Verschmelzung zweier Neutronensterne


Seid herzlich gegrüßt,

mit großer Spannung wurde Anfang Oktober die Pressekonferenz der Wissenschaftler der Gravitations-Wellen-Detektoren erwartet. Ihre Veröffentlichungen haben es sogar in Funk und Fernsehen geschafft.
Schon länger gehen Gerüchte um, das der Amerikanische Detektor Ligo die Verschmelzung zweier Neutronensterne nachgewiesen haben soll.
es ist nun offiziell. Ja, der Nachweis ist stichhaltig und die Signatur der Signale zeigt einen „Fingerabdruck“, den die mathematischen Modelle für ein derartiges Ereignis, vorausberechneten.
Was ist hier geschehen und wieso sind alle so aufgeregt?

Da muss man sich zuerst mal fragen, was ein Neutronenstern überhaupt ist.
Das Lebensende eines Sternes, das dann eintrifft, wenn er seinen Wasserstoffvorrat zu Helium verbacken hat, füllt einen eigenen Artikel. Deshalb nur ganz kurz. Ein möglicher Sternentod ist ein Neutronenstern. Diese haben einen Durchmesser von nur wenigen Kilometern und vereinen einige wenige Sonnenmassen in sich.
Das bedeutet, dass sie unheimlich dicht und schwer sind. 1 Zuckerwürfel dieses Materials wöge hier auf Erden mehrere Milliarden Tonnen.
Es handelt sich aber noch um Materie, wenngleich sie auch entartet ist.
Sowohl Lichtwellen, als auch Elektronen, können einen Neutronenstern noch verlassen. Das können wir bei Pulsaren, deren periodische Radiowellen wir empfangen, erleben.
Denen widmen wir uns auch ein anderes Mal, damit es nicht zuviel wird.

Woraus ein schwarzes Loch besteht, darüber gibt es schon jahrzehnte lang Unklarheit. Vor allem deshalb, weil man sich nicht sicher ist, was mit der Information dessen, was hineingefallen ist, geschieht.
Ein großer Name in dieser Diskussion ist auf jeden Fall Steeven Hawking.

Hach, das scheint mir ein Beitrag der Vertröstungen zu werden, denn auch dieses interessante Thema müssen wir vertagen, wenn der Artikel nicht aus dem Ruder laufen soll…

Bei den Neutronensternen und Pulsaren schließt sich allerdings ein Kreis. In den 70er Jahren wurden anhand von Pulsaren und deren Signallaufzeiten Gravitationswellen zum ersten Mal indirekt nachgewiesen. Auch dafür gab es in den 90er Jahren einen Nobelpreis.

Für den direkten Nachweiß der Gravitationswellen mit Ligo ist der Nobelpreis der Physik 2017 vergeben worden.
Für die Podcast-hörenden unter uns:
@Minkorrekt hat bereits seine Nobelpreis-Folge veröffentlicht. Könnte interessant sein, da mal reinzuhören. Ich machs auf jeden Fall.
Und nun verschmelzen quasi noch im Rahmen dieser Feierlichkeiten, zwei Neutronensterne miteinander.
OK, stimmt zeitlich nicht so ganz, ist aber einfach schön…

Gravitationswellen sind Erschütterungen der Raumzeit. Ich schrieb im Februar 2016 in meinen Artikeln  Gravitationswellen und in „Die schwächste Kraft, oder die heimliche Herrscherin des Universums“ sehr länglich und ausführlich darüber. Grundsätzlich entstehen Gravitationswellen immer dann, wenn Massen gegeneinander bewegt werden. In unserem Alltag sind sie nicht nachweisbar. Erst bei so schweren Dingen, wie Neutronensternen oder schwarzen Löchern, machen sie sich bemerkbar, indem sie die Raumzeit krümmen.

OK, was ist passiert.
In einer Entfernung von ungefähr 150 Mio Lichtjahren existierte einst ein Doppelsternsystem, wie es sie viele im Universum gibt. Das ist für astronomische Distanzen noch recht nahe.
Wie  es sich genau zugetragen hat, weiß ich nicht und vermutlich niemand. Auf jeden Fall sind beide dieser Sterne letztendlich zu Neutronensternen kollabiert, von denen jeder zwischen 1,4 und 4 Sonnenmassen in sich vereinen dürfte.

Als solche umkreisten sie sich und näherten sich langsam einander an, weil sie sich gegenseitig durch die Abgabe von Gravitationswellen abbremsten. Das System Mond-Erde bremst sich auch unter Abgabe von Gravitationswellen ab, aber der Effekt ist so schwach, dass er nichts ausmacht. Viel mehr schlägt hier die Abbremsung zu Buche, die dadurch entsteht, dass der Mond Ebbe und Flut erzeugt, und einmal täglich zwei Flutberge um die ganze Erde zieht.

