliche Herrscherin des Universums, näher kennen zu lernen.
Ich empfehle, dass ihr euch mit dieser Dame mit unten stehendem Link etwas vertraut macht,
da wir die Inhalte des Artikels für unsere nächsten Stationen voraussetzen, um nicht alles wiederholen zu müssen.
Zur heimlichen Herrscherin geht es hier lang.
Abspann
Archimedes war auch noch in anderen Disziplinen ein großes Genie. Von Physik, Mathematik, Geometrie und Berechnungen von Volumina bis zum Bau von Flaschenzügen und Kriegsmaschinen befasste er sich quasi mit allem.
„Gib mir einen Punkt, wo ich hintreten kann, und ich bewege die Erde“ – So soll er sein Hebelgesetz veranschaulicht haben, belegt in Pappos „Synagoge“, einer Sammlung mathematischer Abhandlungen.
„Störe meine Kreise nicht“ ist eine Redewendung, die wir bis heute in mehrdeutiger Hinsicht benutzen und die der Legende nach auf Archimedes zurück geht.
Dieser Legende nach war er eines Tages damit beschäftigt, geometrische Figuren in den Sand zu zeichnen, als die Römer anrückten, um ihn festzunehmen. Archimedes war jedoch so sehr in seine Aufgabe versunken, dass er barsch mit dem Satz reagierte: Störe meine Kreise nicht. Dies machte einen der Soldaten so zornig, dass er den alten Mann erschlug.
So, meine lieben, das war die erste Station auf unserer langen Reise zu den schwarzen Löchern. Station 2 wird uns ins vereinigte Königreich und ins Italien des ausgehenden Mittelalters führen.
Dort werden wir u. A. erfahren, wie man Planeten und Sterne wiegt.