Nun ja, die beiden kamen sich näher und näher, kreisten immer schneller umeinander und dann stürzten sie ineinander.
Es ist eindeutig, dass es Neutronensterne und nicht, wie beim ersten Mal zwei schwarze Löcher waren. Sonifiziert man die Daten der Verschmelzung, dann kann man hören, dass die Kurven verschmelzender Schwarzer Löcher deutlich rascher ansteigen, als die zweier Neutronensterne.
Das hängt damit zusammen, dass schwarze Löcher sehr viel schwerer sind und dazu einfach grundsätzlich etwas anderes, als normale Materie darstellen. Es hat mit Abständen und der Eigenschaft, dass die Gravitation im Quadrat zum Abstand abnimmt zu tun. Ersparen wir uns das, vor allem an der Grenze der Newtonschen Mechanik, wo eher relativistische Eigenschaften von Gravitation und Raumzeit zuschlagen.

Dank eines guten Freundes,  können wir uns diesen Unterschied anhören.

Der erste Link führt zum Ligo-Signal von vor zwei Jahren, als zwei schwarze Löcher miteinander verschmolzen und das Ligo quasi im Testbetrieb empfangen durfte.
Es ist ein kleines Wupp, das mehrfach hintereinander abgespielt wird, damit man es überhaupt wahrnimmt.
https://www.dropbox.com/s/mvldfpb7c9nnjrd/LIGO%20Gravitational%20Wave%20Chirp.mp3?dl=0

Das nächste Signal ist die aktuell gemessene Verschmelzung zweier Neutronensterne, dass er für uns mittels der veröffentlichten Rohdaten, hörbar gemacht hat. Es empfiehlt sich, dieses Signal mit einem Headset anzuhören.
Achten wir hier auf ein im Gegensatz zum vorigen Signal langgezogenes und ansteigendes „Uuuuoooooaaaaa“.
https://www.dropbox.com/s/enznq4fkmwlcv23/GW170817-HL.mp3?dl=0

Das Dritte signal kommt vom Italienischen Detektor, Virgo. Und das ist der springende Punkt. Man hört außer einem Rauschen nichts. Das Signal überstrich einen „blinden Fleck“ des detektors.
Genau diese Tatsache, machte eine Ortsbestimmung, woher das Signal ungefähr gekommen sein könnte, möglich.
Aus diesem Grunde hat auch dieses „Nicht-Signal“ die Sache im Grunde bestätigt.
https://www.dropbox.com/s/my6aqg2rlhx37wm/GW170817-V.mp3?dl=0

Und jetzt kommt der Oberhammer der Geschichte.

Mit einem dafür empfindlichen Messinstrument wurde quasi zeitgleich ein Gamma-Blitz aus der selben Richtung empfangen, wo das Ereignis stattfand.
Und das ist eine Sensation.
* Ohne Blitz wär’s halt einfach eine Gravitationswelle zweier Neutronensterne.
* Ohne Gravitationswelle ist der Gammaausbruch einer von vielen, für deren Entstehung man derzeit nur sehr wage Erklärungsansätze hat.
* Ist es aber beides, so kann man Aussagen darüber treffen, was zum einen während der Vereinigung passierte und zum anderen, was nach der Vereinigung übrig geblieben ist. Meines Wissens nach, ein schwarzes Loch.

Neutronensterne bestehen aus entarteter Materie. Bei der Verschmelzung vermutet man, und das hat sich in Verbindung mit dem Blitz durchaus bestätigt, dass kleinere Atome sich mit Neutronen anreichern, die es dort in Hülle und Fülle gibt, die sich dann in Protonen und Elektronen verwandeln  und somit für die Entstehung schwererer Kerne sorgen würden.

Neben der Verschmelzung von Wasserstoff zu Helium laufen parallel oder nacheinander noch weitere Verschmelzungsprozesse im Leben eines Sterns ab, z. B. zu Sauerstoff, Kohlenstoff, Stickstoff bis hin zu Eisen.
Danach ist aber in Sternen Schluss, weil man für alle weiteren schweren Elemente keine Energie mehr bekommt, indem leichtere  verschmelzen, sondern, man muss welche hinein stecken.
Nur in sehr starken Supernova-Explosionen ist vorstellbar, dass schwerere Elemente, als Eisen, „gebacken“ werden.
Wahrscheinlich ist es aber nun so, dass am Ort zweier verschmelzender Neutronensterne derartige Bedingungen herrschen, dass auch hier alle schweren Elemente des Periodensystems entstehen können. Die Energie liefert hier die Gravitation.
Dass diese schweren Elemente  existieren, daran gibt es  keinen zweifel, denn wir sind aus ihnen, dem Sternenstaub, gemacht und sind daher Kinder des Feuers.

Durch den Gammablitz konnte man quasi zusehen, wie die „Teilchenbäckerei“ funktioniert.

So, ich denke, das reicht für heute.
Ich hoffe, es hat etwas Freude gemacht.

Es grüßt euch ganz herzlich

Euer Gerhard.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert