Theater und Schauspiel am Himmel


Seid herzlich gegrüßt,

nach einer etwas längeren Pause, in welcher ich mich von dem Kraftakt der Serie über die schwarzen Löcher erholte, habe ich mich heute mal wieder zum Schreiben aufgerafft. Heute gibt es mal ein ganz entspannendes und unmathematisches Thema, das die Astronomie mit Literatur, Dichtkunst und Theater in Verbindung bringt. Viele von uns wissen vielleicht noch aus der Schule, dass unsere Planeten alle, bis auf Erde, und Uranus nach römischen Göttern benannt sind.

  • Da ist Merkur, der römische Götterbote, der sehr schnell über den Himmel zieht. In der griechischen Mythologie hätte er Hermes heißen müssen.
  • Da ist die Venus, die Göttin der Liebe, der Planet der uns manchmal als Morgen- und dann wieder als Abendstern erscheint.
  • Da ist der Kriegsgott Mars, dessen rötlich rostige Färbung an die Farben des Blutes und vielleicht auch des Feuers erinnert.
  • Jupiter,
  • Saturn
  • und Neptun, der Gott des Wassers,

sind weitere Beispiele für römische Götter.

Die Ausnahme

Aus der Reihe tanzt bei der Namensgebung der Uranus, der von dem Geschwisterpaar Caroline Lucretia und Friedrich Wilhelm Herschel am 13. März 1781 mit einem selbst entwickelten Teleskop entdeckt wurde. Von den Planeten, die nicht schon in der Antike bekannt waren, wurde Uranus als erster entdeckt. Herschel selbst benannte den Planeten zu Ehren des englischen Königs zunächst Georg III, Georgium Sidus (Georgs Stern), was sich aber letztlich nicht durchsetzen konnte.
In dieser Tradition war er nicht der erste. Auch Galilei wollte seine gefundenen Monde nach seinem damaligen Brötchengeber benennen.
In Frankreich dagegen nannten sie den Planeten Herschel, bis ein anderer Astronom vorschlug, ihn nach dem griechischen Gott Uranos zu benennen.
Der Name setzte sich allerdings erst gegen 1850 durch. Somit ist er der einzige Planet, der nicht nach einem römischen Gott benannt wurde. Uranus war schon zuvor beobachtet und katalogisiert worden, zuerst 1690 von John Flamsteed, jedoch nicht als Planet erkannt.

Über die Geschwister Herschel ist vor kurzen im Podcast @Geschichte @aus @der @Geschichte eine ganz ausgezeichnete Folge erschienen. Diese Folge Nummer GeG313, kann ich euch wirklich, wie überhaupt den ganzen Podcast, wärmstens ans Herz legen.
Vor allem über Caroline Herschel schrieb ich zum Frauentag 2018.
Schon in der Antike waren Merkur, Venus, Erde natürlich, Mars, Jupiter und Saturn mit seinen majestätischen Ringen bekannt, weil sie mit bloßem Auge sichtbar sind. Niemand dachte bis 1781 auch nur im Traum daran, dass es da noch mehr Planeten geben könnte, bis Herschel eben den Uranus entdeckte, der sich dadurch verriet, dass er nicht als Fixstern und Pünktchen all abendlich an seinem Platze verharrte, sondern als verwaschenes Scheibchen seine Position am Himmel gegenüber dem Sternenhintergrund veränderte. Es konnte sich also nur um einen Kometen oder einen weiteren Planeten handeln. Da das Objekt keinen Schweif ausbildete und die Bahn auch überhaupt nicht zu der eines Kometen passen wollte, blieb nur der Schluss, dass es ein Planet war und ist. Herschel hat damit zeigen können, dass das Sonnensystem deutlich größer ist, als es angenommen wurde. Außerdem regte er die Astronom*innen an, weiter zu forschen, denn es schien da ja durchaus noch unbekanntes zu geben, das seiner Entdeckung harrt.

Wieso Wilhelm Herschel 1781 den Uranus entdecken konnte lag daran, weil seine Teleskope besser waren als alle anderen. Er hat seine Geräte selbst gebaut und sie waren die besten der Welt.

Die beiden letzten Planeten, Neptun und Pluto, der mittlerweile ein Zwergplanet ist, wurden indirekt auf mathematischem Wege gefunden, weil sie mit damaligen Teleskopen nicht sichtbar waren, sich aber dadurch verrieten, dass sie durch ihre Massenanziehung die anderen Planeten auf ihren Bahnen störten und sie zu Abweichungen zwangen.

Theater und Schauspiel am Himmel heißt dieser Artikel, weil wir uns heute um die Namensgebung der Uranus-Monde kümmern werden. Hier versammeln sich nahezu alle illustren Figuren der Dramen von William Shakespeare. Das oft gerühmte „Schauspiel des Himmels“ wird an dieser Stelle offenbar.

Herschels Monde

Die Geschwister Herschel haben aber nicht nur den Uranus selbst entdeckt. Sondern ein paar Jahre später, im Jahr 1787, auch noch zwei Monde die den neuen Planeten umkreisen.

Am 11.01.1787 beobachtete Herschel also mal wieder seinen neuen Fund, den Uranus und fand in seiner unmittelbaren Umgebung einige schwach leuchtende Sterne. Am Tag darauf waren zwei dieser Sterne einfach verschwunden.
Herschel schaute weiter hin: Am 14, am 17., am 18., am 24. Januar und am 4. und 5. Februar. Jedes Mal machte er sich genau Notizen wo und wie viele Sterne er in der Nähe des Uranus sehen konnte. Mittlerweile war ihm klar: Mindestens einer der “Sterne” war immer das gleiche Objekt, aber er war noch nicht zufrieden. Er beobachtete weiter. Uranus bewegte sich über den Himmel. Und ein Stern folgte ihm, änderte aber gleichzeitig seine Position in Bezug auf Uranus. Auch ein zweiter Stern tat genau das.
Mal waren sie nicht zu sehen, aber wenn sie zu sehen waren, befanden sie sich stets in der Nähe des Uranus und folgten ihm auf den Fuß.
Diese Beobachtungen ließen nur einen Schluss zu. Bei mindestens zwei dieser beobachteten Sterne musste es sich um Monde handeln, denn sie verhielten sich ebenso, wie der Mond unserer erde, die Monde bei Jupiter, die des Saturn und die des Mars.
Am 15. Februar war Herschel sich dann sicher und schrieb einen Brief an seine Kolleg*innen: „Der Planet Uranus wird von zwei Monden umkreist!“

Wie gut Herschels Teleskope im Gegensatz zu den Messinstrumenten seiner Kolleg*innen gewesen sein müssen, sieht man daran,dass es fünfzig Jahre dauerte, bis auch andere Astronom*innen mit ihren Instrumenten in der Lage waren, ebenfalls diese zwei Uranus-Monde selbst zu erspähen. Herschel war eben auch ein hervorragender Beobachter und seine Schwester Caroline eine großartige ihm ebenbürtige Astronomin und Assistentin.

Nachwuchs am Uranus

1851 bekam die kleine Familie des Uranus Nachwuchs. Der englische Astronom William Lassell entdeckte mit seinem Teleskop zwei weitere Monde. Als er dies der Welt verkündete, und bevor John Herschel den Monden Namen gab, trugen die Monde nur Nummern. Die von Herschel entdeckten Monde wurden bis dahin einfach nur als „Uranus I und Uranus II“ bezeichnet. Lassell führte diese Nummerierung zunächst mit “III” und “IV” weiter.

Als er 1852 seine Daten der vier Uranus-Monde veröffentlichte, da gefielen ihm wohl die Nummern nicht mehr, so dass er Herschels Sohn, John, der ebenfalls ein begnadeter Astronom war beauftragte, doch bitte Namen für die Monde zu finden. Damals ging das noch, dass man Namen an Himmelsobjekte vergab, die man selbst entdeckte. Heute ist das Aufgabe der Internationalen Astronomischen Union. Über diese schrieb ich in …
Die Internationale Astronomische Union und der Planet, der keiner mehr sein darf.
Herschels junior war offenbar ein Fan des großen englischen Autors William Shakespeare, Oder zumindest einer von Elfen und anderen Fabelwesen. Für die beiden Monde die sein Vater entdeckte, hat John die Namen “Titania” und “Oberon” gewählt. Die Monde von Lassell dagegen nannte er “Ariel” und “Umbriel”.
Oberon ist der Elfenkönig aus Shakespeares Stück „Der Sommernachtstraum“.
Ariel ist der Name eines Luftgeistes der in Shakespeares Stück “Der Sturm” auftaucht, aber auch in dem Gedicht “Der Lockenraub” des englischen Dichters Alexander Pope. Dort gibt es einen bösen Geist der “Umbriel” heißt.
Auch Titania und Umbriel entstammen aus dem Sommernachtstraum.

Später Nachwuchs

Für lange Zeit waren diese vier Uranus-Monde die einzigen, welche der Menschheit bekannt waren.
Der ferne Uranus war mit den Teleskopen von der Erde aus nur schwer zu beobachten. Und Titania, Oberon, Ariel und Umbriel sind vergleichsweise große Monde. Titania ist die größte, mit einem Durchmesser von 1578 Kilometern. Oberon ist nur wenig kleiner und durchmisst 1522 Kilometer. Ariel ist 1169 Kilometer groß und Umbriel 1158 Kilometer. Erst 1948 kam ein weiterer Mond dazu. Entdeckt hat ihn der Astronom Gerard Kuiper, den wir vor allem als Namensgeber für den Kuiper-Asteroidengürtel außerhalb der Bahn des Neptun kennen. Er bekam den Namen “Miranda”, die in Shakespeares Stück “Der Sturm” die Tochter des Zauberers Prospero ist. Das Shakespeare-Thema war jetzt also schon fest etabliert und hat sich fortgesetzt.

Nun waren es also schon fünf Monde, die den Uranus umkreisen und nach Figuren aus Shakespeares Stücken benannt waren. Damit ist aber unsere himmlische Theater-Bühne noch lange nicht gefüllt, aber bis das getan werden konnte, mussten wir bis zur Erforschung des Sonnensystems mit Raumsonden warten, die den Uranus dann auch mal besuchen konnten.

Von der Erde aus war nichts mehr zu machen. Vor allem deshalb nicht, weil der Uranus zwanzig mal so weit von der Sonne entfernt ist, als die erde, also um 3 Milliarden Kilometer.

Erst als die Raumsonde Voyager 2 Ende 1985 als erste am Uranus vorbei flog, wurde wieder ein Mond entdeckt. Er bekam den Namen des Feen-Geistes Puck, der quasi die Hauptrolle in “Der Sommernachtstraum” von Shakespeare spielt. Gefunden hat ihn der amerikanische Astronom Stephen Synnott, der sich die Fotos der Voyager-Sonde offensichtlich ganz genau angesehen hatte,
denn nachdem er im Dezember 1985 Puck gefunden hatte, konnte er im Januar 1986 noch sechs weitere Monde entdecken. Ihre Namen sind Portia, Rosalind, Cressida, Juliet, Desdemona und Belinda. Das ist quasi ein Best-of aus Shakespeares Werken.

  • Portia kommt aus “Der Kaufmann von Venedig”,
  • Rosalind aus “Wie es euch gefällt”,
  • Cressida aus “Troilus und Cressida”,
  • Juliet natürlich aus “Romeo und Julia” und
  • Desdemona aus “Othello”.
  • Nur bei “Belinda” wurde von der Shakespeare-Tradition abgewichen. hier griff man erneut auf eine Figur aus Popes Gedicht “Der Lockenraub” zurück.

Stephen Synnott war aber nicht der einzige, der auf den Bildern der Voyager-Sonde Monde finden konnte. Bradford Smith entdeckte dort den Mond “Bianca” und Richard Terile fand “Ophelia” und “Cordelia”. Der Januar 1986 war ein guter Monat für Uranusmondentdecker. Nach Puck kamen insgesamt neun weitere dazu. Insgesamt kante man nun schon 15 an der Zahl. Die meisten sind eher Winzlinge. Puck ist immerhin noch 162 Kilometer groß, Portia 135 Kilometer und alle anderen kleiner als 100 Kilometer.

Verbesserte Teleskope

Die Technik des Teleskopenbaus entwickelte sich mittlerweile auch hier auf der Erde weiter, so dass die Teleskope schärfer und die astronomischen Beobachtungen besser wurden.

1997 war es jetzt ein Team aus Astronomen die Bilder mit dem großen 5-Meter-Teleskop der Hale-Sternwarten in Kalifornien gemacht hatte. In der Nacht von 6. auf den 7. September 1997 war auf den Bildern nicht nur einer sondern gleich zwei weitere Uranusmonde zu sehen. Sycorax und Caliban wurden sie genannt, womit wir wieder mal in Shakespears “Der Sturm” wären. Sycorax ist 150 Kilometer groß, Caliban nur ein kleiner 72-Kilometer-Brocken.
Ganz hat sich die gute alte Voyager aber noch nicht geschlagen gegeben. Der deutsche Astronom Erich Karkoschka schaute 1999 nochmal ganz genau die alten Voyager-Bilder aus dem Jahr 1986an Und fand einen weiteren Uranusmond, den damals alle übersehen hatten, Perdita, ein winziger Mond mit nur 20 Kilometern Durchmesser.
„Nun sollte es doch langsam mit Monden genug sein“, mag so mancher denken, aber mit nichten.
Im Juli 1999 ging es mit Entdeckungen von Uranusmonden weiter. Mit dem 3,6-Meter großen Spiegels des Canada-France-Teleskops auf dem Mauna Kea in Hawaii fand ein internationales Team von Astronomen drei weitere Monde: Setebos, Stephano und Prospero. Damit bekan die mehr als 50 Jahre zuvor entdeckte Miranda endlich ihren Vater aus dem Shakespeare-Stück auch als Mond beigestellt.

Am 13. August 2001 machten ein paar Astronomen Bilder des Uranus und fanden dort einen kleinen Mond, der scheinbar aber wieder verschwand. als sie nochmal genauer hinschauten, konnten sie ihn nicht mehr finden. Mit den unvollständigen Daten konnte man eine offizielle Entdeckung nicht veröffentlichen. Zum Glück fand der amerikanische Astronom Brett Gladmann auf anderen Fotos den Mond und 2002 konnte man die Entdeckung des 18 Kilometer großen “Trinculo” bekannt geben. Gladmann war ein Meister im Nachspüren verlorener Monde. Neben Trinculo waren auf den Voyager-Bildern noch zwei weitere unbekannte Monde zu sehen, deren Existenz den anderen entgangen und durch seine Arbeiten bestätigt wurden, Ihre Namen sind Franciso und Ferdinand.
Und eigentlich wäre auf dem Bild auch noch ein vierter Mond zu sehen gewesen. Den hat aber keiner bemerkt. Erst 2003 haben andere Astronomen nochmal mit einem weiteren Teleskop Uranus beobachtet und ihn entdeckt. Nun war auch “Margaret” offiziell Teil der Uranus-Shakespeare-Familie.

2003 durfte dann auch das Hubble-Weltraumteleskop mitspielen.
Dieses Teleskop ist eher für seine Entdeckungen von Galaxien, schwarzer Löcher und anderer weit entfernter Himmelsobjekte bekannt, aber wenn man schon so ein empfindliches Instrument im All hat, dann kann es sich schon lohnen, mal nicht in die Ferne zu schweifen, wo manchmal das gute doch so nah.

Als dieses Teleskop nun den Uranus beobachten durfte, entdeckte es gleich zwei weitere Monde, Mab und Cupid.
Damit besitzt der Uranus derer Monde siebenundzwanzig.
Die letzten beiden Monde Mab und Cupid – sind nur noch winzige, 10 Kilometer große Brocken.

Was wissen wir?

  • Wir müssen leider sagen, dass wir über die Monde des Uranus nicht viel wissen. Bis auf den kurzen Besuch von Voyager 2 im Jahr 1986 haben wir keine Bilder aus der Nähe machen können.
  • Voyager sollte ja weiter zu Neptun fliegen. Und die dafür nötige Bahn hat nirgendwo in der Nähe der Monde vorbei geführt.
  • Die Achse des Uranus ist um mehr als90 Grad gegen die Bahnebene der Planeten um die Sonne gekippt. Er rollt quasi um die Sonne herum auf seiner Umlaufbahn.
    Das bedeutete, dass die Monde des Uranus für die Voyager-Sonde aussahen, wie eine Zielscheibe.
    Uranus in der Mitte und rundherum die Monde. Um den Kurs auf Neptun zu setzen musste Voyager IIknapp an Uranus vorbeifliegen. Und damit zwangsläufig alle Monde verpassen.
  • Es existieren Voyager-Bilder von Titania und Oberon, die aus einer Entfernung von 365.200 beziehungsweise 470.600 Kilometern gemacht worden sind.
  • Ariel und Umbriel konnte man auch noch halbwegs fotografieren. Aber schon von Puck und Belinda gibt es nur grobpixelige Bilder und alle anderen sind lediglich als kleine Punkte auf diversen Aufnahmen zu sehen.
  • Die einzige Ausnahme ist der Mond Miranda. Genau dort ist Voyager 2 am 24. Januar 1986 in einer Entfernung von nur 29.000 Kilometer vorbeigeflogen.
    Von Miranda gibt es hochauflösende Bilder und zum Glück existieren wenigstens diese, Denn dort gibt es etwas, was wir bis dahin noch nirgendwo anders im Sonnensystem gesehen haben: Verona Rupes, eine 20 Kilometer hohe Klippe. Die größte bekannte Klippe des Sonnensystems! 20 Kilometer! Der Mount Everest ist nur 8,8 Kilometer hoch, von dieser Klippe geht es mehr als das doppelte abwärts. Würde ein Mensch von dieser Klippe springen, dauerte sein Fall mehr als 12 Minuten, um unten anzukommen. Der Mond selbst hat lediglich nur einen Durchmesser von 471 Kilometern und besteht zu einem großen Teil aus Eis. Er hat also eine geringe Dichte, eine geringe Masse und dementsprechend gering ist seine Anziehungskraft. Deswegen fällt man langsam, aber nicht unbedingt sanft. Man hat sehr, sehr viel Zeit um zu beschleunigen. Es gibt keinen Luftwiderstand der einen bremsen könnte. Weswegen man am Ende des langen Falls mit mehr als 200 km/h auf dem Boden von Miranda aufschlagen würde.
  • Die vier größten Monde bestehen wahrscheinlich zu einem Großteil aus Eis. Sie wären groß genug, um eventuell in ihrem Inneren einen Ozean aus flüssigem Wasser zu beherbergen, wie es der Saturnmond Enceladus und der Jupitermond Europa auch tun.
  • Die restlichen kleinen Monde könnten Asteroiden sein, die aus dem viel weiter entfernten Kuipergürtel stammen und von Uranus eingefangen worden sind. Was super wäre, denn die Asteroiden des Kuipergürtels sind enorm weit weg um sie vernünftig erforschen zu können
    Hätte Uranus einige für uns um sich herum gescharrt und aufbewahrt, wäre das praktisch, denn eine Sonde einmal zum Uranus zu schicken, ist nicht unrealistisch.
  • Die kleinen Monde Mab und Cupid könnten die Quelle der dünnen Staubringe sein die Uranus umgeben und Ophelia und Cordelia halten diese Ringe mit ihrer Gravitationskraft in Form.
  • Und dann ist da noch Miranda, mit seiner irren Geografie, seiner zerrissenen, zerklüfteten Oberfläche. Wo kommt so was gewaltiges wie die Verona Rupes Klippe her? Ist der Mond vielleicht mal bei einer Kollision fast auseinander gerissen worden und hat sich mehr schlecht als recht wieder zusammengefügt? War etwas anderes dafür verantwortlich?

Fazit

Die Entdeckung der Uranus-Monde zeigt sehr schön genau das, was Wilhelm Herschel 1781 eindrucksvoll der ganzen Welt gezeigt hat. Wenn man nur genau genug hinschaut, dann gibt es da draußen im Universum was zu entdecken!

  • Herschel hat zunächst den Uranus und dann die ersten beiden Monde entdeckt
  • Dann kamen andere Astronomenmit verbesserten Teleskopen und entdeckten damit drei weitere Monde.
  • Anschließend kam die Raumsonde Voyager II und schaute noch genauer hin.
  • und mittlerweile waren auch die Teleskope hier auf Erden so brauchbar, dass man auch auf die Entfernung weitere kleinere Uranusmonde entdecken konnte.

Selbst wenn man die alten Bilder genau genug anschaut, findet man vielleicht heute noch etwas, das andere übersehen haben. In der Astronomie kann man nur schauen. Aber das sollten wir auf jeden Fall tun.
Wenn wir mehr über die faszinierenden Monde des Uranus wissen wollen, müssen wir mit einer Sonde dort hin.
Wir müssen genauer nachsehen. Und wenn wir das tun, werden wir mit Sicherheit auch noch ein paar weitere noch unbekannte Monde finden. Shakespeare hhält auf jeden Fall noch genügend Protagonisten in seinen Büchern bereit, so dass uns die Namen nicht ausgehen würden…

Mein Lieblingsmond des Uranus

Mein Lieblingsmond des Uranus ist eindeutig Puck. Der Grund dafür ist der Film „Der Club der toten Dichter“ den ich damals 1990 in Kino sah.
Ich war von diesem Club, von diesem Lehrer, der seine Schüler*innen zum Denken anregt, der sie zu Poesie und Literatur ermutigt, so beeindruckt, dass ich über fast drei Jahre selbst so einen Club unterhielt, der später dann in einer Mailingliste die Schöngeister hieß mündete und letztlich sicherlich auch seinen Beitrag dazu lieferte, dass es mein Buch, meine Veranstaltungen und diesen Blog gibt, und dass mein zweites Buch begonnen wurde.
Ich darf euch zum Schluss dieses Artikels diesen starken Film wirklich sehr ans Herz legen.

Hier kurz zum Schluss die Haupthandlung aus Wikipedia zitiert:

Todd Anderson kommt zu Beginn des Schuljahres 1959 an die traditionsbewusste Welton Academy, ein konservatives Internat für Jungen im US-Bundesstaat Vermont. Der schüchterne, in sich gekehrte Todd besitzt wenig Selbstvertrauen und steht im Schatten seines älteren Bruders, der einer der besten Absolventen der Schule war.
Ebenfalls neu an der Schule ist der Englischlehrer John Keating, selbst einst Schüler Weltons. Sein Unterricht verblüfft die Schüler schon in der ersten Stunde. Mit unkonventionellen Methoden fordert der Lehrer sie zu selbständigem Handeln und freiem Denken auf. Da ihm die Förderung der Individualität seiner Schüler sehr wichtig ist, ermutigt er sie immer wieder, sich mehr zuzutrauen und ihre Möglichkeiten auszuloten.
Keating vermittelt seinen Schülern die Welt der Literatur und der schönen Dinge des Lebens; sie sollen Poesie nachvollziehen und in sich selbst entdecken, anstatt nur auswendig Gelerntes zu wiederholen. Dazu gehört auch das Verfassen und Vortragen eigener Gedichte. Keating bezieht sich dabei wiederholt auf die Dichter Whitman, Thoreau und Frost.
In einem alten Schuljahrbuch stoßen die Schüler auf Fotos von Keating und erfahren, dass er als Schüler dem sogenannten „Club der toten Dichter“ angehörte. Bei nächster Gelegenheit darauf angesprochen, erklärt Keating, worum es in diesem Club ging: Man traf sich im Geheimen in einer Höhle im Wald zur Würdigung leidenschaftlicher Poesie. Angeführt von dem besonders begeisterten Schüler Neil Perry beschließt ein Freundeskreis, zu dem neben dem Neuling Todd auch Knox Overstreet, Richard Cameron, Stephen Meeks, Gerard Pitts und Charlie Dalton zählen, den Club wieder ins Leben zu rufen. Sie schleichen sich nachts vom Gelände, treffen sich in der besagten Höhle, tragen einander Gedichte vor und genießen die Gemeinschaft jenseits der engen Mauern und starren Regeln der Schule. Zur Eröffnung jeder „Sitzung“ des Clubs wird traditionell, wie schon zu Keatings Zeiten, als Ritual ein Auszug aus Thoreaus Walden von allen Mitgliedern gemeinsam rezitiert.
Auf Keatings Ermutigung, das Leben selbst in die Hand zu nehmen, entdeckt der Schüler Neil Perry seine Leidenschaft fürs Theaterspiel, womit er sich jedoch seinem Vater widersetzt, der Neils Leben bereits fertig geplant hat. In einer örtlichen Aufführung von Shakespeares Sommernachtstraum erhält Neil die Rolle des Puck und spielt sie mit großem Erfolg. Doch gleich nach der Aufführung zerrt sein Vater ihn nach Hause und kündigt ihm an, ihn am nächsten Tag von der Schule zu nehmen und auf eine Militärakademie zu schicken. Als Neil erkennt, dass er keinerlei Gehör findet und bis hin zur Berufswahl die Wünsche seines Vaters zu erfüllen hat, nimmt er sich in der Nacht das Leben. Auf der Suche nach einem Schuldigen dafür machen Neils Vater und die Schulleitung Keatings Lehrinhalte und -methoden verantwortlich. Die Mitglieder des „Clubs der toten Dichter“ werden, um ihre eigene Haut zu retten, dazu gedrängt, eine vorgefertigte Erklärung mit unwahren Behauptungen zu unterschreiben, die Keating die alleinige Verantwortung zuschreibt, so dass dieser anschließend suspendiert wird.
Als Keating noch einige persönliche Dinge aus seinem Klassenzimmer holt, steigt Todd Anderson auf seinen Tisch und erweist dem scheidenden Lehrer, dem er so viel verdankt, vor der gesamten Klasse seinen Respekt, indem er ihm zum Abschied die von Keating bevorzugte Anrede „O Captain! Mein Captain!“ nachruft. Als Keating sich daraufhin noch einmal umwendet, schließen sich nach und nach weitere Mitschüler Todds Vorbild an, bis schließlich die halbe Klasse auf den Arbeitstischen steht, während der Schulleiter wütend durch die Reihen läuft und die Schüler lautstark, aber vergebens zum Hinsetzen auffordert. Gerührt dankt Keating den Jungen und geht.

Die Reise zu den Schwarzen Löchern – Zugabe


Liebe Mitlesenden,

nun haben mich doch einige Rufe nach einem letzten, unsere Reise zu den schwarzen Löchern abschließenden, Artikel erreicht. Diesem Wunsche, der teilweise auch meiner ist, komme ich nun nach. Ich werde hier nochmals kurz zusammenfassen, was wir auf unseren zehn Stationen erlebt haben. Außerdem gibt es dann als Zugabe noch einige Gedanken zur Entstehung unseres Universums und was einmal aus ihm werden könnte. Auch das hat mit unseren schwarzen Löchern zu tun.
Am Ende jetes Kapitels findet ihr dann nochmal den Link zur passenden Station.

Also los:

Station I

In Station eins lernten wir den alten Griechen Archimedes kennen, der für seinen König überprüfen sollte, ob seine neue Krone aus den richtigen Verhältnissen von Gold und Silber bestünde. In seiner Wanne kam ihm die zündende Idee, die Krone gegen einen Silber- und einen Goldbarren, die dem Verhältnis der Metalle in der Krone entsprachen, zu wiegen. Damit deckte er den Betrug des Goldschmiedes auf und entdeckte das Gesetz des Auftriebes. Dieses führte uns zu dem Zusammenhang zwischen Masse und Volumen, der Dichte. Schließlich machten wir noch einen Abstecher zur heimlichen Herrscherin des Universums, der Gravitation. Wir lernten ihre Seltsamkeiten und ihre Starallüren kennen. Sie krümmt den Raum und verändert dessen Geometrie, bessergesagt die Raumzeit und hat auch noch mehr Merkwürdigkeiten zu bieten.
S1, Der Mann in der Wanne

Station II

Station zwei führte uns zunächst ins ehrwürdige Italien des ausgehenden Mittelalters. Wir lernten Galileo Galilei kennen, der sich mit den Gesetzen fallender Körper beschäftigte. Das führte uns zum Begriff der Beschleunigung im allgemeinen und zur Erdbeschleunigung, welche die Erde als Resultat ihrer eigenen Masse auf fallende Körper ausübt. Wir erkannten auch, dass sich Bewegungen überlagern können, wenn sie durch Kräfte aus verschiedenen Richtungen an einem Körper hervorgerufen werden. Nur so sind Planetenbahnen erklärbar, denn diese fallen kontinuierlich stets um ihre Zentralsterne herum. Nun stellte ich euch den vielleicht berühmtesten Schwaben aller Zeiten vor. Johannes Kepler wandte die Tatsache, dass Bewegungen sich überlagern können, auf die Umlaufbahnen unserer Planeten um die Sonne an und goss seine Erkenntnisse in seine drei keplerschen Gesetze. Von Gravitation wusste er noch nichts. Die mathematischen Gesetze der Gravitation und wie sie auf Körper wechselwirkt, verdanken wir dem Manne, welchem der Legende nach ein Apfel auf den Kopf gefallen sein soll. Isaac Newton machte dieser Apfel weltberühmt. Newton konnte jetzt zwar Körper und ihre Massenverhältnisse bestimmen, aber für die genaue Massenbestimmung fehlte noch die Gravitationskonstante, die erst 200 Jahre nach Newton von Mark Cavendish erstmals angenähert wurde. Mit dem Wissen all dieser erwähnten klugen Männer konnten wir dann als Finale des Artikels die Erdmasse bestimmen.
S2, Wir wiegen die Erde

Station III

Station drei fachte unsere Neugier an. Wir wollten wissen, was unser Mond wiegt. Der Abstand Erde-Mond war schon den alten Griechen ungefähr bekannt, die Erdmasse hatten wir in Station zwei bestimmt. Mit Newtons Formeln, erweitert durch die Gravitationskonstante, gelang es uns, die Masse des Mondes zu bestimmen. Ruhe gaben wir aber noch immer nicht. Wenn man den Abstand Erde-Sonne kennt, sollten wir doch auch ihre Masse bestimmen können. Sie ist wirklich eine riesige Zahl. Wir lernten auch, dass es gar nicht so einfach ist, den Abstand Erde-Sonne zu berechnen. Unter zuhilfenahme unseres Nachbarplaneten, der Venus, gelang der Menschheit schließlich, den Abstand zu unserer Sonne zu bestimmen.
S3, Wiegen anderer Himmelskörper

Station IV

Der Stein, den der Riese im tapferen Schneiderlein in den Himmel warf, mag zwar hoch geflogen sein, aber er musste wieder auf die Erde zurück, die ihn mit ihrer Gravitation anzog. Wir wissen alle, dass das Schneiderlein den Riesen mit einem Vogel austrickste, der dann eben nicht mehr zurück kam, weil er fliegen konnte. Spätestens seit wir in den Weltraum können, stellte sich die Frage aus Station vier, welche Geschwindigkeit ein Körper haben muss, um die Erdanziehung zu überwinden. Dringlicher wurde die Frage natürlich, als man beschloss, auf den Mond zu gehen. Man will ja schließlich auch wieder heim kommen. Also lernten wir in Station vier die Oberflächenschwerkraft kennen, die auf einen Körper wirkt, der sich auf der Oberfläche eines Himmelskörpers befindet. Die Oberflächenschwerkraft hängt von der Masse und des Volumens eines Planeten, des Mondes oder sonstiger Körper ab. Aus ihr ergibt sich dann die Geschwindigkeit, die man braucht, um den Himmelskörper endgültig verlassen zu können. Deshalb nennt man diese Geschwindigkeit auch Entweichgeschwindigkeit.
S4, Wie komme ich hier wieder wech?

Station V

Um ganz elementare Dinge ging es in Station fünf. Schon die alten Griechen fragten sich, woraus denn alles hier auf der Erde überhaupt besteht und was alles zusammen hält. So prägten sie den Begriff des unteilbaren kleinsten Teilchens, des Atoms. Es sollte aber noch drei Jahrtausende dauern, bis ungefähr klar war, wie dieses Atom beschaffen ist, welche Eigenschaften es hat und wie sie sich unterscheiden, um beispielsweise chemische Verbindungen eingehen zu können, um unsere verschiedenen Materialien bilden zu können. In dieser Zeit wurde das unteilbare immer teilbarer und man fand heraus, dass Atome und letztlich das ganze Universum quasi fast aus nichts bestehen. Deshalb mussten wir auch hier einen Abstecher zu zwei anderen Artikeln auf dem Blog machen, in welchen dieses Nichts, das Vakuum erklärt wurde.
S5,Urstoff und Klebstoff

Station VI

Um einen ganz anderen „Stoff“ in welchem wir täglich „baden“ ging es in Station sechs. Wir beschäftigten uns in diesem Exkurs intensiv mit der sehr lebhaften Geschichte der Entdeckung des Lichtes.

  • Was ist es,
  • wie schnell ist es,
  • ist es Welle oder Teilchen,

waren Fragen, die wir uns hier stellten. Auch diese Geschichte ist Jahrtausende alt und wir erfuhren nebenbei auch noch, dass es auch Licht gibt, das wir nicht sehen können und dass große Massen Licht ablenken können, was für das Verständnis von schwarzen Löchern elementar wichtig ist.
S6, Das Licht

Station VII

Die Hauptfrage in Station sieben war, was passiert, wenn sich so viele Atome zusammen finden, z. B. zu einer Gaswolke, dass in ihrem Inneren die Gravitation so hoch wird, dass die Atome sehr stark zusammen rücken müssen, dass ihre Elektronenhüllen zerquetscht werden, dass Atome sogar verschmelzen. Wir lernten, wie aus einer Gaswolke von Wasserstoff Sterne entstehen, was in ihrem Inneren geschieht, wo z. B. die Energie unserer Sonne her kommt und was am Ende eines Sternenlebens passiert, wenn die Kernverschmelzung erlischt und die Gravitation die Oberhand gewinnt, so dass der sterbende Stern einen Gravitationskollaps erlebt.
S7, Die Herrscherin macht Druck im All

Station VIII

Eine Spielart, wie ein sterbender Stern enden kann, lernten wir in Station acht kennen. Die Gravitation quetscht den erloschenen Stern derart, dass die Atome aus denen er besteht, zerstört werden. die Elektronenhüllen der Atome, die in riesigem Abstand normalerweise ihre Kerne umkreisen, zerbrechen. Dadurch rücken die Kernteilchen Protonen und Neutronen sehr stark zusammen. Das hat zur Folge, dass dieses Objekt extrem klein wird. Aus einem Stern, der ein zwei Millionen Kilometer Durchmesser hatte, wird ein nur wenige Kilometer kleiner weißer Zwerg. Weiß deshalb, weil diese Objekte an ihrer Oberfläche so heiß sind, dass sie weißlich leuchten. Sie sind so dicht, das ein Kubikzentimeter dieser entarteten Materie bereits mehrere Tonnen wiegt.
Aber auch diese Zwerge kühlen aus und enden dann als schwarze unsichtbare Zwerge, nicht zu verwechseln mit den braunen Zwergen, denn die sind etwas anderes, das auf unserer Reise nicht von Belang ist.
S8, Weiße Zwerge (Bombur)

Station IX

Da nur Sterne einer bestimmten Gewichtsklasse als weiße Zwerge enden, stellte sich in Station neun die Frage, was aus schwereren Sternen wird. Sterne, deren Sternrest nach dem Kollaps etwa zwischen dem eineinhalb und dem dreieinhalb fachen Sonnenmasse besitzen, müssen ihr „Leben danach“ als Neutronensterne fristen. Bei ihnen sind nicht nur die Elektronenhüllen zerstört, sondern ihre Atomkerne sind so gequetscht, dass Elektronen und Protonen zu Neutronen werden müssen. Diese Objekte sind sehr klein und schwer auszumachen. Zumindest im sichtbaren Licht. Sie verraten sich aber wegen ihrer enormen Hitze durch eine starke Röntgenstrahlung und erzeugen mit ihren starken Magnetfeldern sogar Radioprogramm, was in Station acht sogar zu hören ist. Ihre Dichte ist so hoch, dass die Fluchtgeschwindigkeit von einem Neutronenstern bereits mehrere Prozent der Lichtgeschwindigkeit beträgt.
S9, Quarktaschen im Universum

Station X

In Station zehn näherten wir uns endlich dem Objekt unserer Begierde, den schwarzen Löchern. Sie stellen die dritte Möglichkeit dar, wie Sterne enden, die noch schwerer als das dreieinhalb fache unserer Sonne sind. Hier wird die Materie derart gequetscht, dass selbst Neutronen zerstört werden. Es gibt nun nichts mehr, was den weiteren Kollaps noch aufhalten kann. Die Gravitation hat nun endgültig über alle Materie gesiegt. Diese Objekte sind so klein und haben eine so hohe Oberflächenschwerkraft, dass nicht mal mehr Licht entweichen kann. Dann wird es mit ihrem Nachweis aber schwierig, da man sie selbst nicht sehen kann und vor allem, weil nichts, nicht mal Licht aus ihnen entkommen kann. Wie wir in dieser Station aber erfahren durften, ist die Situation nicht ganz aussichtslos, denn immerhin sind diese Objekte sehr massereich und können mit ihrer Umgebung so einiges anstellen. So lernten wir verschiedene Möglichkeiten kennen, wie man sie doch nachweisen kann.
S10, Das Finale

Zu guter letzt

Wenn schwarze Löcher so etwas endgültiges und ewiges darstellen, dann kann man sich viele Fragen über die Entstehung unseres Universums und was dereinst in sehr, sehr, sehr ferner Zukunft aus ihm werden soll.
Hier eine kleine Auswahl an offenen Fragen:

  • Werden die schwarzen Löcher einmal alle Materie des Universums aufgesogen haben?
  • Werden die vielen schwarzen Löcher einst als ein riesiges Monsterloch enden?
  • Dehnt sich unser Universum ewig weiter aus und verdünnt, wonach es momentan aussieht?
  • Als was enden schwarze Löcher, wie lange es auch dauern mag?
  • Gibt es vielleicht tatsächlich Wurmlöcher durch welche Materie bzw. Information in sog. weiße Löcher in andere Universen entschwindet?
  • Explodiert vielleicht ein riesiges Monsterloch durch andere Eigenschaften des Vakuums, so dass ein neues Universum entsteht?
  • Was ist mit der Materie, die wir gar nicht hier besprochen haben, der dunklen Materie? Immerhin stellt sie die Hauptmasse im ganzen Universum dar. Könnte sie aus vielen kleinen schwarzen Löchern bestehen?
  • Die dunkle Energie darf hier auch nicht vernachlässigt werden, die unser Universum sogar beschleunigt aufbläht? Für diese mysteriöse Entdeckung gab es in den neunzigern immerhin einen Nobelpreis.
    Was ist sie und wo kommt sie her?
  • Was wird aus der Tatsache, dass zumindest bis jetzt sich die Gravitation einfach nicht richtig in unser Standardmodell des Universums einfügen möchte, obwohl das Modell ansonsten super funktioniert?

Dies sind alles Fragen, mit denen sich Wissenschaftler derzeit beschäftigen und mit welchen ich euch für den Moment alleine lassen muss.
Wir können sie hier nicht beantworten. Vielleicht taucht die eine oder andere mal in einem meiner nächsten Artikel auf, aber lösen werden wir sie dort auch nicht. Und wenn doch, dann würde ich vermutlich zum ersten blinden Nobelpreisträger aller Zeiten.
Wir können höchstens versuchen zu erklären, welche Lösungsansätze es dafür gibt und welche Hinweise auf die eine oder andere Lösung hin deuten.

Auf jeden Fall machen wir an dieser Stelle erst mal den Sack zu und ich beende diese Serie tatsächlich fast mit etwas Wehmut. So ist das halt immer, wenn man sich länger mit einer Sache beschäftigt. Dann wächst sie einem halt ans Herz. Es gibt sogar Personen, die hier mitlesen, die mir raten, diese Serie zu einem neuen Buch aufzublasen. Das steht aber alles noch in den Sternen.

Und ja, mag die Serie auch jetzt beendet sein. Meine Artikel auf dem Blog sind es nicht. Es wird weitere Artikel geben. Die Themenliste wird nicht kürzer, sondern länger. Also in diesem Sinne bleibt mir bitte treu und bewogen.

Es grüßt euch ganz herzlich

Euer Blindnerd.

Die Reise zu den Schwarzen Löchern, Station 10 – Das Finale


Liebe Mitlesende,

seit neun Stationen begleitet ihr mich zu den schwarzen Löchern. Was wir im April 2021 mit einem Vortrag für die Fachgruppe MINT des Deutschen Vereins für Blinde und Sehbehinderte in Studium und Beruf gestartet haben, findet nun langsam seinen Abschluss. Heute werden wir uns wie angekündigt den schwarzen Löchern nähern. Es kann sein, dass es dann noch einen Zugaben-Artikel geben wird, der alles auf unserer Reise nochmals aufgreift, zusammenfasst und abrundet.
Da der heutige Artikel das Finale unserer Reise sein wird, könnte er etwas überlang werden. Ich mag ihn aber jetzt nicht in zwei Artikel aufteilen. Haltet also durch beim Lesen. Es wird sich lohnen.
Nun geht es aber erst mal mit fast Lichtgeschwindigkeit zu den Objekten unserer Begierde.
Also los, gehen wir es an.

Am Ende doch ein Sieg

  • Wir haben erfahren, wie Sterne als weiße Zwerge enden, die entweder leichter, oder nur um ein weniges schwerer, als unsere Sonne sind.
  • Dann lernten wir die mysteriösen Neutronensterne oder Pulsare kennen, deren Masse ihres Sternenrestes nach ihrem Kollaps sich in etwa zwischen dem 1,5 – und dem dreieinhalb fachen unserer Sonne bewegen.

Nun kannte man aber längst schon Sterne, die bis zu mehreren hundert Sonnenmassen in sich vereinen. Da sollte es doch möglich sein, dass es auch tote Sterne gibt, deren Restmasse nach ihrem Kollaps deutlich über dreieinhalb Sonnenmassen liegen sollte. Selbst wenn man bedenkt, dass ein Stern am Ende seines Lebens nochmal tüchtig abnimmt und Masse verliert, sollten solche Exemplare existieren.

  • Als was enden diese Sternleichen, wenn sie aufgrund ihrer Masse nicht als Neutronensterne enden können?
  • Was geschieht, wenn die Gravitation im Innern eines Sternenrestes so groß wird, dass selbst das Neutronium im Innern eines Neutronensternes ihr nicht mehr stand halten kann?

dann gibt es nach dem heutigen Stand der Wissenschaft nichts mehr, dass den weiteren Kollaps noch aufhalten kann. Das Objekt schrumpft und schrumpft. Es wird dichter und dichter. Dadurch, dass seine Oberfläche immer kleiner wird, vergrößert sich neben seiner Dichte auch die Oberflächenschwerkraft und mit ihr die Fluchtgeschwindigkeit, die man bräuchte, um sich wieder aus dem Gravitationsfeld eines derartigen Objektes zu entfernen. Unserer Erde kann man mit einer Fluchtgeschwindigkeit von 11,2 km/s entkommen. Bei unserem Gasriesen, dem Jupiter, benötigt man schon 59,6 km/s.

Einem Riesenstern zu entkommen bedürfe es dann schon einiger hunderte bis tausenden Km/s. Ein Neutronenstern gäbe unser Raumschiff erst mit einer Geschwindigkeit von einigen Prozenten der Lichtgeschwindigkeit, die im Vakuum 300.000 km/s beträgt, frei. Ein Objekt, mit noch mehr Masse ist denkbar, auf dessen Oberfläche die Fluchtgeschwindigkeit die des Lichtes übersteigt. Nicht einmal mehr Licht kann von so einem Objekt entkommen. Wo kein Licht mehr ist, herrscht Dunkelheit. Nichts liegt daher näher, als so ein zunächst hypothetisch angenommenes Objekt ein schwarzes Loch zu nennen.

Namensgebung

Wikipedia sagt dazu:

Der Begriff „Schwarzes Loch“ ist erstmals 1964 nachgewiesen in einem Bericht der Wissenschaftsjournalistin Ann Ewing über ein Symposion der American Association for the Advancement of Science zu den verschiedenen Endstadien von Sternen. Die Autorin gab Hong-Yee Chiu als Organisator sowie Alastair Cameron, Charles Misner, Volker Weidemann und John Beverly Oke als Redner an, ohne den Urheber des Ausdrucks zu benennen. Etabliert wurde der Begriff 1967, nachdem John Archibald Wheeler bei einer Konferenz einen Ersatz für den langen Ausdruck „gravitationally completely collapsed object“ suchte und den Vorschlag eines unbekannt gebliebenen Zuhörers aufgriff.

Und jetzt, wo das Ding einen Namen hat, werden wir uns ihm langsam annähern, ganz langsam, damit es uns nicht gefährlich herein zieht, aber anziehend faszinieren darf es schon.

Die Vermutung

Schon 1783 spekulierte der britische Naturforscher John Michell über Dunkle Sterne, deren Gravitation ausreicht, um Licht gefangen zu halten. In einem Brief, der von der Royal Society publiziert wurde, schrieb er:


If the semi-diameter of a sphere of the same density as the Sun were to exceed that of the Sun in the proportion of 500 to 1, a body falling from an infinite height towards it would have acquired at its surface greater velocity than that of light, and consequently supposing light to be attracted by the same force in proportion to its vis inertiae [mass], with other bodies, all light emitted from such a body would be made to return towards it by its own proper gravity. This assumes that light is influenced by gravity in the same way as massive objects.

Zu Deutsch:

„Wenn der Radius einer Kugel von der gleichen Dichte wie die Sonne den der Sonne in einem Verhältnis von 500 zu 1 überstiege, hätte ein Körper, der aus unendlicher Höhe auf sie zu fiele, an ihrer Oberfläche eine höhere Geschwindigkeit als die des Lichts erlangt. Folglich – unter der Annahme, dass Licht von derselben im Verhältnis zu seiner Masse stehenden Kraft angezogen wird wie andere Körper auch – würde alles von einem solchen Körper abgegebene Licht infolge seiner eigenen Gravitation zu ihm zurückkehren. Dies gilt unter der Annahme, dass Licht von der Gravitation in der gleichen Weise beeinflusst wird wie massive Objekte.“

Nachdem Albert Einstein 1915 die Feldgleichungen der allgemeinen Relativitätstheorie aufgestellt hatte, gab der deutsche Astronom Karl Schwarzschild 1916 erstmals eine Metrik an, die Schwarzschild-Metrik, die dem Gravitationsfeld einer punktförmigen Masse entspricht. Die Schwarzschild-Lösung beschreibt Größe und Verhalten eines nichtrotierenden und nicht elektrisch geladenen statischen Schwarzen Lochs mit dem sogenannten Ereignishorizont und einer zentralen Singularität.
Begriffserklärungen:

  • Der Ereignishorizont ist der Ort um das schwarze Loch herum, ab dessen Abstand ihm nichts mehr entkommen kann.
  • Die Singularität ist die Mitte des schwarzen Loches, wo die Gravitation unendlich wird und die Gesetze der Physik nicht mehr funktionieren.
  • Der Radius des Ereignishorizontes wird Schwarzschild-Radius genannt. Seine Größe hängt von der Masse des schwarzen Loches ab.

Würde zum Beispiel die Masse der Sonne zu einer Kugel mit nur drei Kilometer Radius komprimiert, dann könnte von deren Oberfläche kein Lichtstrahl nach außen gelangen. Die Masse unserer Erde würde erst bei einem Radius von unter einem Zentimeter ein Schwarzes Loch bilden.

Robert Oppenheimer wies 1939 zusammen mit Robert Serber und George Michael Volkoff anhand von Modellrechnungen nach, dass beim Kollaps eines großen Sterns ein Schwarzes Loch entstehen sollte.

Im Laufe der nächsten Jahrzehnte wurde die Vermutung zu einer Theorie, mit deren Hilfe man schwarze Löcher sowohl physikalisch als auch mathematisch beschreiben konnte. Auf einige der hieraus resultierenden Eigenschaften schwarzer Löcher werden wir noch etwas näher eingehen. Vieles konnte bereits bis heute bewiesen und beobachtet werden.

Beschreibung schwarzer Löcher

Obwohl z. B. die Relativitätstheorie von Einstein sehr kompliziert ist, lassen sich andererseits schwarze Löcher mathematisch durch ganz wenige Parameter beschreiben. Der Teufel steckt aber hier im Detail, wenn man es genau wissen möchte.

Ein Schwarzes Loch lässt sich durch lediglich drei physikalische Kenngrößen vollständig beschreiben (sogenannte Haarlosigkeit Schwarzer Löcher) genannt. Dies sind

  1. Seine Masse
  2. sein Drehimpuls
  3. und seine elektrische Ladung.

Es gibt also folgende Klassen:

  • Schwarze Löcher, die keine elektrische Ladung tragen und nicht rotieren, werden durch die Schwarzschild-Metrik beschrieben.
  • Schwarze Löcher, die keine elektrische Ladung tragen und rotieren, werden durch die Kerr-Metrik beschrieben.
  • Schwarze Löcher, die elektrisch geladen sind und nicht rotieren, werden durch die Reissner-Nordström-Metrik beschrieben.
  • Schwarze Löcher, die elektrisch geladen sind und rotieren, werden durch die Kerr-Newman-Metrik beschrieben.

Formell ergibt sich ein Schwarzes Loch aus einer speziellen Vakuumlösung der allgemeinen Relativitätstheorie, der sogenannten Schwarzschild-Lösung (nach Karl Schwarzschild, der diese Lösung als erster fand), bzw. für rotierende und elektrisch geladene Schwarze Löcher aus der Kerr-Newman-Lösung.

Im Innern des Schwarzen Lochs bildet sich, wie Stephen Hawking und Roger Penrose gezeigt haben (Singularitäten-Theorem), im Rahmen der Beschreibung durch die klassische allgemeine Relativitätstheorie eine Singularität, ein Punkt mit unendlich hoher Raumkrümmungund Masse. Allerdings ist hier der Gültigkeitsbereich der allgemeinen Relativitätstheorie überschritten und zur Beschreibung dieses Ortes eine Theorie der Quantengravitation notwendig.

Die Grenze, ab der keine Information mehr zu einem im Unendlichen befindlichen Beobachter gelangen kann, heißt, wie schon erwähnt, Ereignishorizont. Da ein nichtrotierendes Schwarzes Loch von außen gesehen kugelförmig ist, hat der Ereignishorizont die Form einer Kugeloberfläche. Der Radius dieser Kugeloberfläche ist der Schwarzschildradius, von welchem wir ebenfalls schon hörten.

Rotierende schwarze Löcher

Als rotierende Schwarze Löcher werden solche bezeichnet, die einen Eigendrehimpuls besitzen. Wie alle Schwarzen Löcher verursachen auch sie, bedingt durch ihre enorme Gravitation, eine entsprechend große Veränderung der geometrischen Struktur von Raum und Zeit.
Bei einem rotierenden Schwarzen Loch nimmt die Singularität jedoch eine Kreis- oder Ringform an und reißt die Raumzeit um sich herum mit, anstatt sie nur zu krümmen. Der Raum wird in der Drehrichtung des Schwarzen Lochs „mit gedreht“. Diese Art der Raumzeitkrümmung erscheint nicht bei einem ruhenden Schwarzen Loch, sondern tritt bei rotierenden Schwarzen Löchern sozusagen zusätzlich außerhalb des Ereignishorizonts mit der Form eines an den Polen abgeplatteten Rotationsellipsoides auf. Alle Objekte um ein rotierendes Schwarzes Loch werden mitgedreht, eben weil sich auch die Raumzeit selbst mitdreht.

Man darf davon ausgehen, dass quasi alle schwarzen Löcher sich um eine Achse drehen, denn das taten ihre Vorläufersterne schließlich auch. Der Impulserhaltungssatz besagt, dass ihr Drehimpuls auch nach dem Kollaps weitgehend erhalten bleibt. Erinnern wir uns an die schnelle Rotation von Neutronensternen und das Beispiel mit der Eisläufer*in.

Und jetzt kommt etwas, das man nicht wirklich verstehen muss, aber ich finde es faszinierend verrückt und von da her erwähnenswert.

Die Kosmische Zensur

Schwarze Löcher können bei gegebener Masse weder eine beliebig große Ladung noch einen beliebig großen Drehimpuls besitzen. Setzt man nämlich in die entsprechenden Lösungen der allgemeinen Relativitätstheorie eine zu hohe Ladung und/oder einen zu hohen Drehimpuls ein, so ergibt sich statt eines Schwarzen Loches eine sogenannte nackte Singularität. Es bildet sich zwar eine zentrale Singularität aus, jedoch ist diese nicht von einem Ereignishorizont umgeben. Man kann sich das ungefähr so vorstellen, dass durch die Drehung der Raumzeit die einfallende Materie so stark beschleunigt wird (Zentrifugalkraft), dass sie die Gravitation wieder aufhebt. Im Ergebnis gibt es somit keinen Ereignishorizont, da die Materie wieder entkommen könnte. Allerdings kann man zeigen, dass aus einem normalen Schwarzen Loch durch Zufuhr von Ladung oder Drehimpuls keine nackte Singularität entstehen kann, denn die gleichzeitig zugeführte Energie würde seine Masse ausreichend erhöhen, sodass also stets verhindert wird, dass aus dem gewöhnlichen Schwarzen Loch eines mit einer nackten Singularität entsteht. Roger Penrose nannte dies Kosmische Zensur, der Beweis der Nichtexistenz nackter Singularitäten innerhalb der allgemeinen Relativitätstheorie ist aber offen.

Und wenn man doch hinein fallen sollte

Der Ereignishorizont ist kein physisches Gebilde, wie beispielsweise die Erdoberfläche. Er bezeichnet nur einen Ort oder genauer eine Grenzfläche. Ein Beobachter, der durch den Ereignishorizont hindurchfällt, würde daher selbst nichts davon bemerken. Relativistische Effekte (allgemeine Relativitätstheorie) führen aber dazu, dass ein von einem zweiten, weit entfernten Beobachter betrachteter Körper aufgrund der Zeitdilatation unendlich lange braucht, um den Ereignishorizont zu erreichen, wobei er zunehmend in rotverschobenem Licht erscheint und lichtschwächer wird.
Eine andere Theorie besagt, dass man, fiele man mit den Füßen voran in ein schwarzes Loch, buchstäblich spaghettisiert, also in die Länge gezogen und dann zerrissen würde. Im Innern des Ereignishorizontes sollte es sehr hell sein, weil das ganze Licht ja nicht entweichen kann. Vermutlich ist es dort auch sehr heiß. Wahrscheinlich würde man auf jeden Fall zerfetzt und möglicherweise atomisiert oder noch schlimmeres. Lassen wir diese unschönen Vorstellungen, denn von uns wird nie jemand in ein schwarzes Loch fallen.

Ein Irrtum

Es ist ein weit verbreiteter Irrtum, dass das Gravitationsfeld eines Schwarzen Loches beziehungsweise die von ihm hervorgerufene Krümmung von Raum und Zeit bei üblichen Entfernungen von außerordentlich großer Stärke sei. Da sowohl Schwarze Löcher als auch Sterne von derselben Metrik beschrieben werden, würde sich am Gravitationsfeld im Sonnensystem nichts ändern, wenn man die Sonne durch ein Schwarzes Loch gleicher Masse ersetzte. Abgesehen vom Fehlen des Sonnenlichts wäre lediglich in unmittelbarer Umgebung des Schwarzen Loches (innerhalb etwa des vorherigen Kernradius der Sonne) ein enormer Zuwachs der Gravitationsbeschleunigung festzustellen.
Erinnern wir uns hier an vorige Stationen, wo ich die Zusammenhänge zwischen Masse, der quadratischen Abnahme der Gravitation und der Radien von Himmelskörpern erwähnte.
Schwarze Löcher sind somit keine gefräßigen Monster. Im Grunde sind sie sogar recht harmlos, denn sie sind super klein. In der Unendlichkeit des Universums kann man ihnen somit kaum begegnen und hinein gezogen wird man auch nicht, wenn man etwas Abstand hält, was wir ja in der Pandemie alle gelernt haben.

Eine Wette um ein Paradoxon

Wenn etwas in ein schwarzes Loch hinter den Ereignishorizont fällt, können wir nicht mehr beobachten, was damit geschieht.
Stephen Hawking beschäftigte sich intensiv mit dieser Tatsache.
Anmerkung am Rande:

Ich werde an dieser Stelle ganz bewusst nicht auf Hawking und schon gar nicht auf seine Einschränkung eingehen, weil ich ihn ansonsten auf seine Behinderung reduzieren würde, was auch ich dann und wann leider schmerzhaft bei mir erleben muss. Auf meinem Blog widmete ich ihm einen Artikel zu seinem Todestag.

Eine Hauptfrage war für ihn, was wohl mit der Information dessen geschieht, was in ein schwarzes Loch fällt, also hinter den Ereignishorizont, von dem es kein Zurück mehr gibt.

Mit Information ist hier gemeint, ob man etwas aus einem schwarzen Loch theoretisch wieder retten könnte, oder nicht. Man kann sich das so vorstellen, wie wenn man einen Würfelzucker in den Kaffee wirft. Der Zucker löst sich auf und vermischt sich gleichmäßig mit dem Kaffee. Dass wir den Zucker nicht mehr herausholen können, liegt nur daran, dass wir nicht wissen, wie es geht. Aber grundsätzlich ist der Zucker mit allem, was zu seiner Information gehört, Geschmack, Klebrigkeit, Farbe und Chemie, noch da.
Das ist eine Grundfeste der Physik, der Thermodynamik, dass Information niemals verloren gehen darf.
Jede Mischung strebt ihre maximale Durchmischung, also die beste Verteilung aller in ihr befindlichen Teilchen an. Diese maximale „Unordnung“ wird in der Physik die Entropie genannt und bildet eine der größten Grundfesten der Physik.

Das ganze hat dann auch mit Temperatur zu tun. Schüttet man warmes und kaltes Wasser zusammen, dann durchdringt es sich so lange, bis alle Moleküle, die beider Wässer, dieselbe Temperatur haben.
Daraus folgt dann, dass, wo die Information absolut verloren geht, da gibt es dann auch keine Temperatur mehr. Das ist aber physikalisch unmöglich.
Stephen Hawking vertrat über Jahrzehnte die Meinung, dass schwarze Löcher mit dem es umgebenden Vakuum über virtuelle Teilchen interagieren können und langsam verdampfen (Hawkingstrahlung), und dass die Information verloren ginge, weil diese Strahlung rein thermischer Natur sei, und daher keine Information transportiere, die etwas über die Entstehungsgeschichte des Loches erzählen könnte. Würde die Strahlung die Information dessen, was dereinst hinein fiel, enthalten, dann liefe die Entstehungsgeschichte des Loches rückwärts ab.
Die Möglichkeit, dass schwarze Löcher Information verlieren, wird das Informations-Paradox genannt.

Sein härtester Gegner dürfte der Physiker Leonard Susskind gewesen sein. Er entwickelte eine Theorie, die den Informationsgehalt von allem, was in das schwarze Loch fällt, an den Rand, den Ereignishorizont projeziert, ähnlich, wie ein Projektor ein Dia an eine Leinwand.
Er hat ein Buch über diesen Disput mit Hawking geschrieben. Außerdem war Hawking auch jemand, der gerne mal wettete. Es lief wohl eine Wette darüber, wer diesen “War of Black Wholes” gewinnen würde.

Ich glaube, es wurde um eine Ausgabe der Encyclopedia Britannica gewettet. An anderer Stelle wettete Hawking schon auch mal in seiner humorvollen Art um ein Jahresabonnement des Männermagazins Penthouse.

2004 kapitulierte Hawking, indem er einräumte, dass Information vielleicht doch nicht verloren geht im schwarzen Loch.
Er lies seine damalige Zuhörerschaft, wenn mich nicht alles täuscht, mit einem “aber” zurück, weil er eine Theorie mit Wurmlöchern und weißen Löchern in anderen Universen postulierte. Durch die Wurmlöcher diffundiert die Information des schwarzen Lochs und kommt am anderen Ende, in einem anderen Universum aus einem weißen Loch wieder zum Vorschein. Ob es weitere Universen gibt, ist zwar wahrscheinlich, aber durchaus nicht sicher. Das und die weißen Löcher lässt sich vermutlich nie oder nur schwer beweisen.
Was wir bisher noch gar nicht behandelt haben ist, ob es denn tatsächlich schwarze löcher gibt, ob sie vielleicht nur Objekte in den Gehirnen von Theoretiker*innen sind und wie man, wenn es sie gibt, sie nachweisen kann.

Entdeckung und Nachweise:

Direkt beobachten lassen sich schwarze Löcher nicht, weil sie klein und dunkel sind. Es gibt aber einige Methoden, bis hin zu einem Foto, die indirekt schwarze Löcher nachweisen können und das auch schon erfolgreich getan haben. Leider, bzw. vielleicht auch Gott sei Dank, haben wir keines in unserer unmittelbaren Nähe, das wir genauer untersuchen könnten, bzw. welches uns als unerschöpfliche Energiequelle dienen könnte…

Kinematischer Nachweis

Dabei werden die Bahn und die Geschwindigkeit von Sternen, die das Schwarze Loch umkreisen, als Nachweis herangezogen. Wird eine enorm hohe Masse, die auch noch dunkel und dicht ist, berechnet, so liegt die Vermutung nahe, dass es sich um ein Schwarzes Loch handelt. Die Vermessung der Bahn des Sterns S2, der Sagittarius A* im Zentrum unserer Milchstraße auf einer Keplerbahn umkreist, erlaubte sehr genaue Aussagen über die Massenkonzentration im Zentralbereich von Sgr A*. Bei einer weiteren kinematischen Methode werden die Dopplerverschiebung und der Abstand zwischen dem dunklen Objekt und dem um ihn kreisenden Stern festgestellt, woraus sich die gravitative Rotverschiebung und sodann die Masse abschätzen lässt.

Eruptiver Nachweis

Sterne, die dem Gezeitenradius eines Schwarzen Lochs zu nahe kommen, können durch die auftretenden Gezeitenkräfte zerrissen werden und dabei eine charakteristische, durch Geräte wie das Nuclear Spectroscopic Telescope Array nachweisbare Röntgenstrahlung freisetzen.

Aberrativer Nachweis

Schwarze Löcher besitzen die Eigenschaft, elektromagnetische Strahlung abzulenken oder zu bündeln, wodurch es möglich ist, sie zu identifizieren. Sollte beispielsweise die Form der elliptischen Bahn eines Sterns verzerrt erscheinen, liegt die Annahme nahe, dass ein Schwarzes Loch zwischen dem Beobachter und dem Stern vorhanden ist.

Obskurativer Nachweis

Durch die Gravitationsrotverschiebung lässt sich eine schwarze Färbung am Rand der Schwarzen Löcher erkennen, da der relativistische Rotverschiebungsfaktor elektromagnetische Wellen beeinflusst und somit die Strahlungen in der Nähe des Ereignishorizonts unterdrückt werden, sodass ein Schwarzes Loch erkennbar wird.

Temporaler Nachweis

Durch eine Analyse der Lichtkurven erkennbare zeitliche Verzerrung (die sogenannte Zeitdilatation), die ein Schwarzes Loch bei Objekten auslöst, die es umkreisen oder sich in der Nähe befinden, ist es möglich, ein Schwarzes Loch als solches zu identifizieren.

Spektroskopie

Wir haben auf der Station über das Licht gelernt, dass Die Krümmung der Raumzeit in der nähe sehr massereicher Objekte Lichtstrahlen verbiegen und umlenken kann. Somit kann ein Schwarzes Loch wie eine Linse auf Objekte wirken die man dahinter beobachtet. Sie erscheinen dann größer, heller und manchmal sogar doppelt.

Diese Linseneffekte und Gravitationsverschiebungen verfremden die Spektren der Sterne, die sich in der Umgebung von Schwarzen Löchern befinden derart, dass sie sich indirekt verraten.

Gravitationswellen

Beschleunigte Schwarze Löcher oder Kollisionen von Schwarzen Löchern können Wellen der Raumzeit hervorrufen, die mit Gravitationswellendetektoren wie LIGO gemessen werden können. Die 2016 von LIGO vorgestellten Beobachtungen der Gravitationswellen aus der Verschmelzung zweier kleinerer Schwarzer Löcher von 29 und 36 Sonnenmassen waren der erste direkte Nachweis von Gravitationswellen
Über dieses spannende Ereignis schrieb ich in
„Ergänzungen zu Gravitation und Gravitationswellen“

Das erste Foto

Mit Very Long Baseline Interferometry (VLBI) können Radioteleskope eine Auflösung erreichen, die vergleichbar mit dem Radius eines Schwarzen Lochs ist. Damit ist es dem Projekt Event Horizon Telescope gelungen, Bilder der Akkretionsflüsse um das supermassereiche Schwarze Loch M87* im Zentrum der Galaxie Messier 87 aufzuzeichnen und damit erstmals direkte Bilder der Umgebung eines Schwarzen Lochs zu erhalten. Die Vorstellung im April 2019 der Resultate der koordinierten Aktion vom April 2017 gilt als wissenschaftliche Sensation, die es zum Beispiel auf die Titelseite des Nachrichtenmagazins Spiegel brachte. Aufgrund gravitativer und relativistischer Effekte erscheinen die Akkretionsflüsse und Bilder der aufgeheizten Gase in der Umgebung des Schwarzen Lochs als ein Ring, der einen dunklen Bereich – den sogenannten „Schatten“ des Schwarzen Lochs – umschließt. Der Schatten ist eine durch den Gravitationslinseneffekt vergrößerte Abbildung des Bereichs, der durch den Ereignishorizont begrenzt ist. Er ist auf linearem Maßstab bis zu fünfmal größer als der Ereignishorizont und wird durch den Photonenorbit begrenzt, auf dem Licht um das Schwarze Loch zirkuliert und bei kleinen Störungen entweder im Schwarzen Loch verschwindet oder nach außen dringt. Die Aufnahmen erlauben durch Vergleich mit Computersimulationen Rückschlüsse auf die Masse und die Rotation des Schwarzen Lochs, bisher aber noch nicht auf den Drehimpuls. Nach dem bisherigen Stand der Technik ist nur der Schatten der supermassereichen Schwarzen Löcher in M87 und Sagittarius A* im Zentrum der Milchstraße so groß, dass sie mit dem EHT beobachtbar sind. Das EHT hat auch Aufnahmen von Sagittarius A gemacht, die aber aufgrund der viel dynamischeren Natur von Sagittarius A undeutlicher sind und demnächst vorgestellt werden sollen

Beispiele bekannter Schwarzer Löcher

Sagittarius A* ist das supermassereiche Schwarze Loch im Zentrum der Milchstraße. Seit 1992 wird seine Umgebung vor allem im infraroten Bereich von einem Team von Astronomen untersucht. Dabei wurden die Umlaufbahnen und die Geschwindigkeiten von 28 Sternen vermessen. Eingesetzt wurden Nah-Infrarot-Kameras mit adaptiver Optik beim Very Large Telescope in Cerro Paranal in Chile, der bildgebende Spektrograph Sinfoni, die Speckle-Abbildungskamera SHARP I und andere Instrumente der europäischen Südsternwarte. Außerdem wurden Beobachtungen des Keck-Teleskops auf Hawaiʻi, des New Technology Teleskops sowie Aufnahmen des Hubble-Teleskops ausgewertet.
Die Untersuchungen zeigten, dass die zentrale Masse nur durch ein Schwarzes Loch erklärt werden kann und dass circa 95 % der gesamten Masse im beobachteten Sektor sich in diesem Schwarzen Loch befinden muss. Die Vermessung der Infrarot- und Röntgenemission in der Akkretionszone deutet darauf hin, dass das Schwarze Loch einen hohen Drehimpuls aufweist.

Neben dem vermuteten zentralen Schwarzen Loch in unserer Galaxie, nämlich Sagittarius A* mit ca. 4,3 Millionen Sonnenmassen, gibt es eine Reihe weiterer vermuteter kleiner Schwarzer Löcher, die in der Milchstraße verteilt sind und eine Masse von einigen wenigen bis einem Dutzend Sonnenmassen aufweisen. Sie alle sind Bestandteile von Doppel- oder Mehrfachsternsystemen, ziehen von ihrem Partner scheinbar in einer Akkretionsscheibe Materie ab und strahlen im Röntgenbereich, weil diese Materie derart durch gegenseitige Reibung aufgeheizt wird.
Neueste Forschungsergebnisse zeigen, dass sich in der Sternengruppe IRS 13, die nur drei Lichtjahre von Sgr A* entfernt liegt, ein zweites Schwarzes Loch mit vergleichsweise geringen 1300 Sonnenmassen befindet. Es ist derzeit nicht geklärt, ob es sich in Zukunft mit Sgr A* vereinigen wird, ob es sich auf einer stabilen Umlaufbahn befindet oder sich sogar von ihm entfernt.
Im Januar 2005 wurden mit dem Röntgenteleskop Chandra Helligkeitsausbrüche in der Nähe von Sgr A* beobachtet, die darauf schließen lassen, dass sich im Umkreis von etwa 70 Lichtjahren 10.000 bis 20.000 kleinere Schwarze Löcher befinden, die das supermassereiche zentrale Schwarze Loch in Sgr A* umkreisen. Einer Theorie zufolge sollen diese das zentrale Schwarze Loch in regelmäßigen Abständen mit Sternen aus der Umgebung „füttern“.

Das bisher erdnächste bekannte Schwarze Loch gehört zusammen mit zwei mit bloßem Auge sichtbaren Sternen zum Mehrfachsystem HR 6819 im Sternbild Teleskop und ist rund 1000 Lichtjahre entfernt. Es hat mindestens vierfache Sonnenmasse. Einer der Begleitsterne umkreist das Schwarze Loch in 40 Tagen.

Schwarze Löcher in Film und Literatur

Schwarze Löcher werden in der Science-Fiction-Literatur oft als mögliches Mittel zum überlichtschnellen Transport, so etwa in Stanisław Lems Roman Fiasko, bzw. als ultimative Möglichkeit der Energiegewinnung dargestellt, wie bspw. in der Fernsehserie Stargate.
Der Film „Das schwarze Loch“ von 1979 – mit Maximilian Schell und Anthony Perkins in den Hauptrollen –, der unter anderem die starke Gravitationskraft Schwarzer Löcher thematisiert, wurde 1980 für zwei Oscars nominiert. Der Film Interstellar aus dem Jahr 2014 von Regisseur Christopher Nolan beinhaltet ebenfalls die Thematiken vom Schwarzen Loch und seinen Gravitationskräften. In der Fernsehserie Andromeda gerät das Raumschiff Andromeda Ascendant nahe an den Ereignishorizont eines Schwarzen Lochs, wodurch Schiff und Besatzung aufgrund der Zeitdilatation bis zur Bergung und damit für 300 Jahre in der Zeit einfrieren.

Abspann

so, liebe Mitlesenden. Wie schon gesagt, geht diese Reise an dieser Stelle langsam zu Ende. Für mich war es das erste mal, dass ich aus einem Vortrag eine so umfangreiche Serie entrollte. Mir hat das sehr viel Freude bereitet. Ich hoffe, euch auch. Nun werde ich mich wieder anderer Themen und Baustellen auf dem Blog widmen. So ist beispielsweise unter der Rubrik „Der Sonne entgegen“ längst noch nicht alles über diesen einen Stern von dem wir leben, gesagt.

Ich bin selbst immer wieder darauf gespannt, wo hin mich meine Gedanken und Geschichten führen.
Ich würde mich freuen,

  • wenn ihr mir auf diesem Blog verbunden bleibt,
  • wenn ihr vielleicht mal den ein oder anderen Artikel kommentiert,
  • wenn ihr Fragen stellt,
  • wenn ihr berichtigt, wenn ich quatsch erzähle
  • und wenn ihr den Blog mit anderen Menschen teilt, die so etwas interessieren könnte.

Und wer jetzt schade findet, dass die Serie endet, kann den Blog ja gerne über den Newsfeed oder per Mail folgen. Dann wird niemandem mehr etwas entgehen, denn es wird weiterhin Artikel und möglicherweise auch andere Serien von mir geben.

Es grüßt ganz herzlich

euer Blindnerd.

Die Reise zu den Schwarzen Löchern, Station 9 – Quarktaschen im Universum


Liebe Mitlesenden,

Dies ist nun Station 9, unsere letzte Rast, bevor wir zu den schwarzen Löchern kommen.
Da wir schon acht Stationen hinter uns haben, müssen wir bei Station neun vermutlich etwas länger rasten und verweilen. Will sagen, es könnte etwas länglich werden.

Wir haben uns auf der letzten Station mit dem beschäftigt, was übrig bleiben kann, wenn ein Stern stirbt, mit den weißen Zwergen. Sie sind sehr klein, sehr heiß und ihre Materie ist so dicht, dass sich Elektronen, Protonen und Neutronen einzeln in ihm befinden und alle Atomkerne zerbrochen sind. Am Ende haben wir auch gehört, dass der Rest eines gestorbenen Sternes höchstens 1,44 Sonnenmassen betragen darf, um zu einem weißen Zwerg zu werden. Heute befassen wir uns mit dem, was übrig bleibt, wenn der Rest diese Masse übersteigt. Es geht um die Quarktaschen im Universum, um Neutronensterne.

Jenseits der weißen Zwerge

Mit zunehmend verbesserten Teleskopen und Messmethoden wurde bald klar, dass es Sterne geben muss, die deutlich schwerer, die z. B. das hundertfache unserer Sonne wiegen. Klar war auch, dass Sterne am Ende ihres Lebens noch einiges ihrer Masse entweder als planetare Nebel abwerfen, bzw. noch spektakulärer als Novae oder Supernover, gewaltigen Sternexplosionen enden. Leider sind Novae und Supernovae selten, so dass man sie nicht oft vor das Teleskop bekommt, aber sie kommen eben doch vor. Wenn ein derart schwerer Stern sein Lebensende erreicht, so muss er mit einem unheimlichen Spektakel von der Weltbühne abtreten.
Wie dieses „Feuerwerk“ funktioniert, muss ich leider einem anderen Artikel, vielleicht mal passend zu Silvester, vorbehalten.

All dies legt natürlich nun die Frage nahe, was denn aus einem Sternrest wird, der schwerer als die ChandraSekhar Grenze von 1,44 Sonnenmassen ist. Wenn er nicht zu einem weißen Zwerg werden kann, was wird aus ihm dann…

Der Kollaps eines weißen Zwerges wird durch den Gegendruck, den die elektromagnetische Kraft zwischen negativ geladenen Elektronen und positiv geladenen Protonen, der Gravitation entgegensetzt, aufgehalten. Der Zwerg ist quasi im Gleichgewicht.

Ist die Masse größer, dann wird der Druck, den die heimliche Herrscherin, die Gravitation ausübt einfach zu groß, um von der elektromagnetischen Kraft aufgehalten werden zu können. Ich darf an dieser Stelle nochmals daran erinnern, wie schwach die Gravitation gegen die anderen Kräfte ist. Setzt dieser Kollaps ein, dann werden Elektronen derart gequetscht, dass sie nicht länger als solche existieren können. Sie bilden zusammen mit den Protonen nun Neutronen. Auch dieses war Anfang des 20sten Jahrhunderts schon durch die Kernphysik bekannt. Gemeinsam mit den schon vorher im Sternrest vorhandenen Neutronen besteht er nun nahezu nur noch aus Neutronen. Aus diesem Grunde nennt man diese Objekte Neutronensterne. Diese Neutronen werden nun durch die Gravitation derart aneinander gepresst, dass sie sich quasi berühren. Dann ist der Kollaps erst mal für diesen Stern beendet, wenn seine Masse zwischen 1,44 und etwa 3 Sonnenmassen liegt. Was mit noch schwereren wird, ist Gegenstand unserer letzten Station.

Nun übernimmt die schwache Wechselwirkung zwischen Kernteilchen und verhindert einen weiteren Kollaps.
Man stellt sich das Innere eines Neutronensterns als Neutronenflüssigkeit, auch Neutronium vor. Diese Flüssigkeit ist ungeheuer dicht. ich habe mal in einem Buch gelesen, dass ein Kubikzentimeter dieser Flüssigkeit so viel wiegen soll, wie zehn Millionen Lokomotiven der Deutschen Bundesbahn.

  • Die Erde hätte mit ihrer Masse als Neutronenstern lediglich nur noch einen Durchmesser von 130 Metern, etwa ein Hunderttausendstel, wenig mehr, als die Größe eines Fußballfeldes.
  • Der Durchmesser unserer Sonne betrüge anstelle von 1,4 Millionen Kilometer als Neutronenstern nur noch vierzehn Kilometer.
  • Selbst unser ganzes Universum als Neutronenstern an die Stelle unserer Sonne gepackt, berührte gerade mal nur unsere Erdbahn und wäre so schwer, wie alle Milliarden von Galaxien zusammen.

Wie leer das Universum doch ist.

Man kann sich nun leicht vorstellen, dass Neutronensterne mit normalen Messmethoden nicht beobachtbar sind. Sie sind zu klein und zu weit entfernt. Und doch, weiß man gesichert, dass es sie gibt, man hat sie bewiesen und gefunden. Aus diesem Grunde waren die Neutronensterne zunächst nur eine physikalische Idee, ein Postulat also, oder unwissenschaftlicher ausgedrückt, eine „Voraussage“.

Wir erinnern uns, dass es bei den weißen Zwergen genau umgekehrt war. Sie wurden zuerst indirekt beobachtet, dann gesichtet und schließlich auch erklärt.

Die Idee

Der schweizerische Astronom, Fritz Zwicky, der sehr streitbar gewesen sein soll und obwohl in USA lebend zeit Lebens sein Schweizerdeutsch gesprochen hat, in welchem er urchig fluchte, und der Astronom Walter Baade, ersannen um 1934 die Möglichkeit der Existenz von Neutronensternen. Einige Jahre später konnte dann Robert Oppenheimer, der später den Bau der ersten Atombombe leitete mit einem Studenten die Idee aus kernphysikalischer Sicht untermauern. Den meisten anderen Astronomen erschien diese Idee doch etwas absurd. Sie interessierten sich zunächst nicht dafür, zumal gerade der zweite Weltkrieg angebrochen war. Nichts desto Trotz blieb die Frage, wie man die Theorie der Entstehung von Neutronensternen zum einen, aber dann zum anderen auch ihre Existenz überprüfen konnte, wenn optische Teleskope, die mit Licht arbeiten, ausschieden, weil Neutronensterne so klein und so weit entfernt sind.

Jenseits des Lichts

In Station 6 unserer Reise hörten wir, dass der berühmte Astronom Herschel mit seinem Versuch mit den Thermometern am roten Ende des Spektrums des Sonnenlichtes die wärmende Infrarot-Strahlung entdeckte, und der Physiker Ritter am Violetten die ebenfalls nicht sichtbare Ultraviolett-Strahlung. Wer diese spannende Geschichte nochmals lesen möchte, kann das in Station 6 gerne tun, in welcher es um das Licht ging.

Inzwischen wurden beide Enden des Spektrums erweitert, denn es waren auch schon Radiowellen am roten- und am ultravioletten Ende die Röntgen-Strahlung entdeckt worden.

Die Theorie der Neutronensterne postulierte die Eigenschaft, dass sie an ihrer Oberfläche sehr heiß sein sollten, und zwar so heiß, dass sie nicht mehr hauptsächlich im sichtbaren Licht leuchten, sondern im unsichtbaren Röntgenlicht strahlen würden.
Und das führt uns zu einem weiteren Problem. Ultraviolett- und Röntgenstrahlung wird von der Erdatmosphäre zu unserem Schutz fast vollständig abgeschirmt, so dass es vom Erdboden aus wieder einmal quasi unmöglich sein würde, Neutronensterne anhand ihrer Röntgenstrahlung zu entdecken.

Ihre Entdeckung

Bereits im Jahre 1911 konnte der Physiker Victor Frances Hess mit Messgeräten, die er an Ballone hängte, die hoch hinauf stiegen nachweisen, dass eine energiereiche Strahlung des Kosmos bis zur Erde vordringt. Diese kosmische Strahlung besteht aus sehr schnellen geladenen Teilchen, die mit dem Magnetfeld und der Atmosphäre unser Erde interagieren. Sie ist vermutlich durch Supernovae entstanden, die in unserer Galaxie explodiert sind.

Da diese Strahlung aber aus geladenen Teilchen besteht, so werden diese durch elektromagnetische Felder abgelenkt, so dass man nicht mehr sagen kann, aus welcher Richtung gewisse Teilchen ursprünglich kamen. Somit taugte auch diese Strahlung nicht, um unsere Neutronensterne zu finden. Ähnliches Problem besteht auch bei der 1931 entdeckten aus dem Weltall kommenden Mikrowellenstrahlung. Sie zeigte uns aber, dass Sterne ihre Energie in allen Wellenlängen abstrahlen und dass das nicht nur unsere sonne tut.

Ab 1950 führte man Versuche mit Raketen durch. Die konnten zwar die Strahlungsarten, auch die Röntgenstrahlung messen, hatten aber den Nachteil, dass sie im Gegensatz zu Ballonen zwar höher, aber nicht lange oben bleiben konnten.

Die Situation verbesserte sich erst, als man begann Röntgensatelliten in verschiedene Umlaufbahnen zu schicken. Mit ihnen war erstmals eine Röntgendurchmusterung des Himmels möglich. Man fand tatsächlich sehr viele verschiedene Röntgenquellen am Himmel von denen einige auf Neutronensterne schließen lassen, andere auf schwarze löcher und mehr.

Wie stark die Astrophysiker an den Röntgenquellen interessiert waren, und dass das Thema bis heute eine große Rolle spielt, kann man daran sehen, wie viele derartige Messinstrumente in den letzten Jahrzehnten gebaut und ins Weltall geschossen wurden.
Wer auf der Suchmaschine seines Vertrauens die beiden Begriffe „Röntgensatellit“ und „Wiki“ eingibt, wird umgehend auf eine sehr beeindruckende Liste von Röntgensatelliten geführt.

Es wurde aber noch etwas anderes entdeckt, dass die Existenz von Neutronensternen absolut und unzweifelhaft bestätigte.

Pulsare

Neben seiner ungeheuren Hitze und seiner Dichte sind Neutronensterne meist von ungeheuren Magnetfeldern umgeben. Diese rühren da her, dass ihre Vorläufersterne auch Magnetfelder besaßen. In diesen Magnetfeldern bewegen sich geladene Teilchen. Diese erzeugen vor allem an den Magnetpolen starke Radiowellen.

Die magnetischen Pole eines Pulsars müssen nicht zwangsläufig mit denen der Rotationsachse des Neutronensterns übereinstimmen, wie auch die magnetischen Pole der Erde nicht exakt mit den Polen ihrer Achse übereinstimmen. Steht beispielsweise ein Pulsar in unserer Ebene aufrecht und seine magnetischen Pole um 90 Grad gekippt, dann überstreichen die daraus hervortretenden Radiowellen unsere Richtung. Das können wir auf der Erde mit Radioteleskopen als sehr regelmäßige Radio-Pulse empfangen.
Neutronensterne, die nicht in unsere Richtung „pulsen“ können auch Pulsare sein, aber ihre Pulse verfehlen uns halt immer.

Jocelyn Bell und ihr Doktorvater Antony Hewish entdeckten den ersten Pulsar bei der Suche nach Radioquellen am 28. November 1967 am Mullard Radio Astronomy Observatory bei Cambridge. Für diese Untersuchung wurden in einem breiten Feld sämtliche Quellen erfasst, die binnen kurzer Zeit starke Schwankungen in ihrer Strahlungsintensität aufwiesen. Die Signale des später als PSR B1919+21 bezeichneten Pulsars zeichneten sich durch ungewöhnliche Regelmäßigkeit der abgestrahlten Wellen aus, so dass Bell und Hewish sie zunächst für ein künstliches Signal – eventuell einer extraterrestrischen Zivilisation – hielten (Little Green Man 1).

Antony Hewish wurde 1974 für die Entdeckung der Pulsare mit dem Nobelpreis für Physik ausgezeichnet.
Der erste Physiker, der gleich nach ihrer Entdeckung hinter Pulsaren rotierende Neutronensterne vermutete, war Thomas Gold 1968/69. Eine Fachkonferenz lehnte jedoch zunächst seinen entsprechenden Vortrag als zu absurd ab und erachtete dies noch nicht einmal als diskussionswürdig. Später wurde seine Meinung aber bestätigt.

Russell Hulse und Joseph H. Taylor Jr. entdeckten 1974 den Pulsar PSR 1913+16, ein System aus zwei einander in weniger als 8 Stunden umkreisenden Neutronensternen, von denen einer ein Pulsar ist. Ihre Bahnperiode verkürzt sich ständig in einer Weise, die nur durch die Abstrahlung von Gravitationswellen gemäß der allgemeinen Relativitätstheorie erklärt werden kann. Die Messung, dass das System sich verlangsamt, durfte als der erste indirekte Nachweis von Gravitationswellen gewertet werden. Alleine stehende Pulsare verlangsamen zwar mit der Zeit ihre Umdrehung auch, aber das geht so langsam vor sich, dass sie genauer pulsen, wie die genauesten Atomuhren, die zur Zeit ihrer Entdeckung zur Verfügung standen.
Die Gravitationswellen, was sie sind und ihr Nachweis werden uns noch in Station10 begegnen.

Hulse und Taylor erhielten dafür 1993 ebenfalls den Nobelpreis für Physik. Bis zum Mai 2006 waren ungefähr 1700 Pulsare bekannt,

PSR B0531+21 im Krebsnebel ist mit einem Alter von etwa 900 Jahren der jüngste bekannte Pulsar.
Im Krebsnebel konnten wir, ohne, dass wir es wussten, quasi der Entstehung eines Neutronensternes, der auch ein Pulsar ist, zusehen.
Wie das?
Der Krebsnebel (seltener Krabbennebel, früher auch Crab-Nebel von englisch Crab Nebula, katalogisiert als M 1 und NGC 1952) im Sternbild Stier ist der Überrest der im Jahr 1054 beobachteten und dokumentierten Supernova. Dort war plötzlich ein Stern erschienen, der dort nicht hin gehörte.
Noch heute sind die Überreste dieser Supernova als Nebel zu sehen. Wegen seiner Struktur und seinem Aussehen, bekam er seinen Namen.
Und auch der Pulsar in seiner Mitte ist gefunden.

Ein in der Entstehung besonderer Pulsar ist der sich auf einer stark elliptischen Umlaufbahn um einen sonnengroßen Stern bewegende PSR J1903+0327, welcher mit 465 Umdrehungen pro Sekunde rotiert.

1982 wurde der erste Millisekundenpulsar mit der Bezeichnung PSR B1937+21 entdeckt. Die Stabilität seiner Rotationsdauer von 1,5578 Millisekunden – nach Berücksichtigung einer linearen Zunahme – ist besser als $10^{−14}$, die Präzision damaliger Atomuhren. Diese Genauigkeit kann für eine präzise Ortsbestimmung der Erde verwendet werden, um dadurch einen weiteren Nachweis für Gravitationswellen zu erbringen.

Das muss man sich mal vorstellen. Da dreht sich ein Körper, der zwischen 1,44 und 3,5 Sonnenmassen besitzt und nur wenige Kilometer durchmesser hat, in wenigen Millisekunden um sich selbst. Kein Material auf der Erde würde diese Fliehkraft überleben und würde zerreißen.
Nun bleibt noch die Frage, wieso sich Neutronensterne überhaupt so rasend schnell um ihre Achse drehen.

Die Eisläuferin

Alle Sterne drehen sich in einer Geschwindigkeit um sich selbst. Unsere Sonne tut dies beispielsweise innerhalb von ungefähr 29 Tagen, was man an der Wanderung von Sonnenflecken beobachtet und gefunden hatte. Kollabiert nun ein Stern zu einem Neutronenstern, so geht ein Großteil des Drehimpulses an ihn über. Es ist, als ob eine Eisläuferin ihre Arme anzieht. Dadurch wird sie dann auch schneller. Geht nun der Drehimpuls eines ausgewachsenen Sternes an einen Neutronenstern über, geschieht mit ihm dasselbe. Er nimmt diesen Drehimpuls auf, und beschläunigt seine Drehgeschwindigkeit auf diese oben genannten unfassbaren Werte.

Damit wollen wir es erst mal mit den Neutronensternen und Pulsaren bewenden lassen, aber eines, das große Finale fehlt noch.

Das Finale

Jetzt, wo wir wissen, dass es Radioprogramm im Kosmos gibt, wollen wir uns das natürlich auch anhören. Ich habe hier mal einige Beispiele zusammenkopiert. …

Und zu guter Letzt muss ich ja nun noch das Rätsel kurz auflösen, wieso es sich bei Neutronensterne um kosmische Quarktaschen handelt.

Kosmische Quarktaschen

Protonen und Neutronen bestehen aus weiteren Teilchen, die man Quarks nennt. Jedes dieser Teilchen besteht aus drei Quarks. Es gibt Up-, Down- Top- Charm-Quarks und noch viele andere.

Lange wurde, und wird von vielen noch immer vermutet, dass im Inneren eines Neutronensternes die Neutronen in ihre Quarks zerfallen sind, am Rande jedoch nicht. In dem Fall wären Neutronensterne Quarktaschen im Universum, extrem runde sogar. Innen Quark und außen Neutronen-Teig.
Es gibt aber momentan etwas Uneinigkeit unter den Physiker. Manche wollen ohne Quark im Inneren von Neutronensterne auskommen, was ich persönlich schade fände, wenn sich das als richtig erweisen sollte, denn Quarktaschen sind läcker und machen sich im Universum einfach super.

Und was Station zehn betrifft, so gibt es dazu nicht viel anzukündigen. Ihr wisst, worum es gehen wird.

Die Reise zu den Schwarzen Löchern, Station 8 – Bombur


Meine lieben Mitlesenden,

unsere heutige Station beginnen wir mit einer Frage:

Kennt ihr Bombur?

„Ja, genau.“, mag mancher sich erinnern, „Das war doch einer der Zwerge aus dem kleinen Hobbit.“
Stimmt genau. Und dieser Zwerg hatte eine besondere Eigenschaft. Er wird als ungeheuer fett und schwer beschrieben. OK, Fett sind die Zwerge, um die es heute gehen wird nicht, aber unbeschreiblich schwer.

Wir erinnern uns, dass wir am Ende von Station sieben darüber sprachen, welch Schicksal unsere Sonne am Ende ihres Lebens, am Ende aller Kernfusion in ihrem Inneren nehmen wird. Sie, und damit die Mehrzahl aller Sterne, werden so enden. Sie werden zu weißen Zwergen. und diese bilden die vorletzte Etappe auf unserer Reise zu den schwarzen Löchern.

Was ist ein Weißer Zwerg

  • Ein Weißer Zwerg ist ein kleiner, sehr kompakter alter Stern. Er hat trotz seiner hohen Oberflächentemperatur nur eine sehr geringe Leuchtkraft, Der hohen Temperatur verdankt er seine weiße Farbe,
  • Die Tatsache, dass man diesen Objekten nur mit den besten Teleskopen bei kommt legt den Schluss nahe, dass es sich tatsächlich bei ihnen um sehr kleine aber schwere Objekte handeln muss.
  • Während Sterne, bei denen noch Wasserstoff zu Helium wird, Durchmesser, z. B. im Fall unserer Sonne, von 1,4 Mio Kilometer besitzen, beträgt der Durchmesser eines Weißen Zwerges mit 14000 bis 28.000 km nur 1 bis 2 Erddurchmesser.
  • Dennoch haben Weiße Zwerge die Masse eines Sterns. Sie bestehen im Normalfall aus einem Kern aus heißer entarteter Materie von extrem hoher Dichte, umgeben von einer dünnen, leuchtenden Photosphäre.
  • Weiße Zwerge sind nach dem Ende jeglicher Kernfusion das Endstadium der Entwicklung der meisten Sterne, deren nuklearer Energievorrat versiegt ist. Sie sind die heißen Kerne Roter Riesen, die übrig bleiben, wenn jene ihre äußere Hülle abstoßen. Voraussetzung dafür ist, dass die Restmasse unterhalb eines Schwellenwertes von 1,44 Sonnenmassen bleibt, der sogenannten Chandrasekhar-Grenze. Andernfalls entsteht nach einem Supernova-Ausbruch ein Neutronenstern oder (bei einer Kernmasse von mehr als 2½ Sonnenmassen) gar ein Schwarzes Loch.

Als kleiner Vorgriff auf die nächsten Stationen unserer Reise sei folgendes angemerkt.
Wie ein Stern endet, hängt immer von der Masse ab, die zu dem Zeitpunkt übrig ist, wenn in seinem Innern gar nichts mehr geht. Was er vorher war und auf die Waage brachte, spielt kaum eine Rolle.
Neutronensterne und Schwarze Löcher setzen relativ massive und massereiche stellare Vorgänger voraus mit mindestens acht Sonnenmassen, da die Sterne gegen Ende ihrer Existenz einen hohen Masseverlust erleiden. Daher erreicht die Kernmasse entsprechend selten die benötigten 1,44 Sonnenmassen, um ein anderes Objekt als einen Weißen Zwerg entstehen zu lassen. Weiße Zwerge sind somit deutlich häufiger anzutreffen, als jene Objekte, über welche wir noch sprechen müssen.

Ihre Entdeckung

Der zuerst entdeckte, aber nicht als solcher erkannte Weiße Zwerg war 40 Eridani im dreifach-Sternsystem 40 Eridani. Dieses Sternpaar wurde von William Herschel am 31. Januar 1783 entdeckt und erneut von Friedrich Georg Wilhelm Struve im Jahre 1825 sowie von Otto Wilhelm von Struve im Jahr 1851

Den dritten Partner, also den weißen Zwerg konnten diese Astronomen vermutlich mit ihren Teleskopen noch nicht sehen. Was sie aber sahen war, dass der „Tanz“ der beiden anderen sichtbar leuchtenden Sterne, den sie aufführten, von einem dritten unsichtbaren Partner beeinflusst werden musste. Die wellenartige torkelnde Bewegung ließ nur den Schluss zu, dass es sich hier um einen dunklen Begleiter mit ungefähr einer Sonnenmasse handeln müsse.

Damals hatten die Astronomen kein Problem mit dem Gedanken, dass es dunkle ‚Begleiter mit einer Sonnenmasse geben könnte. Heute wissen wir aber, dass sich eine Wasserstoff-Wolke mit der Masse einer Sonne nicht in Dunkelheit verbergen kann. Der Druck in ihrem Innern ist so hoch, dass das Wasserstoff-Brennen zu Helium einfach einsetzen muss. Und dieses geht nicht einher ohne dass dieses Objekt hell erstrahlt. Wenn es aber nun doch offensichtlich dunkle Objekte mit der Masse einer Sonne geben soll, dann müssen diese unter ganz anderen Bedingungen existieren und leben. In Betracht ziehen kann man natürlich auch, dass die Teleskope damals einfach zu lichtschwach waren, um ein eventuelles Leuchten dieses Objektes zu empfangen.

Im Jahre 1910 waren aber dann die Teleskope schon deutlich besser und empfindlicher.
In diesem Jahr entdeckten die Astronom*innen Henry Norris Russell, Edward Charles Pickering und Williamina Fleming, dass obgleich 40 Eridani B ein sonnennaher schwacher Stern ist, die üblicherweise Rote Zwergsonnen sind, jener offenbar eine Ausnahme bildet. Er leuchtet entgegen aller Erwartungen weiß und muss daher eine sehr hohe Oberflächentemperatur besitzen.

Der nächstgelegene Weiße Zwerg ist Sirius B, der winzige Begleiter des Sirius, der mit −1,5 Magnituden (Helligkeitsmaß für Sterne) den hellsten Stern am Nachthimmel darstellt.
Über die Helligkeitsmessung von Sternen schrieb ich in Im Dunkeln sieht man besser.
Den Sirius kennen wir vom Sternbild Hund her, nach welchem die Hundstage benannt sind.
Der 8,5 Lichtjahre entfernte, sehr heiße Sirius hat 2 Sonnenmassen und ist 22-mal heller als die Sonne. Sirius B hat zwar nur Erdgröße, aber besitzt 98 Prozent der Sonnenmasse und 2 Prozent ihrer Leuchtkraft. Er ist der am besten untersuchte Stern dieses Typs. Ein Teelöffel voll seiner Materie hätte eine Masse von über 5 Tonnen.
Entdeckt wurde er 1844 indirekt durch winzige Unregelmäßigkeiten in der Eigenbewegung des Sirius, aus denen Friedrich Bessel auf einen Doppelstern mit etwa 50 Jahren Umlaufzeit schloss.
Wir erinnern uns an Station zwei und Station drei, wo wir zunächst die Erde und dann andere Himmelskörper wogen. Es kreist nicht ein Körper nur um einen anderen, sondern beide umkreisen ihren gemeinsamen Schwerpunkt.

Teleskopisch konnte Sirius B erst 1862 nachgewiesen werden, weil er vom 10.000-mal helleren Hauptstern meistens völlig überstrahlt wird.
Dem Astronomen Alvan Graham Clark gelang die Entdeckung bei der Prüfung eines neuen, Objektivs. Wenn man durch ein neues Teleskop schaut, das man eventuell sogar selbst gebaut hat, und plötzlich ein Lichtpünktchen sieht, wo eigentlich keines sein sollte, dann muss man genau beobachten um auszuschließen, dass es kein Fehler des Instruments selbst ist. Erscheint das Pünktchen beispielsweise immer an der selben Stelle im teleskop, ist ein Fehler sehr wahrscheinlich. Bewegt es sich aber gegen den Himmelshintergrund, dann könnte man tatsächlich stolzer Entdecker etwas neuem sein. Dieser Astronom entdeckte nun, dass sein Lichtpünktchen, das sehr schwach leuchtet, genau dort hin passt, wo man durch Beobachtung von Sirius und durch Berechnungen den dunklen Begleiter vermuten würde, der offensichtlich doch nicht so ganz finster ist.

Weil sich Sirius B damals auf seiner Elliptischen Bahn zunehmend von Sirius A entfernte, konnte er bald auch von anderen Beobachtern wahrgenommen und bestätigt werden.

Im Jahre 1917 entdeckte Adriaan van Maanen den sogenannten Van Maanens Stern. Er ist ein isolierter Weißer Zwerg im Abstand von 13,9 Lichtjahren. Der teilt unser Sonne Schicksal Einsamkeit, denn die meisten Sterne kommen in Doppelstern-Systemen vor, in denen sich zwei Sterne um ihren gemeinsamen Schwerpunkt bewegen. Es kann durchaus sein, dass unsere Sonne ihr Geschwisterchen in der Galaxis verloren hat. Man sucht tatsächlich danach. Fände man einen Stern, der von seiner Zusammensetzung, seiner Größe und Masse und seiner chemischen Signatur der Sonne entspräche,dann wäre es tatsächlich möglich, dass das Schwesterchen gefunden wäre. Zusammen bringen könnte man die beiden aber leider nicht…

Diese drei Weißen Zwerge sind die drei zuerst entdeckten Weißen Zwerge und werden auch als die klassischen Weißen Zwerge bezeichnet.

Was wissen wir

Wie weiße Zwerge entstehen, haben wir ja in Station sieben schon vorweg genommen.

  • Dass ihre Materie entartet ist,
  • ein Teelöffel dieses Materials über fünf Tonnen wiegt,
  • ihre Atome bereits in Protonen und Elektronen zerfallen sind
  • Die Atomkerne schon sehr nahe zusammen gerückt sind,
  • und dass sie eine sehr heiße Oberfläche besitzen,

Wollte ich hier näher darauf eingehen, wie so ein Zwerglein in seinem Innern aufgebaut ist, dann müssten wir uns mit Kernphysik, Quantenmechanik und ganz intensiv mit der Relativitätstheorie von Albert Einstein beschäftigen.
Unter diesen gravitativen Kräften, die in so einem weißen Zwerg herrschen, sind die Verhältnisse nur noch mathematisch und kaum noch mit Worten ausdrückbar.

Die letzte Frage

Bleibt an dieser Stelle für den Moment nur noch die Frage, was denn nun aus so einem armen Zwerglein wird.
Er wird ganz langsam, wir sprechen hier von Milliarden von Jahren, abkühlen.

Da hört man doch immer, es wäre so kalt im All. von Minus 270 Grad oder drei Kelvin ist da die Rede. Da sollte so ein kleiner Körper doch rasch auskühlen, wie hier auf Erden der Pudding auf der Fensterbank im Winter.

Im All kann der Zwerg aber das meiste seiner Wärme an nichts abgeben, weil es nichts dort gibt. er verliert lediglich etwas seiner Temperatur über sein weißes Licht, das sich als elektromagnetische Welle durch das Vakuum bewegen kann. Unser Pudding gibt aber seine Wärme rasch an die Metallschüssel, an die Fensterbank und an die kalte Winterluft ab, die sich dadurch etwas aufheizt. Das alles kann der Zwerg nicht. Dennoch, auch der leuchtet nicht ewig. Er kühlt, wie schon gesagt in Äonen von Jahren aus. Sein Licht wird röter und röter, irgendwann ist es nur noch unsichtbares Infrarot und dann wird er dereinst als unsichtbarer schwarzer Zwerg durch das All vagabundieren. Wenn er Glück hat, wird er noch von etwas eingefangen, das er umkreisen darf, oder ein Schwarzes Loch zieht ihn rein, was aber sehr unwahrscheinlich ist.

Dieses nur am Rande. Es gibt ein Szenario mit Doppelsternsystemen, bei welchem ein weißer Zwerk unter bestimmten Bedingungen sein Leben nochmal verlängern kann, aber viel nützt ihm auch diese vorübergehende Verjüngung nicht. Irgendwann trifft es auch ihn, wie oben beschrieben.

Momentan ist das Universum noch zu jung, dass es schon ausgekühlte weiße Zwerge gibt. Die haben alle noch etwas Dampf drauf und sind noch recht heiß.

Ausblick

Wer aufmerksam gelesen hat, wird oben den kleinen Vorgriff bemerkt haben. Wir geben nämlich noch keine Ruhe, indem wir wissen, was mit sterbenden Sternen passiert, die ungefähr eine Sonnenmasse besitzen. Wir wollen mehr.
Zwischen den weißen Zwergen und den schwarzen Löchern gibt es noch etwas, dem wir uns auf Station 9 widmen werden. Was das ist, wurde hier auch schon kurz erwähnt…
Es wird sogar im Station neun was auf die Ohren geben.
Lasst euch überraschen.

Die Reise zu den Schwarzen Löchern, Station 7 – Die Herrscherin macht Druck im All


Seid herzlich gegrüßt,

Vorgeplänkel

Tja, wie das manchmal so ist. Diesen Artikel musste ich nochmal total überarbeiten, weil ich damit unzufrieden war. Ich hatte Wortfindungsstörungen und fand ihn auch inhaltlich zu trocken. Hoffentlich geht es euch, wie mir, und die überarbeitete Version gefällt euch besser.
Also los:

Heute geht es darum, was so passieren kann, wenn Materie von allen Seiten zusammengedrückt wird, wenn also Druck ausgeübt wird.
Wir haben ja schon in den vorigen Artikeln behandelt, dass die heimliche Herrscherin, die Gravitation durch die gegenseitige Anziehung die Himmelskörper, ob Planeten, Sterne, Gas- und Staubwolken und vieles andere, zusammenhält. Da wir zu den schwarzen Löchern wollen, werden wir uns heute mit Gaswolken und Sternen befassen, was der Druck in ihrem Inneren bewirkt, was an ihrem Lebensende geschieht und damit, was Druck mit normaler Materie, also mit Atomen und deren Bestandteilen so anrichten kann.

Der Anfang

Kurz nach dem Urknall, als das Universum entstand, gab es im Wesentlichen nur das Element Wasserstoff, einen kleinen Anteil Helium und etwas Lithium.
Das dem so war, verrät uns das Sternenlicht sehr alter bereits längst vergangener Sterne und gute Simulationen am Computer. Aus diesem Grund werden wir uns nachher, wenn es um Gaswolken geht, eine Wolke vorstellen, die im wesentlichen aus Wasserstoff besteht. Den Staub darin werden wir vernachlässigen. Somit werden wir heute auch nicht über die Entstehung von Planeten sprechen, die eigentlich immer gemeinsam mit ihren Sternen geboren werden.

Verdichtete Materie

Wir haben in vorigen Artikeln schon beschrieben, dass der Grund, dass ein Buch niemals durch die Tischplatte fällt, die Elektronenhülle der Tisch-Atome und die des Buches sind, die sich gegenseitig abstoßen.
Wir können bei festen und flüssigen Körpern die Elektronen quasi nicht in ihre Atomkerne hinein drücken.
Gase sind deshalb so kompressiebel (zusammendrückbar), weil ihre Atome oder Moleküle sich frei im Raum, also z. B. in einer Wolke bewegen. Ihre Bestandteile sind sehr viel weiter voneinander entfernt, als bei festen oder flüssigen Substanzen.
Pralle Luftballone oder Bälle lassen sich gut zusammendrücken, bis das Material ihrer Hüllen dem Druck nicht mehr stand hält und sie platzen. Wenn man Gase presst, dann entsteht Wärme, denn die Bestandteile kommen näher zueinander, so dass, befindet man sich beispielsweise in einem aufgeheizten Raum, man mit mehr von ihnen in Kontakt kommt und ihre Energie als Wärme spürt. Im Weltall gibt es sehr viele sehr heiße Gasatome. Man verbrennt dort aber dennoch nicht, weil die Gase dort so dünn verteilt sind, dass man nur selten mal mit einem einzelnen heißen Gasatom in Berührung kommt. Wer schon mal einen Fahrradreifen oder ähnliches aufgepumpt hat, wird bemerkt haben, dass die Pumpdüse dabei warm wird. Das Gegenteil passiert, wenn ein Gas mit einem Schlag freigesetzt wird, z. B. wenn man es aus einer Gasflasche entlässt. Dann entsteht Kälte, weil die entweichenden Gasteilchen Wärmeenergie mit nehmen und auseinander streben.
Die Atome der Gase bleiben aber noch völlig unbeschädigt, wenn man das Gas unter Druck setzt. Sie rücken nur etwas näher zueinander.

Gaswolken

Findet sich Materie im All, z. B. in Form einer Gaswolke zusammen, so beginnt die Gravitation ihre Arbeit. Eine ungestörte Gaswolke könnte eigentlich für immer und ewig als solche existieren und in einem Gleichgewicht zwischen dem Gravitationsdruck, der zum Mittelpunkt hin wirkt, und dem Druck, den ihr die elektromagnetische Kraft der Elektronen der zusammenrückenden Gas-Atome oder Moleküle entgegensetzt, verharren.
Nun besteht aber das Universum aus vielen Himmelskörpern, die alle eine Masse haben. Manchmal explodiert vielleicht ein Stern in der Nähe unserer Gaswolke und erzeugt in ihr eine Schockwelle, oder ein anderer massereicher Himmelskörper kommt vorbei und verändert mit dieser die Gasverteilung in der Wolke.
Es gibt dann Orte in der Wolke, an welchen das Gas etwas dichter ist, also mehr Moleküle pro $cm^3$, und andere, bei
denen es sich umgekehrt, also weniger dicht verhält.
An solchen Orten höherer Dichte wittert die Herrscherin ihre Chance. Sie wird alles daran setzen, diese Orte noch dichter zu bekommen, indem sie versucht, noch mehr Material dort hin anzuziehen.
Das bedeutet dass die Dichte an diesem Ort im Gegensatz zu seiner Umgebung immer größer wird. Es entsteht quasi eine Unterwolke in der Wolke, ein Gastropfen oder eine Gaskugel, die um so schwerer wird, desto mehr Material sie aus ihrer Umgebung an sich ziehen kann. Dieses wiederum bewirkt, dass der Druck im Inneren solch eines Gasballs immer weiter ansteigt, desto größer und massereicher er wird. und das sorgt dafür, dass die Temperatur im Innern stetig zunimmt.

Gasplaneten und Protosterne

Die Abstoßungskraft zwischen den Gasteilchen, welche durch ihre Elektronenhüllen ausgeübt wird, ist nicht unendlich stark. Das bedeutet, dass die heimliche Herrscherin, obwohl weit abgeschlagen als schwächste Kraft, den Gasatomen durchaus etwas anhaben kann, wenn nur genügend Material vorhanden ist, das Druck durch Masse ausüben kann. eine Temperatur von vielen tausend Grad im inneren unserer Wasserstoff-Kugel bewirkt, dass die Atome so stark und oft miteinander kollidieren, dass sie sich gegenseitig manchmal Elektronen aus ihren Hüllen schlagen. Wasserstoff-Moleküle werden also zu Wasserstoff-Atomen zerrissen und diese verlieren sogar noch ihre Elektronen. Das hat zur Folge, dass das Gemisch jetzt aus positiv geladenen Protonen und negativ geladenen Elektronen besteht. Freie Neutronen gibt es dort nicht, weil Wasserstoff keine besitzt. Diese Proton-Elektronen-Suppe nennt man ein Plasma. Das ist neben fest, flüssig und gasförmig der vierte Aggregat-Zustand. Fast 100 % der Materie im Universum befindet sich in diesem Zustand. Ich erwähnte in einem der vorigen Artikel den Gasplaneten Jupiter, der fast nur aus Wasserstoff, etwas Helium und Spuren kosmischen Staubes besteht. Da er 90 % der Masse aller sich außer der Sonne in unserem Sonnensystem befindlichen Körper in sich vereint, darf man in seinem Inneren, obwohl er im wesentlichen aus Gas besteht, eine höhere Temperatur erwarten, als beispielsweise in unserer Erde. 1973 und 1974 flogen zwei amerikanische Raumsonden, Pionier 10 und Pionier 11 in geringem Abstand an Jupiter vorbei. Aus den Messdaten konnte man tatsächlich die Kerntemperatur des Gasriesen abschätzen. Die Wolkenschicht des Planeten ist rund 71.000 Kilometer von seinem Zentrum entfernt. Dort herrscht eine Temperatur von etwa -175 Grad Celsius. In einer Tiefe von 2900 km (4 % des Planetenradius) beträgt die Temperatur bereits etwa 5000 Grad. Das ist etwa so viel, wie die Kerntemperatur unserer Erde oder die Oberflächentemperatur auf unserer Sonne. 24.000 Kilometer unter der Wolkenobergrenze, nach einem Drittel des Weges zum Planetenzentrum würde das Thermometer bereits stramme 11.000 Grad anzeigen. Im Mittelpunkt des Jupiter wird eine Temperatur um 30.000 Grad vermutet, mehr als fünf mal so viel, als auf unserer Sonnenoberfläche.
Auch auf unserer Erde kann man derlei Druckphänomene beobachten.
Der Kern unserer Erde besteht im wesentlichen aus Eisen und Nickel. Der Druck im Inneren der Erde ist so hoch, dass es tatsächlich gelingt, die Elektronen etwas in Richtung ihrer Atomkerne zu drücken. Die Atome sind dort also bereits etwas kleiner in ihrem Durchmesser.

Wir erinnern uns an den Vergleich des Fußballstadions, auf dessen Rängen sich die Elektronen tummeln und in dessen Mitte der Atomkern schwebt, der die Größe einer Schrotkugel besitzt. Im Inneren der Erde oder auch in Gasplaneten ist das Fußballstadion dann etwas kleiner. Vielleicht nur noch eine große Sporthalle, wobei die Größe des Atomkerns unverändert bleibt.
Im Zentrum, also im Eisenkern der Erde beträgt die Dichte ungefähr 12 $g/cm^3$, obwohl Eisen normalerweise eine Dichte von 7 $\frac{g}{cm^3}$ besitzt.

Der vierte Zustand

Bei diesen Temperaturen von 30.000 Grad im Jupiterkern nimmt das Wasserstoffgas den erwähnten vierten Aggregat-Zustand an und wird zu einem Plasma. Das Gas wird in diesem Zustand leitfähig für Ströme, und wo geladene Teilchen sich bewegen, sind auch Magnetfelder nicht weit.

Was in unseren Neon-Röhren auf der Erde leuchtet, ist durch strom zu Plasma gewordenes Neon-Gas.
Dass ein Plasma elektrisch leitend ist, kann man mit brennenden Gasflammen auf der Erde testen, indem man die Flamme durch einen unterbrochenen Stromkreis schickt. Die Flamme wird ihn schließen und das Messgerät wird Stromfluss anzeigen.
Weil der Wasserstoff im Plasma-Zustand leitfähig ist, nennt man ihn dann metallischen Wasserstoff.
Plasma ist schon alleine so interessant und spannend, dass ich mehr als einen Artikel darüber schreiben könnte, aber heute nicht.
Was passiert aber nun, wenn der Himmelskörper, unsere Wasserstoffkugel noch genügend Material außen herum findet, um noch mehr anzuwachsen, dann geht es ja unseren sowieso schon kaputten Atomen noch schlechter…

Sterne

Wenn der Druck in unserem Gasball so hoch geworden ist, dass die Temperatur in seinem Innern etwa 13 Mio Grad übersteigt, dann kommen sich die Protonen der Wasserstoffkerne so nahe, dass die starke und die schwache Kernkraft, die nur im Innern von Atomkernen wirken, dominieren. Sie und noch weitere kernphysikalische und Effekte der Quantendynamik sorgen nun dafür, dass vier Wasserstoffkerne zu einem Kern des Elementes Helium verschmelzen können.
Die Kernverschmelzung von Wasserstoff zu Helium, ist der Prozess, aus welchem wir unsere Sonnenwärme, ihr Licht etc. empfangen.
Vier Wasserstoff-Atome bestehend aus jeweils einem Proton im Kern und einem das Proton “umkreisenden” Elektron werden zu einem Helium-Aton mit zwei Protonen und zwei Neutronen im Kern, und zwei Elektronen, die diesen “umkreisen”.
Das gewordene Helium-Atom wiegt etwas weniger, als vier Wasserstoffatome zusammen, ein wenig Masse ist somit scheinbar verschwunden, aber in der Physik verpufft nicht einfach etwas im nichts.
Diese kleine Massendifferenz wird als Energie in Form von Neutrinos und dem, was wir letztlich als Sonnenwärme empfangen, davon getragen. Hier begegnet uns die Tatsache von Einstein, dass Energie und Masse ineinander umgewandelt werden können. Die Formel dazu ist E=$m c^2$.
Alle Sterne funktionieren auf die selbe Weise. Deshalb ist für Astronomen häufig der Rest der chemischen Elemente gar nicht so wichtig. Sie sagen, es gibt Wasserstoff und Helium, und die anderen Elemente sind schlicht und ergreifend Metalle.
Ein Astronom soll einmal gesagt haben, dass ein Stern einfacher funktioniere, als eine Eintagsfliege. Damit hat er vermutlich sogar recht.
Das ist aber genau die Genialität des Aufbaus und der Funktionsweise von Sternen. Die Robustheit dieses Systems lässt sie so alt werden.

Der Fluch von E = m $c^2$

Welch schreckliche Auswirkungen die Umwandlung von Masse zu Energie haben kann, machen wir uns an der furchtbaren Wirkung von Atombomben klar. Dort passiert zwar das umgekehrte. Atomkerne werden in ihnen nicht fusioniert, also verschmolzen, sondern gespalten. Nichts desto Trotz passiert auch in diesem Prozess, dass Masse in Energie umgewandelt wird, die dann freigesetzt ihre verhehrende und zerstörerische Wirkung entfalten kann. In der Atombombe von Hiroschima waren ungefähr 60 Kilo spaltbaren Urans enthalten. Es wurde aber nur ungefähr ein Gramm davon tatsächlich in Energie umgewandelt.
Uran ist ein sehr schweres und radioaktives Metall. Seine Dichte beträgt ungefähr 19 g /$cm^3$. Es ist also fast drei mal so schwer als Eisen und 19 mal so schwer als Wasser. Das bedeutet, dass ein Gramm Uran ungefähr das Volumen eines Fünftels eines Kubikzentimeters einnimmt. Das ist ungefähr so viel, wie ein Stecknadelkopf. Und dieses kleine Bröckchen kann solch furchtbare Energie entfesseln, um eine ganze Stadt zu zerstören.
Einfach unfassbar.
Ob der ganzen Gefahren der Kernspaltung, z. B. Unfällen in Kernkraftwerken und wohin mit dem radioaktiven Apfall, versucht die Menschheit seit mehr als fünfzig Jahren das Sonnenfeuer, die Kernverschmelzung hier auf Erden zu zünden. Diese Energiegewinnung gilt als sauberer und soll ein für alle mal den Energiehunger der Menschheit stillen. Seit fünfzig Jahren heißt es, dass wir in fünfzig Jahren so weit wären. Bisher gibt es aber nur kleine Versuchsreaktoren, wie Wendelstein in Greifswald, der sich in Südfrankreich im Bau befindende Iter und andere die in Planung sind. Mag sein, dass der Menschheit es eines Tages gelingen wird, ein kleines Sonnenfeuer hier auf Erden zu entfachen. Ob das dann hält, wass man sich derzeit erhofft, muss sich weisen.

Aber zurück zu unseren Sternen.

nichts ist für die Ewigkeit – Das Ende

Unsere Sonne ist ein relativ kleiner Stern, weshalb sie so sparsam mit ihrem Wasserstoff haushaltet, dass sie bereits seit fünf Milliarden Jahren Energie für unser Sonnensystem liefert und dies auch noch weitere fünf Milliarden Jahre tun wird. Riesensterne, die ein vielfaches an Sonnenmassen in sich vereinen, leben eventuell nur wenige Millionen Jahre, weil die Kernverschmelzung in ihrem Innern heftiger abläuft und sie ihren Wasserstoff somit schneller verbrauchen und zu Helium verbacken.
Nun stellt sich die Frage:

Was passiert mit unserer Sonne, wenn sie ihren Wasserstoff im Kern zu Helium verbacken hat.

Da die sehr energiereiche Verschmelzung von Wasserstoff nun endet, fällt der Motor in ihrem Inneren weg, der sich erfolgreich gegen die Gravitation durchsetzen konnte, um ein weiteres Zusammenstürzen des Sternes zu verhindern. Dieses setzt nun ein und die Herrscherin hat zunächst wieder die Oberhand. Das geht so lange, bis die Temperatur in ihrem Innern einen weiteren kritischen Wert überschritten hat. an diesem Punkt beginnt das Helium-Brennen. Über viele Kernprozesse hinweg entstehen nun Sauerstoff, Kohlenstoff, Stickstoff und weitere schwerere Elemente. Das Helium-Brennen liefert so viel Energie, dass der sterbende Stern sich derart gegen die Gravitation stemmen kann, dass er sich aufbläht. Das wird mit unserer Sonne so passieren. Sie wird sich im Laufe vieler Millionen von Jahren so weit aufblähen, dass auf jeden Fall Merkur und Venus und vielleicht sogar die Erdbahn sich in ihrem Inneren befinden werden. Lange vorher wird aber schon kein Leben auf der Erde mehr möglich sein, weil die Erde aufglühen wird. Und diese Erwärmung, das sei an dieser Stelle ausdrücklich gesagt, hat nichts mit der Erwärmung zu tun, die wir gerade im von Menschen gemachten Klimawandel erfahren. Manchmal wird das behauptet, aber noch ist die Sonne nicht so weit. Sie hat damit noch nicht angefangen, weil sie in ihrem Kern noch ungefähr 90 % ihres Wasserstoff enthält. Erst etwa 10 % des Wasserstoffs sind also zu Helium geworden.
Wenn euch also jemand sagt, der Klimawandel käme von der Sonne, dann ist das schlicht und ergreifend eine Falschaussage, die euch jeder andere bestätigen wird, der sich etwas mit Sonnenphysik und so sachen auskennt.
Auf jeden Fall ist sie in diesem aufgeblähten Zustand zu einem roten Riesen geworden. Da aus dem inneren Kern zwar mehr Energie erzeugt wird, die Sonne aber durch ihre Aufblähung eine viel größere Oberfläche besitzt, wird die Energie über diese abgestrahlt. Das führt dazu, dass ob der Größe der Sonne weniger Energie pro Flächeneinheit abgestrahlt wird, als jetzt, wo die Aufblähung noch nicht begonnen hat. Deshalb leuchtet sie im kühleren langwelligeren roten Bereich und nicht, wie jetzt im weißen Licht.

Irgendwann ist dann auch das Helium-Brennen und die Verschmelzung schwererer Elemente beendet. Das schwerste Element, das in unserer Sonne entstehen kann, ist Eisen. Will man Eisen zu schwereren Elementen verschmelzen, z. B. zu Gold, dann muss man Energie hinzu fügen und bekommt keine heraus. Deshalb entstehen diese Elemente in anderen Prozessen, die uns vielleicht auf unseren weiteren Stationen noch begegnen werden.
Auf jeden Fall kontrahiert die Sonne nun wieder, weil es außer den Kernkräften und der elektromagnetischen Kraft nichts mehr gibt, das der Gravitation etwas entgegen zu setzen hätte. Sie schrumpft also wieder.
Auf diesen Moment hat die heimliche Herrscherin Milliarden von jahren gewartet. Sie hat geduldig Druck gemacht, bis alle Energie aus dem Kern erloschen war.
Und diesmal schrumpft sie über ihre ursprüngliche Größe hinaus bis sie nur noch einen Durchmesser von wenigen Kilometern hat. Dabei erhitzt sich ihre Oberfläche und Reste von Wasserstoff können noch verschmelzen.
Sie wird einen Teil dieser Wasserstoffhülle als planetaren Nebel absprengen. Bis zu 25 % ihrer ursprünglichen Masse kann so davon getragen werden. Natürlich hat sie während ihres langen Lebens auch stetig Masse durch die Verschmelzung von Elementen und die davon getragene Energie, aber auch durch den aus geladenen Teilchen bestehenden Sonnenwind verloren, aber das fällt bei ihrer riesigen Masse von $1,989 \times 10^30$ kg (1,989 mal 10 hoch 30 kg) selbst über so einen langen Zeitraum hinweg, nicht ins Gewicht.
Das ist kaum zu glauben, wenn man bedenkt, dass in ihrem Inneren in jeder Sekunde 597 Millionen Tonnen Wasserstoff zu 593 Millionen Tonnen helium verschmolzen werden. Die verbleibenden vier Millionen Tonnen werden zur Energie, die die Sonne stetig ins Weltall bläst und die unser Leben ermöglicht. Man sieht auch hier wieder, wieviel Energie in Masse steckt.
Was von der Sonne dann noch übrig ist, nennt man einen weißen Zwerg. Weiß, weil er so hell leuchtet und so heiß ist, und Zwerg, weil er so klein geschrumpft ist. Dabei ist er so dicht, dass ein Teelöffel seines Materials viele Tonnen wiegen würde. Die Atome sind natürlich längst schon in ihre Elektronen und Protonen zu Plasma zerfallen und dadurch können sich die Kerne so nahe kommen, dass sich solch schwere entartete Materie bilden kann.
Was ein weißer Zwerg ist und noch weitere Merkwürdigkeiten werden wir in Station acht auf unserer Reise kennen lernen.
Jetzt lassen wir die Sonne erst mal in Ruhe vor sich hin fusionieren und meine Gedanken dann auch, dass daraus Station acht wachsen kann.

Die ringförmige Sonnenfinsternis vom 10.06.2021


Liebe Mitlesenden

aus aktuellem Anlass unterbrechen wir unsere Serie zu den Schwarzen Löchern für einen Moment.
Morgen, 10.06.2021 findet eine ringförmige Sonnenfinsternis statt, die in Deutschland mit geeigneter Ausrüstung in den Mittagsstunden als partielle Sonnenfinsternis zu sehen sein wird, wenn das Wetter mitspielt.

Schon viel habe ich über Sonnenfinsternisse geschrieben und festgestellt, dass ich auf diesem Blog in keinem Artikel mal richtig erklärt habe, wie die unterschiedlichen Spielarten eigentlich funktionieren.
Das hole ich jetzt nach, indem ich Texte recycle, die ich zu anderen Sonnenfinsternissen schrieb, als mein Blog nur eine Mailingliste war.

Wie funktionieren Sonnenfinsternisse

Beginnen wir also am Anfang und erklären erst mal generell, wie so eine Finsternis überhaupt entsteht.

  1. Eine Sonnenfinsternis kann nur bei Neumond stattfinden. Es ist verrückt, aber Neumond ist, wenn der Mond direkt zwischen Erde und Sonne steht. Man sollte meinen, dass er dann doch gleißend hell von ihr beschienen wird und gut sichtbar sein sollte. Tja, genau das ist das Problem. Unser Mutterstern überstrahlt den Mond. Er ist so klein, dass wir ihn so in dieser Position nicht sehen können.
  2. Vollmond ist immer dann, wenn der Mond auf der anderen Seite der Erde ist als die Sonne.
    Berechtig gefragt ist, wieso das dann keine Mondfinsternis ist. Anders herum könnte man auch fragen, wieso nicht jeder Neumond zu einer Sonnenfinsternis führt.
  3. Die Mondbahn um die Erde verläuft nicht parallel zum Äquator und leider auch nicht parallel zur Ekliptik, der Bahn, auf der alle Körper des Sonnensystems sich bewegen.
    Der Äquator ist um etwa 23 Grad gegen unsere Ekliptik geneigt. Diesem Winkel verdanken wir unsere Jahreszeiten.
    Die Mondbahn ist um etwa 5 Grad gegen die Ekliptik geneigt. Noch schlimmer. Dieser quasi gekippte Teller dreht sich noch um eine gewisse Achse. Das soll aber hier mal keine Rolle spielen.
    Es kommt also vor, dass sich unser Mond manchmal etwas unterhalb und manchmal etwas oberhalt des Tellers, der Ekliptik bewegt. Das bewirkt, dass er in diesem Fall nicht ganz in den Erdschatten gerät, wenn er sich auf der anderen Seite der erde, als die Sonne befindet. Aus diesem Grund wird er dann auch von der Sonne beleuchtet und wir nehmen den Vollmond wahr.
  4. Finsternisse können immer nur dann entstehen, wenn sich Neumond oder Vollmond auf dem Schnittpunkt der Mondbahn mit der Ekliptik befinden. Diese Punkte nennt man Knotenpunkte. Sticht der Mond quasi von unten her durch die Ekliptik, so sprechen Astronomen von einem aufsteigenden, in andern Fall von einem absteigenden Mond.
    Neben der gekippten Perspektive des Äquators zur Mondbahn ist auch diese Tatsache mit dafür verantwortlich, dass die Mondsichel manchmal eher stehend, oder liegend, fast als Schiffchen, wahrgenommen wird.

Spielarten von Finsternissen

Nun kommen wir dazu, welche verschiedenen Arten von Sonnenfinsternissen es gibt.

  1. Je nach Sonnenstand, Erdenstand und Mondstand ist der Mond perspektivisch ungefähr so groß, wie wir auch die Sonnenscheibe wahrnehmen. Die Sonne ist zwar unvergleichlich viel größer, als der Mond, aber dafür ist sie auch viel weiter von uns weg, 150 Mio Kilometer, wo hingegen der Mond grob nur 380.000 Kilometer von der Erde entfernt ist.
    Schafft es die Mondscheibe, die Sonne zu verdecken, spricht man von einer totalen Sonnenfinsternis. Die gleißend helle Sonne wird vom schwarzen Mond bedeckt. Nun tritt die wunderbare schwach leuchtende Korona hervor, Blüten schließen ihre Kelche, Vögel stellen ihren Gesang ein, bzw. stimmen ihr Morgenlied an, Nachtluft scheint zu wehen
    und Protuberanzen am Rand der Mondscheibe werden sichtbar. So ein Spektakel kann niemals länger als 8 Minuten dauern, weil die gegenseitige Drehung der Körper, deren Abstände zueinander und deren Größenverhältnisse bezüglich des Schattenwurfs nicht mehr zulassen.

    Die Corona kann man bei unverdeckter Sonne nur mit speziellen Instrumenten erblicken, weil sie vom Licht der Sonne überstrahlt wird. Dieser Lichtkranz entsteht durch Plasma-Ballen, die in den Magnetfeldern der Sonne hängen. Wie genau, wäre ein extra Artikel wert.

  2. Die Erde bewegt sich elliptisch um die Sonne. Das bedeutet, dass sie im Jahreslauf mal der Sonne etwas näher (149 Mio km) und mal etwas weiter (152 Mio km) steht.
    Somit erscheint sie uns leicht größer bei nahem Abstand und etwas kleiner bei fernem Abstand.
    Der Mond tut das ebenso. Er bewegt sich elliptisch um die Erde. Auch er erscheint uns bei größerer Entfernung etwas kleiner und bei Erdnähe etwas größer.
    Nun überlegen wir uns die Kombination dieser Tatsachen.
    Ist die Sonne eher fern von uns, also kleiner, und der Mond eher nahe bei uns, also größer, kann er ganz wunderbar die Sonnenscheibe abdecken. Eine totale Sonnenfinsternis findet statt.
    Ist die Sonne erdnah und der Mond erdfern, vermag der perspektivisch kleinere Mond es nicht, die ganze Sonnenscheibe zu verdecken. Er erzeugt lediglich ein Loch in der Sonnenscheibe. Eine ringförmige Finsternis ist entstanden.
  3. Ich schrieb oben über die Tatsache mit der leicht gekippten Mondbahn. So kommt es vor, dass der Mond etwas oberhalb oder unterhalb der Sonne steht. Auch hier vermag er nicht, die ganze Scheibe abzudecken. Er beißt nur quasi ein Stück ab, wie man das ungefähr vom Logo des Apfels her kennt. Das ist dann eine partielle Finsternis. Und so eine dürfen wir am 10.06. erwarten.

Jede Sonnenfinsternis beginnt und endet als partielle Finsterniss. Ob sie dann totalitär oder ringförmig im Kern wird, hängt, wie beschrieben von den Abständen, Erde, Sonne Mond, ab.
Kurz vor der totalen Bedeckung bei einer totalen Finsternis tritt ein Phänomen auf, das man Perlenkette nennt. Der Mond als Scheibe gedacht ist etwas leicht ausgefranst, weil er ja auch Berge und Täler hat und nicht Rund, wie ein Kreis ist.
Das bedeutet, dass zwischen den Bergen am Rand der Mondscheibe kurz vor der totalen Bedeckung der Sonne perlenartig noch die Sonne durchscheinen kann, bis sich dann der ganze Mond davor schiebt.

Wo die Finsternisse Stattfinden hängt vom Jahreslauf und der Kipprichtung der Erdachse und dem Zeitpunkt, bei dem Neumond beginnt ab. Das ist ohne Simulation kaum zu erklären.

Auch ich habe viele Jahre nicht wirklich verstanden, wieso Finsternisse so verlaufen, wie sie es eben tun.
Sie verlaufen in der Regel von West nach Ost. Lange dachte ich, es wäre umgekehrt. Man kann das nur verstehen, wenn man sich mathematisch die Geschwindigkeiten von Erde und Mond betrachtet. Ich hänge diese Herleitung als Anhang ganz unten für interessierte Mathe-Nerds hier dran.

Finstere Geschichten

Nun waren die Astronomen stets daran interessiert, vorher zu wissen, wann eine Finsternis ins Haus steht. Wurden sie doch häufig mit Unglück und Verderben in Verbindung gebracht. In alter Zeit wurden die beiden chinesischen Hofastronomen, Hi und Ho, geköpft, weil sie vergaßen, eine Finsternis vorauszusagen. Somit konnten die Menschen nicht rechtzeitig mit Trommeln und Geschrei den Himmelsdrachen vertreiben, der von Zeit zu Zeit die Sonne zu verschlucken, bzw. sie mit seinem Schwanz einzufangen versuchte.
Dass die Sonne wenige Minuten später wieder voll am Himmel stand, half den beiden leider auch nicht mehr.

Geschichten werden um so besser, desto öfter sie erzählt werden. Aus diesem Grunde sind in der Bibel beschriebene Finsternisse, z. B. beim Propheten Amos dann plötzlich stundenlang. Auch zeitlich passen die Beschreibungen nicht immer zu den tatsächlich stattgefundenen Finsternissen. Oft werden sie mit der Zeit günstig hin zu einer Regierungszeit eines bestimmten Imperators oder Königs verschoben, oder mit einem Unglück, z. B. einer Epidemie oder einem Krieg in Verbindung gebracht.

Ein Krieg zwischen den beiden Völkern der Meder und Lüder wurde durch die Sonnenfinsternis vom 28. Mai 585 v.Chr. angeblich beendet, und zwar aus Angst, die Götter zürnten ihnen, da die Sonnenfinsternis direkt in das Kampfgetümmel fiel.

Nicht zuletzt fanden Finsternisse sogar in die Literatur hinein. Dazu darf ich euch meinen Artikel „Finsternisse in der Literatur“ wärmstens empfehlen. Ihr glaubt ja gar nicht, welchen Autoren ihr dort begegnen werdet. Außerdem findet ihr dort die wohl schönste und eindrucksvollste Beschreibung einer Sonnenfinsternis, die wahrscheinlich je im deutschsprachigen Raum niedergeschrieben wurde.

Finsternisse können letztlich auch Lebensretter sein. Dazu empfehle ich meinen Artikel „Eine Mondfinsternis als Lebensretterin“.

Wann geschehen sie und wieviele?

Tatsächlich geschehen Finsternisse nicht einfach zufällig. Die Astronomen fanden mehr als eine Regelmäßigkeit bei der Durchsicht alter historischer Finsternisse.
Eine heute ganz verbreitete Regelmäßigkeit ist der Saros-Zyklus.
Betrachtet man eine Sonnen- oder Mondfinsternis, so sagt dieser Zyklus eine weitere Finsternis in 18 Jahren und 11 Tagen voraus. Es gibt natürlich öfter welche, denn verschiedene Zyklen laufen parallel und gleichzeitig ab. Es gibt Jahre mit keiner und maximal Jahre mit bis zu fünf Finsternissen, wobei in diesem Falle nicht alles Sonnenfinsternisse oder Mondfinsternisse sein können. Außerdem ist auch nicht jede Reihenfolge, wie Sonnen- und Mondfinsternisse innerhalb eines Jahres aufeinander folgen, möglich.
Wie funktioniert dieser Saros-Zyklus?

Hierfür müssen wir erst einmal definieren, was ein Monat überhaupt ist.

  • Die älteste Definition eines Monat ist die Zeitspanne zwischen einem und dem darauf folgenden Neumond. Das sind grob vier Wochen. Diesen Mond nennt man den synodischen Monat.
  • Eine weitere Definition erhält man, indem man den Umlauf des Mondes vor dem Sternenhintergrund betrachtet. Man nimmt sich einen Stern und definiert den Monat als die Zeit, bis der Mond wieder auf den Stern zeigt. Diesen Monat nennt man den Siderischen Monat. Er ist zeitlich etwas unterschiedlich zu unserem gewohnten Synodischen Monat.
  • Eine dritte Definition hängt mit der gekippten Mondbahn zur Ekliptik zusammen.
    Die Knotenpunkte, Schnittpunkte der Mondbahn mit der Ekliptik, haben wir schon erwähnt.
    Durchsticht der Mond von unten her kommend an einem Knotenpunkt die Ekliptik, spricht man von einem aufsteigenden Mond, denn er bewegt sich jetzt etwas oberhalb der Erdbahn, bis er am anderen Knotenpunkt die Ekliptik wieder durchsticht, um seine Bahn unterhalb der Erdbahn bis zum anderen Knotenpunkt zu vollenden.
    In Anlehnung an obige Geschichte mit dem Drachen, nennt man diesen Umlauf den Drakonitischen Monat.

Wer aufmerksam gelesen hat, dem fällt sofort ein, dass ich vom Zusammenhang der Finsternisse mit den Knotenpunkten sprach. Das riecht doch förmlich danach, dass man den Drakonitischen Monat mit in die Voraussage von Finsternissen einbeziehen muss.
Außerdem sprach ich davon, dass Sonnenfinsternisse nur bei Neumond und Mondfinsternisse nur bei Vollmond stattfinden. Dieses wiederum schmeckt nach Synodischem Monat.
Wenn beides gegeben ist, sowohl Neumond, als auch Mond auf dem Knotenpunkt, dann findet eine Sf statt.
Das gleiche gilt auch für gleichzeitigen Vollmond und Mond auf Knotenpunkt istgleich Mondfinsternis.

Nehmen wir nun als Startpunkt eine beliebige Sonnenfinsternis und lassen wir den Mond seine Bahn ziehen. Drakonitischer Monat und Synodischer Monat sind nicht gleich lang. Das bedeutet, dass der eine immer etwas früher zu Ende geht, als der andere. Diese Lücke wird zunächst immer größer, bis sie dann von hinten her gesehen wieder kleiner wird und beide Monatsanfänge wieder einmal zusammenfallen.
Wäre der eine Monat genau doppelt so lange, als der andere, würde dies alle zwei Monate geschehen. So kann man sich alle möglichen Zahlenverhältnisse 1/2, 1/4, 3/4 etc. vorstellen.
So einfach macht es uns die Natur nicht. Der Längenunterschied ist ein ganz unschöner Bruch mit vielen Nachkommastellen.
Es müssen 12 * 18 Monate und 11 Tage vergehen, bis wieder beide zu einer Sonnenfinsternis nötigen Bedingungen zusammentreffen.
Alle anderen Finsternisse dazwischen gehören nicht zu unserem beobachteten Zyklus.

Finsternisse als Klang

Wann Sonnenfinsternisse auftreten und wann es sich um normale Neumonde handelt, kann man sich akustisch vielleicht so vorstellen:

Jeder weiß, dass Kirchenglocken sehr chaotisch und unregelmäßig durcheinander klingen. Das liegt daran, dass die großen Glocken langsamer in ihrem Turm schwingen, als das kleine Betzeit-Glöckchen, das ganz aufgeregt auch noch mitbimmeln darf.
Manchmal hört man auch, dass zwei Glocken ab und zu gleichzeitig erklingen, um dann wieder auseinander zu driften.
Im Grunde genommen ist das genau, wie mit den unterschiedlichen Monatslängen, die mehr und mehr auseinander driften, um irgendwann mal wieder für eine Finsternis zusammen zu kommen, gemeinsam zu erklingen, Wer noch die alten Wecker mit Federwerk kennt, konnte das auch erleben.
Ich war stets fasziniert, wie die beiden Wecker meiner Eltern gegeneinander tickten, wie der Abstand zwischen ihnen immer größer wurde, dann wieder kleiner und schließlich hatten die Wecker immer wieder mal ein oder zwei aufeinander folgende Ticks gemeinsam, um sich dann wieder voneinander zu entfernen.

Was passiert also morgen am Himmel über Deutschland

Am 10. Juni 2021 findet eine Sonnenfinsternis statt, die auch aus Deutschland zu sehen ist. Allerdings kann man hierzulande nicht die spektakuläre ringförmige Sonnenfinsternis sehen, die hoch oben im Norden am Himmel bewundert werden kann. Im Gegenteil. Wer nicht weiß, dass gerade eine Sonnenfinsternis (Sofi) stattfindet, wird mit bloßem Auge nichts bemerken.
Doch mit einer geeigneten Ausrüstung kann man das Himmels-Phänomen beobachten und genießen. Ohne bitte nicht versuchen. Das kann zur Erblindung führen.

Die Sonnenfinsternis kann am 10. Juni 2021 hauptsächlich in der nördlichen Polarregion beobachtet werden. In Teilen Kanadas, Grönlands und über dem Nordpol ist die ringförmige Finsternis zu sehen, auch Teile Russlands liegen in der Zone der ringförmigen Sonnenfinsternis. Je weiter südlich man sich beim Blick zum Himmel befindet, desto geringer wird die Bedeckung der Sonne. In Deutschland kann man – ganz im Norden, auf der Insel Sylt – maximal eine Sonnenbedeckung von 21,3 Prozent sehen, bereits in München ist der Prozentsatz der Bedeckung nur noch einstellig (6,3 Prozent).
Hier kommt ein kleiner Fahrplan, was wann zu sehen sein wird.

Ort Bedeckung Zeit Maximale Bedeckung
List (auf Sylt) 21,3 Prozent 11.25-13.43 Uhr 12.33 Uhr
Hamburg 17,3 Prozent 11.28-13.41 Uhr 12.33 Uhr
Berlin 13,4 Prozent 11.36-13.43 Uhr 12.38 Uhr
Frankfurt 11,3 Prozent 11.27-13.27 Uhr 12.25 Uhr
München 6,3 Prozent 11.37-13.22 Uhr 12.28 Uhr

Um die Sonnenfinsternis am 10. Juni 2021 zu beobachten, benötigt man zwingend eine geeignete Schutzausrüstung. Ein Blick in die Sonne ohne passenden Schutzfilter ist gefährlich – Augenschäden bis hin zur Erblindung drohen. Eine Sonnenfinsternisbrille ist die Mindestausstattung für die sichere Beobachtung einer Sonnenfinsternis.

Wer zur Beobachtung der Sonne weitere Hilfsmittel wie ein Fernglas oder Teleskop nutzt, muss eine spezielle Filterfolie vor der Öffnung des Geräts anbringen, oder die Sonne auf einen weißen Schirm projezieren. Da die Vergrößerung auch die Strahlenintensität verstärkt, genügt eine Sonnenfinsternisbrille auf der Nase in diesem Fall nicht. Man kann die Sonne auch durch eine Lochkamera auf einen Schirm werfen. Manchmal hat man beispielsweise unter Bäumen Glück, und es entstehen auf dem Boden durch die Blätter hindurch kleine Kopien der Sonnenscheibe. Vielleicht kann man auch mit dieser Methode kleine vom Mond abgebissene Sönnchen erspähen.

Wann ist die nächste Sonnenfinsternis in Deutschland zu sehen?

Nach der partiellen Sonnenfinsternis vom 10. Juni 2021 kann man in Deutschland in den kommenden Jahren mit mehreren Sonnenfinsternissen rechnen:

  • 25. Oktober 2022: Partielle Sonnenfinsternis (22,9 Prozent Bedeckung in Frankfurt)
  • 29. März 2025: Partielle Sonnenfinsternis (sehr geringe Bedeckung – maximal 25 Prozent auf Sylt)
  • 12. August 2026: Totale Sonnenfinsternis in Spanien (88 Prozent Bedeckung in Frankfurt)
  • Erst diese Finsternis ist wieder richtig beeindruckend. Dann wird ein Großteil der Sonnenscheibe von Deutschland (88 Prozent in Frankfurt) aus bedeckt sein, in Teilen Spaniens kann man sogar eine totale Sonnenfinsternis sehen.

In Teilen Deutschlands konnte man dieses seltene Himmels-Spektakel einer totalen Sonnenfinsternis zuletzt am 11. August 1999 bewundern. Wer diese auch erlebt hat und mit mir etwas alten Erinnerungen nachhängen möchte, bitte hier lang. In meinem Buch habe ich dieser Finsternis ein ganzes Kapitel gewidmet. Wie ich die partielle Sonnenfinsternis von 2015 erlebte, könnt ihr hier nachlesen.
die nächste totale Sonnenfinsternis in Deutschland wird erst am 3. September 2081 zu sehen sein. Wenn es gut läuft, kann ich diese vielleicht noch sehr hoch betagt erleben.

Mathematischer Anhang

Da es in Worten sehr schwer ist, den Verlauf einer Sonnenfinsternis zu beschreiben, muss man sich hier, wie so oft, der Mathematik bedienen.
Im Vorfeld zur Sofi von 2015 beantworteten zwei Freunde, die bis heute hier mitlesen mir die Frage nach dem Verlauf, indem sie mir die Mathematik dazu erklärten. Erst danach habe ich das wirklich verstanden.
Hier nun die beiden Ansätze:

  1. Martins Ansatz:
    Betrachtet man nur die Umlaufraten:

    Sonne 360 Grad in 365 Tagen = 0.041 Grad pro Stunde (bezogen auf Himmelshintergrund) 

    Mond 360 Grad in 29 Tagen = 0.54 Grad pro Stunde  (bezogen auf Himmelshintergrund)

    Erde 360 Grad in 24 Stunden = 15 Grad pro Stunde  (bezogen auf Himmelshintergrund; eigentlich 23h56m)

    Da gewinnt die Erde ganz klar das Rennen und der Schatten sollte sich tatsächlich von Ost nach West bewegen. 

    Das wäre aber nur der Fall, wenn der Mond plötlich auf seiner Bahn eingefroren wäre.
    Die Sichtweise / der Standpunkt dieser Betrachtung ist aber irreführend.

    Ein Mensch am Äquator bewegt sich mit ca. 40.000 km / 24 Stunden = 1666 Kilometern pro Stunde von Ost nach West.

    Der Schatten des Mondes bewegt sich in einer Stunde etwas mehr als der Monddurchmesser ca. 3500 Kilometer pro Stunde von West nach Ost. (Etwas mehr, da man eigentlich den überstrichenen Winkel von Sonne-Mond betrachten müsste. Das ist quasi wie ein optisches Hebelgesetz. Je näher der Mond an der Sonne wäre umso größer wäre sein Schatten und umso schneller wäre der Schatten. Da aber dieser Winkel ziemlich klein ist, kann man vereinfachen) Auf jeden Fall ist die Untergrenze der „Schattengeschwindigkeit“ ca. 3500 Kilometer pro Stunde.

    Also bewegt sich der Schatten mit mindestens ca. 1800  (3500 – 1700) Kilometern pro Stunde von West nach Ost. Im hohen Norden und Süden müsste der Schatten noch schneller sein. Habe aber noch nix gefunden, ob das wirklich so ist.

  2. Sebastians Ansatz:
    Vorweg: Ich wollte mir selbst die Lösung überlegen, und habe mir daher den Weg von Martin nicht angeschaut- ich sehe aber, dass wir am Ende auf das gleiche Ergebnis kommen. Sollte also ungefähr passen.

    Halten wir den Moment fest, an dem der Mond zwischen Sonne und Erde steht, und der Kernschatten genau auf mittig auf der Erde liegt, und nehmen den Planeten Erde als Bezugssystem für Geschwindigkeit 0km/h.
    Die Erde hat am Äquator ca. 12’720km Durchmesser, damit ist der Umfang ca. 40’000km, und die Oberflächengeschwindigkeit durch Rotation beträgt (vereinfacht auf die Sonne bezogen und nicht sidirisch) ca. v_E=1’666km/h.
    Der Mond hat einen mittleren Abstand von d_M=384’400km, also eine ungefähre Umlaufbahn von 2’415’256km und eine Umlaufzeit von 27.3d, also bewegt er sich ungefähr mit v_M=3’686km/h in die gleiche Richtung wie die Erde darunter. (Hat natürlich eine viel größere Kreisbahn und überholt deshalb nachts nicht die Erdrotation…)
    Die Erde selbst hat einen Abstand von ca. d_S=149’600’000km von der Sonne, also einen Umkreis von ca. 939’965’000km in 365.25 Tagen, bewegt sich also mit 107’228km/h entgegen der Oberflächengeschwindigkeit oben. Da die Erde als 0km/h gewählt ist, bewegt sich also die Sonne scheinbar mit v_S=107’228km/h in Richtung der betrachteten Oberflächengeschwindigkeit der Erde.

    Die Geschwindigkeiten von Sonne und Mond superponieren sich, d.h. wir können einzeln die Anteile auf die Kernschattengeschwindigkeit berechnen.

    Nach dem Strahlensatz ist die Geschwindigkeit durch die scheinbare Sonnenbewegung v1=(d_M/d_S)*v_S~276km/h.
    Nach dem Strahlensatz ist die Geschwindigkeit durch die Mondbewegung v2=d_S/(d_S-d_M)*v_M~3’695km/h.

    Da sich Mond und Sonne in die gleiche Richtung bewegen, ist die resultierende Geschwindigkeit des Kernschattens zur Erde v=v2-v1~3’419km/h.

    Abzüglich der Geschwindigkeit der mitdrehenden Erdoberfläche erhalten wir in diesem Moment am Äquator die Schattengeschwindigkeit von ca. 1’753km/h. Auf jeden Fall überholt der Schatten die Erdrotation, und damit geht der Schatten tendentiell von Westen nach Osten.

    Natürlich wird der Schatten an den Rändern über der Erdoberfläche „viel schneller“- schon alleine wegen der schrägen Projektion und nach Norden und Süden ist die Oberflächengeschwindigkeit geringer. Und da die Bahnen nicht alle in der gleichen Ebene liegen, verläuft der Schatten auch schräg und alles mögliche. Es kann im Extremfall für einen Punkt auf der Erde der Schatten z.B. von Norden oder Süden kommen- der Schatten ist ja nicht ein „Punkt“, sondern die Fläche kann sich bei diesen Kurven auch „reindrehen“, und so scheinbar komplett von Norden oder Süden kommen.

    Wenn ich mich nicht verrechnet habe, so ist der Anteil durch die Planetenbewegung v_S nicht sehr ausschlaggebend, und die Beschleunigung der Mondgeschwindigkeit durch die Hebelwirkung durch den Abstand sehr gering, da die Sonne so viel weiter weg ist als der Mond von der Erde.

    Die jeweiligen Richtungen der Erde, Mond und Rotationen musste ich nachschlagen, ich hoffe, dass ich da nichts verwechselt habe.

Vielen Dank euch beiden nochmal für diese erhellenden mathematischen Überlegungen.

Die Reise zu den Schwarzen Löchern, Station 6, – das Licht


Seid herzlich gegrüßt,

Unsere Reise führt uns heute zu dem Stoff, in dem wir täglich baden, dem Licht. Es wird, wie versprochen, eine spannende Reise mit vielen Geschichten werden. Licht ist nämlich so etwas seltsames, dass es durchaus wert ist, wenn wir auf unserer Reise an dieser Station etwas verharren, um uns die Eigenschaften des Lichts etwas genauer zu betrachten. Nicht alles, was wir heute behandeln werden, wird später für die schwarzen Löcher gleich wichtig sein, aber das Licht, ihr werdet es erleben, kann sogar blinde Menschen begeistern.

Bis in die Neuzeit hinein war nicht klar, was das Licht ist. Und das ist nicht verwunderlich, denn selbst heute ist es nicht einfach verständlich, dass Licht etwas verschiedenes gleichzeitig sein kann und dazu noch eine konstante Geschwindigkeit besitzt. Es kann, aber alles der Reihe nach.

Licht in der Antike

Schon der alte Platon mit seinem Höhlengleichniss und Pythagoras, den wir von unseren rechtwinkligen Dreiecken her in der Schule kennengelernt haben, machten sich so ihre Vorstellungen, was das Licht denn sei.
Sie dachten, Licht würde quasi in unseren Augen produziert. Dieses Licht würde die Augen sozusagen als Sehstrahlen verlassen. Diese nun würden von den Objekten reflektiert, was wir dann wiederum mit unseren Augen sehen und erkennen könnten.
Der Haupthaken an dieser Vorstellung ist, dass wenn dem so wäre, dann sollten wir auch nachts sehen können, weil wir ja unser Licht selbst produzieren. Heron von Alexandria (um 100) teilte diese Vorstellung. Er dachte außerdem, dass das Licht unendlich schnell sein müsse, weil wir sobald wir die Augen öffnen, sofort und unmittelbar entfernte Objekte, wie die Sterne sehen könnten.

Ein anderer Grieche Namens Empedokles (c. 490-430 v.Chr.) gilt als Erster, der für das Licht eine endliche Geschwindigkeit vermutet hat.
Wie er zu dieser Vorstellung kam, konnte ich leider gerade nicht ausfindig machen.
Es setzte sich die Meinung von Aristoteles, dem vielleicht prägensten griechischen Philosophen durch. Er mutmaßte, dass das Licht von der bloßen Anwesenheit von Objekten herkomme und nicht in Bewegung sei oder sich so schnell bewege, dass dessen Geschwindigkeit außerhalb der menschlichen Vorstellungskraft läge. Dieser Aristoteles sollte uns mit seinen Ansichten bis zum Ende des Mittelalters begleiten.
Die beiden aus dem arabischen Raum stammenden Männer, Avicenna und Alhazen (um 1000) wiederum glaubten an eine endliche Geschwindigkeit des Lichts. Auch von den beiden weiß ich nicht, wie sie zu dieser Überzeugung gelangten.

Eine durch viele Jahrtausende bestehende Vorstellung geht davon aus, dass Licht sofort überall gleichzeitig anwesend ist, sobald es erzeugt wird. In unserem Alltag erleben wir das auch so. Schalten wir Licht ein, dann ist es für uns gleichzeitig sofort und unmittelbar im ganzen Raum hell.

Erste Lichtversuche der Neuzeit

Galileo Galilei versuchte als einer der ersten, die Ausbreitungsgeschwindigkeit des Lichts ernsthaft zu messen, jedoch ohne Erfolg. Dafür waren die ihm zur Verfügung stehenden Mittel viel zu grob. Dies gelang erst dem Astronomen Ole Rømer

Im Jahr 1676 stellte Ole Rømer, fest, dass die Zeiten zu welchen der Mond IO seinen Planeten, Jupiter, verdeckt, je nach der Position der Erde zum Jupiter bis zu mehreren Minuten variiert.
Daraus schloss er, dass das Licht eine endliche Geschwindigkeit haben muss, wenn die Verzögerungen vom Abstand zwischen Jupiter und der Erde abhängig sind.,
Der von Roemer ermittelte Wert für die Geschwindigkeit des Lichtes wich nur um 30 % vom tatsächlichen Wert ab.
Rømers Messwert wurde im Laufe der folgenden 200 Jahre durch immer raffiniertere Verfahren (vor allem durch Hippolyte Fizeau und Léon Foucault) mehr und mehr präzisiert. Die Natur des Lichts blieb jedoch weiter ungeklärt.

Licht als Teilchenstrom

Auch unser alter Bekannte Isaac Newton erforschte das Licht.
Um 1670 stellte Newton den entscheidenden Versuch mit einem Prisma
an, also mit einem dreikantig geschliffenen Stück Glas,
Er beschreibt in seinem im Jahre 1704 erschienenen Buch über Optik:

»Ich habe in meinem verdunkelten Zimmer Licht durch ein kleines Loch im Fensterladen gelassen. In etwa zehn oder
zwölf Fuß setzte ich eine Linse, die das Bild des Loches scharf auf ein weißes Papierblatt in Abständen von sechs, acht, zehn oder zwölf Fuß Abstand von der Linse warf, je nach der Art der Linse, die ich benutzte. Unmittelbar hinter die Linse setzte ich dann ein Prisma mit der Kante nach unten, welches das Licht nach oben ablenkte.«

Newton beobachtete nun statt eines Lichtpunktes einen Streifen. Er bestand aus unzählig vielen kreisförmigen sich gegenseitig überdeckenden Bildern des Loches, die alle verschiedene Farben hatten. Am oberen Ende leuchtete
der Streifen violett, am unteren rot. Das wurde noch deutlicher, als er eine Öffnung im Fensterladen mit einem Stück Pappe abdeckte, in das er einen zur Prismenkante parallelen Spalt geschnitten hatte. Nun lagen verschiedenfarbige Bilder des Spaltes nebeneinander und überdeckten sich gegenseitig. Das Prisma hatte das weiße Sonnenlicht in die Farben des Regenbogens aufgelöst.
Newtons buntes Band, in dem die vom Prisma erzeugten verschiedenfarbigen Bilder des schmalen Spaltes nebeneinander liegen, nennt man das Spektrum. Die Astronomen haben inzwischen gelernt, aus ihm nicht nur die Temperatur der strahlenden Sonnenoberfläche abzulesen, sondern auch ihre Geschwindigkeit, ihre chemische Beschaffenheit, ja sogar die Stärke und Richtung von Magnetfeldern, die für unser Auge unsichtbar sind. Doch davon ahnte Newton natürlich noch
nichts.
Um die Natur des Sonnenlichtes weiter zu ergründen, nahm er ein zweites Prisma, setzte es umgekehrt, also mit der Kante nach oben in den aufgefächerten Strahl. Das zweite Prisma vereinigte die einzelnen bunten Teilstrahlen wieder zu einem einzigen. Das Licht auf dem Papierblatt war wieder weiß.
Aus diesem Experiment, in dem er weißes Licht in verschiedene Farben zerlegte, die er wieder zu weißem Licht zusammensetzen konnte schloss er, dass das weiße Licht aus verschiedenfarbigen Bestandteilen zusammengesetzt ist. Die so von Newton entwickelten Ideen von der Natur des Lichtes gaben ihm die Mittel in die Hand, die Farben des Regenbogens zu erklären. In winzigen Wassertropfen wird Licht an ihrer Rückwand zurückgespiegelt. Dabei muß das Licht zweimal schräg durch die Oberfläche der Flüssigkeit, die wie ein Prisma wirkt.
Newton glaubte, das Licht bestünde aus zahlreichen kleinen, verschiedenfarbigen Teilchen, die mit großer Geschwindigkeit von einer Lichtquelle ausgehen, etwa von der Sonne. In ihrer Gesamtheit erscheinen sie unserem Auge weiß. Das Prisma aber kann sie ihrer Farbe nach trennen. Es lenkt die violetten Lichtkügelchen stärker aus ihrer ursprünglichen Bahn als die roten. Wenn sie aber durch ein zweites Prisma, diesmal Kante nach oben, wieder zusammengebracht werden, erscheinen sie uns wieder weiß.

Goethes Zweifel

Kein Geringerer als Johann Wolfgang von Goethe zweifelte um 100 Jahre danach Newtons Teilchenmodell des Lichtes an.
Es gibt dazu folgende kleine Geschichte:

Goethe hat sich von einem Professor in Jena einige Prismen ausgeliehen, mit denen er gelegentlich experimentieren will. Er vergisst sie in seiner Schublade. Der Professor mahnt und schickt schließlich einen
Boten. Goethe händigt die geschliffenen Gläslein ohne zögern aus. Im letzten Moment jedoch, buchstäblich zwischen Tür und Angel, nimmt er ein Prisma in die Hand … Rasch richtet er das Prisma gegen die Wand … Und siehe da: kein buntes Farbenspiel ergibt sich! Er sieht nur weiß vor der weißen Wand. Wie ein Blitz kommt ihm die Erleuchtung: Newtons Theorie ist falsch.

Doch das Bild von den Lichtteilchen kann nicht alle Eigenschaften des Lichtes erklären. Ehe wir aber dazu kommen, wollen wir uns mit dem Licht befassen, das Newton nicht sah.

Unsichtbares Licht

Das Spektrum, das Newton durch seinen Schlitz im Fensterladen und mit Hilfe von Linse und Prisma erhalten hatte, enthielt mehr, als er ahnen konnte. Das bewies ein ursprünglich aus Hannover stammender englischer Astronom. William Herschel, der damals bereits durch seine Entdeckung des Planeten Uranus weltberühmt war, betrachtete oft die Sonne mit seinem Fernrohr, an das er am Okularende Farbfilter angebracht hatte, die seine Augen vor der starken Sonnenstrahlung schützen sollten. Dabei fiel ihm auf, dass er bei Filtern, die kaum Licht durchließen, oft im Augapfel ein deutliches Wärmegefühl hatte, und er vermutete daher, daß die Wärmestrahlung der Sonne nicht mit dem sichtbaren Licht zuuns kommt, sondern in irgendeiner dem Auge unsichtbaren Form. Den Beweis führte er mit einem Experiment, das sich eng an das Newtonsche anschloss. Er ließ Sonnenlicht in einem verdunkelten Raum durch ein Prisma auf einen Papierstreifen fallen

An das rote Ende des Spektrums, aber außerhalb des Bereiches, in dem man das in Farben zerlegte Sonnenlicht sehen kann, legte er drei Thermometer auf den Tisch. Dort, wo unser Auge kein Licht mehr wahrnimmt, zeigten die Messgeräte erhöhte Temperaturen an. Herschel hatte die Strahlen der Sonne entdeckt, die jenseits des roten Lichtes im Spektrum liegen, das infrarote Licht.Angeregt durch diese Entdeckung setzte der deutsche Physiker johann Wilhelm Ritter (1776-1810) Silberchlorid verschiedenen Bereichen des Sonnenspektrums aus. Diese Verbindung des Silbers wird durch Licht verändert, deshalb verwendete man sie vor den Digitalkameras ebenso wie Silberbromid in der Fotografie. In Brillengläsern, die sich automatisch der Helligkeit anpassen, werden diese Chemikalien ebenfalls eingesetzt.
Ritter fand, dass die stärksten chemischen Reaktionen jenseits des violetten Endes des Spektrums auftraten. So entdeckte er die Ultraviolettstrahlung der Sonne.
Herschel und Ritter hatten für das Auge unsichtbare Sonnenstrahlen gefunden, die das Newtonsche Spektrum sowohl über das rote als auch über das violette Ende hinaus fortsetzten. Heute wissen wir, dass man das Spektrum nach beiden Seiten hin noch viel weiter ausdehnen kann.
Nach dem infraroten Licht kommen die Radiowellen. Nach der anderen Seite des Spektrums, jenseits des violetten Endes liegen hinter dem Ultraviolett noch die Röntgenstrahlen und schließlich die sogenannten Gammastrahlen. Die Sonne sendet alle diese Strahlenarten in den Raum,

Die Frage, was aber das Licht nun eigentlich ist, Teilchen, Welle oder was anderes, war danach noch immer nicht geklärt.

Teilchen, Welle oder beides?

Ungefähr zur gleichen Zeit begründeten Christiaan Huygens und andere die Wellentheorie des Lichts, die sich aber erst Anfang des 19. Jahrhunderts nach den Doppelspalt­experimenten von Thomas Young zunehmend durchsetzte.
Lässt man Licht durch sehr enge Öffnungen fallen, wird es dahinter abgelenkt. Die verschiedenen Lichtzüge hinter den Spalten überlagern sich. Man sieht auf einem sich hinter so einer Spaltenanordnung angebrachten Schirm Stellen, wo das Licht heller ist und andere, die ganz dunkel sind. Diese sog. Interferenzen lassen sich mit Newtons Teilchenmodell nicht erklären. Legt man aber zugrunde, dass das Licht aus Wellen unterschiedlicher Wellenlängen besteht, dann kann man sehr leicht die Analogie zu sich überlagernden Wasserwellen herstellen. Treffen zwei Wellenberge verschiedener Wellenzüge aufeinander, so addieren sie sich zu einer höheren Welle. Trifft Wellenberg auf Wellental, so löschen die beiden Wellen sich an dieser Stelle aus.
Newtons Regenbogen lässt sich mit einem Wellenmodell, bei welchem die verschiedenen Farben des Lichts unterschiedlichen Wellenlängen zugeordnet werden gut erklären. Wer eine CD mit der bespielten Seite ins Licht hält, wird schöne bunte Muster erblicken, denn die Lichtwellen brechen sich unterschiedlich an den Bergen und Tälern der in die CD eingebrannten Daten. Ein Fraunhofer-Gitter ist eine Glasscheibe mit ganz vielen sehr eng nebeneinanderliegenden eingravierten Linien. Von so einem Gitter wird Licht ebenso in seine Farben aufgefächert, wie Newtons Prismen dies taten.
So weit, so gut. Eine Wasserwelle besteht aus Wasser. Wie ist aber das Medium beschaffen, aus welchem Lichtwellen bestehen oder welche Eigenschaften haben Newtons Lichtteilchen?

Weitere Seltsamkeiten

Aber noch weitere Seltsamkeiten des Lichts wurden gefunden, die unter einen „Hut“ eines einheitlichen Lichtmodells vereinigt werden mussten, das dann alle Phänomene Welle, Teilchen, Lichtgeschwindigkeit etc. vereinigt.

Michael Faraday erbrachte 1846 als erster den Nachweis, dass Licht und Magnetismus zwei miteinander verbundene physikalische Phänomene sind. Er veröffentlichte den von ihm gefundenen magnetooptischen Effekt, der heute als Faraday-Effekt bezeichnet wird, unter dem Titel Über die Magnetisierung des Lichts und die Belichtung der Magnetkraftlinien.

James Clerk Maxwell formulierte 1864 die noch heute gültigen Grundgleichungen der Elektrodynamik und erkannte, dass dadurch die Existenz freier elektromagnetischer Wellen vorhergesagt wurde. Da deren vorhergesagte Ausbreitungsgeschwindigkeit mit der bekannten Lichtgeschwindigkeit übereinstimmte, schloss er, dass das Licht wohl eine elektromagnetische Welle sei. Er vermutete (wie damals nahezu alle Physiker), dass diese Welle nicht im leeren Raum existieren könne, sondern ein Ausbreitungsmedium brauche. Dieses Medium, das das gesamte Weltall ausfüllen müsste, wurde als Äther bezeichnet.

Gibt es den raum erfüllenden Äther?

1887 führten die beiden Amerikanischen Physiker Michelson und Morley einen Versuch durch, der das Grab des Äthers werden sollte.
Ausgangspunkt ihres Versuches war die Idee, dass wenn es einen Äther gäbe, sollte man in Bewegungsrichtung der Erde um sich selbst, vor allem aber um die Sonne, durch ihn hindurch eine Art Äther-Wind nachweisen können. Das ist dann vergleichbar mit einem Schiff, das durch das Wasser fährt.
Fährt ein Schiff gegen die Strömung, so subtrahieren sich die Geschwindigkeiten von Schiff und Wasser. Mit der Strömung ist es umgekehrt. Die Geschwindigkeiten addieren sich.
Das sollte mit in den Äther einfallendem Licht nicht anders sein.
Solch einen Effekt jedoch konnten die beiden Wissenschaftler nicht nachweisen. Das bedeutet, dass sich Licht mit konstanter Geschwindigkeit von 300.000 km/s durch den Raum, durch das Vakuum bewegt und dass das Vakuum letztlich nicht von einem Äther erfüllt ist.
Licht genügt das Vakuum als Medium. es benötigt keinen weiteren Stoff hierzu, wie der Schall die Luft.

Somit war zum einen bestätigt, dass Licht sich mit konstanter Lichtgeschwindigkeit im Vakuum bewegt und dass es keinen Stoff benötigt, um sich fortzupflanzen.
Durch diese Tatsache, dass es den Äther nicht gibt, war quasi die Türe zu Einsteins Relativitätstheorie, die auf unserer Reise noch wichtig werden wird, aufgestoßen.

Die Vereinigung der Phänomene

Dass unsere Solarzellen auf unseren Dächern funktionieren, dass unsere Sonnenbrillen sich bei Lichteinfall automatisch verdunkeln und dass Licht Fotos schwärzt, konnte aber noch immer nicht erklärt werden.
So entstand eine radikal neue Sichtweise des Lichts, die durch die Quantenhypothese von Max Planck und Albert Einstein begründet wurde. Kernpunkt dieser Hypothese ist der Welle-Teilchen-Dualismus, der das Licht nun nicht mehr ausschließlich als Welle oder ausschließlich als Teilchen beschreibt, sondern als Quantenobjekt. Als solches vereint es Eigenschaften von Welle und von Teilchen, ohne das eine oder das andere zu sein und entzieht sich somit unserer Vorstellung. Je nach dem, welche Frage man an das Licht in einem Experiment stellt, wird es eher als Welle oder eher als Teilchen antworten.

Abspann – Eine Höhlengeschichte

Im flackernden Licht der Fackel scheint es, als würden sich die Tiere an der Felswand bewegen. Stiere, nur mit wenigen Strichen aus schwarzer und roter Farbe hingeworfen, ohne naturalistische Details. Der namenlose Künstler hat die Unebenheiten der Felswand ausgenutzt. Eine Ausbuchtung hat er zum Bauch eines Tieres gemacht. Plötzlich wird mir
bewusst, dass jener Mensch über mehr als zwanzigtausend Jahre hinweg mich mit seiner Kunst bewegt, daß ich nachempfinden kann, was er meinte. Meine innerliche Bewegung wurde durch das ausgelöst, was ich sah.

Wir betrachten Bilder im Museum, freuen uns über das Schauspiel eines Sonnenaufganges über dem Meer, lieben den Anblick einer schönen Landschaft, denn wir Menschen können in der Regel sehen.
Licht fällt in unser Auge, wird in der Netzhaut von Nervenzellen registriert und vom Sehnerv an den Computer unseres Gehirns weitergegeben. Dort entsteht ein Bild, das wir in unserem Inneren empfinden.
Was ist blos dieses Licht, das uns diese Eindrücke vermittelt?
Wir wissen es jetzt ungefähr durch diesen Artikel.

Wir haben wesentliche Meilensteine zur Entschlüsselung dieses Rätsels erlebt.
Wir erinnern uns an die Sehstrahlen von Platon und anderen.
Noch heute benutzen wir Ausdrücke wie »ein Auge darauf werfen«. Der junge Mann, der auf ein Mädchen »nur ein Auge
wirft«, ist also im doppelten Sinn platonisch, einmal, was seine Vorstellung vom Sehen betrifft, zum anderen auch sonst. Es fällt uns schwer, Platon bei diesem Gedanken zu folgen – so großartig dieser Gelehrte
auch in anderen Bereichen gewesen sein mag.

Noch heute senden wir in den Äther, von dem wir wissen, dass es ihn nicht gibt.

Licht ist Welle und Teilchen zu gleich, je nach dem, welche Frage wir ihm stellen.

Naja, gibt es nicht oft auch in unserem Leben z. B. Menschen, die mal so oder so sind?

Dualismus ist ein Naturprinzip.

So, und damit geht unsere Reise durch die Geschichte des Lichtes zu Ende.
In Station sieben werden wir uns den Sternen zuwenden. Wir werden über ihr Leben und vor allem über ihr Lebensende sprechen. Dann sind wir auch schon ganz nah an unserer Endstation, den schwarzen Löchern dran.

Die Reise zu den Schwarzen Löchern, Station 5, – Urstoff und Klebstoff


Ich grüße euch,

Worum geht es

Heute, auf Station 5 zu unseren schwarzen Löchern wird es sehr entspannt zugehen, was Mathematik etc. betrifft. Es wird eine Folge der Verblüffung und hoffentlich des Staunens für uns werden. Es geht zum einen quasi um den Grundaufbau des ganzen Universums, um den „Urstoff“ aus dem alles, also auch wir bestehen. Zum anderen beschäftigen wir uns mit weiteren fundamentalen Kräften, dem Klebstoff, die das alles zusammenhalten. und schließlich werden wir darauf eingehen, wo von es im Universum am meisten gibt, nämlich „Nichts“.
Und all das wird dann auf unseren nächsten Stationen fundamental wichtig werden.

Auf der Suche nach dem unteilbaren Urstoff

Der Streit darüber, woraus das Universum besteht, geht bereits auf die alten Griechen zurück. Sie diskutierten sehr kontrovers, woraus das Universum bestehen könnte. Von da an begann die Suche nach dem Urstoff, nach dem Unteilbaren (Atom), nach den Grundbausteinen allen Lebens uns Seins.

Das erste Atommodell geht auf die beiden griechischen Philosophen Leukipp und seinen Schüler Demokrit zurück. Beide waren der Ansicht, dass sich Materie nicht beliebig weit zerteilen lasse. Vielmehr müsse es ein kleinstes Teilchen geben, das nicht weiter zerteilbar ist: Das „Urkorn“ oder „Atom“ (atomos = griech. unteilbar).
Es sollte somit kleinste Bausteine geben, die nicht weiter teilbar sind.
Wie die beiden Philosophen sich diese Teilchen im Detail vorstellten, führt uns hier zu weit.
Beide Philosophen stützten ihre Theorien nicht auf Experimente, sondern auf Nachdenken.

Im Jahr 1803 griff der Chemiker und Lehrer John Dalton – inspiriert durch das vom Chemiker Joseph-Louis Proust formulierte Gesetz der konstanten Mengenverhältnissen bei chemischen Reaktionen Demokrits Vorstellung von unteilbaren Materiebausteinen wieder auf. Er entwickelte ein Atommodell mit folgenden Hypothesen:

  • Jede Materie besteht aus Grundbausteinen, den unteilbaren Atomen.
  • Die Atome eines Elements sind untereinander gleich,
  • die Atome verschiedener Elemente unterscheiden sich stets in ihrer Masse und Größe.
  • Jeweils eine ganze Zahl an Atomen verschiedener Elemente bildet Verbindungen.

Durch diese Atomhypothese war Dalton in der Lage, das Gesetz von der Erhaltung der Masse, das Gesetz der konstanten Proportionen und das Gesetz der multiplen Proportionen zu erklären.

Im Jahr 1897 entdeckte Joseph John Thomson bei Untersuchungen einer Glühkathode, dass es sich bei der austretenden Strahlung um einen Strom von Teilchen handeln müsse. Diese auf diese Weise entdeckten „Elektronen“ ließen sich durch ein Magnetfeld ablenken und besaßen eine fast 2000 mal kleinere Masse als das leichteste bekannte Atom (Wasserstoff).
Da Thomson diesen „Elektronen“-Strahl aus jedem Metall durch Erhitzen gewinnen konnte, mussten diese Teilchen bereits im Metall enthalten sein. Atome konnten folglich nicht die kleinsten Bausteine der Materie bzw. unteilbar sein.
Thomson schlug daher im Jahr 1904 folgendes Atommodell vor:

  • Jedes Atom besteht aus einer elektrisch positiv geladenen Kugel, in die elektrisch negativ geladene Elektronen eingelagert sind – wie Rosinen in einem Kuchen.
  • Die Atome sind nach außen hin neutral. Sie können jedoch Elektronen abgeben oder zusätzliche aufnehmen.
  • Bei der Abgabe von Elektronen entstehen aus den ursprünglich neutralen Atomen positiv geladene Ionen, bei der Aufnahme von Elektronen entstehen entsprechend negativ geladene Ionen.

Durch sein Atommodell konnte Thomson die Kathodenstrahlung sowie die Erkenntnisse aus der Elektrolyse-Forschung von Michael Faraday erklären.

Im Jahr 1911 führte Ernest Rutherford ein Experiment durch, bei dem er einen Strahl radioaktiver Alpha-Teilchen auf eine dünne Goldfolie lenkte. Bei Alpha-Teilchen handelt es sich um Helium-Kerne, die aus zwei Protonen und zwei Neutronen bestehen.
Die meisten Alpha-Teilchen konnten die Goldfolie ungehindert durchdringen, nur wenige wurden (teilweise sehr stark) abgelenkt. Dieses Ergebnis ließ sich nicht durch die Vorstellung kompakter Atomkugeln (Thomson-Modell) erklären. Der wesentliche Teil der Masse und die positive Ladung des Atoms mussten sich vielmehr in einem kleinen Bereich im Inneren befinden, an dem die auftreffenden Alpha-Teilchen abprallen konnten. Das meiste Volumen hingegen musste die masselose, negativ geladene und aufgrund der geringen Größe der Elektronen weitgehend „hohle“ Hülle des Atoms einnehmen.
Rutherford fasste seine Erkenntnisse in folgendem Atommodell zusammen:

  • Das Atom besteht aus einem Atomkern und einer Atomhülle.
  • Der Atomkern ist elektrisch positiv geladen und befindet sich im Zentrum des Atoms.
  • Der Durchmesser des Atomkerns beträgt nur ein Zehntausendstel des gesamten Atomdurchmessers.
  • In der Atomhülle befinden sich negativ geladene Elektronen, die um den Atomkern kreisen. (Durch ihre schnelle Bewegung verhindern die Elektronen, dass sie in den entgegengesetzt geladenen Atomkern stürzen.)
  • Die Atomhülle ist ein fast „leerer“ Raum, da die Elektronen noch viel kleiner sind als der Atomkern.

Mit seinem Atommodell konnte Rutherford allerdings noch keine Aussagen über die Bahnform der Elektronen und über ihre Energieverteilung treffen.

Im Jahr 1913 formulierte Niels Bohr ein Atommodell, das von einem planetenartigen Umlauf der Elektronen um den Atomkern ausgeht. Damit konnte er – beeinflusst durch die Quantentheorie Max Plancks und die Entdeckung des Photoeffekts durch Albert Einstein – erstmals die im Mikrokosmos stets in bestimmten Vielfachen auftretenden Energiesprünge deuten.
Diese waren seit der Untersuchung der Spektren von Gasentladungsröhren eines der größten Rätsel der damaligen Physik.

Das Atommodell für Wasserstoff nach Bohrpostuliert:
Jedes Elektron umkreist den Atomkern auf einer Kreisbahn. Beim Übergang eines Elektrons von einer äußeren Elektronenbahn in eine innere Elektronenbahn wird ein Lichtquant (Photon) ausgesendet.

Bohr war sich darüber bewusst, dass das Modell kreisförmiger Elektronenbahnen einen Widerspruch mit sich führte: Da jede Kreisbahn einer beschleunigten Bewegung entspricht und beschleunigte Ladungen elektromagnetische Wellen abstrahlen, müssten Elektronen ständig Energie abgeben und dadurch immer langsamer werden. Sie würden somit – angezogen von der positiven Ladung des Atomkerns – in nur wenigen Bruchteilen einer Sekunde spiralförmig in den Atomkern stürzen.
Um sein Atommodell zu retten, das auch mit anderen experimentellen Ergebnissen bestens übereinstimmte, führte Bohr die beiden folgenden Postulate ein

  1. Die Elektronen umkreisen den Atomkern strahlungsfrei, d.h. ohne Abgabe von Energie, in bestimmten Bahnen. Dabei nimmt die Energie der Elektronen nur ganz bestimmte, durch die jeweilige Bahn charakterisierte Werte an.
  2. Der Übergang zwischen einer kernfernen zu einer kernnahen Bahn erfolgt sprunghaft unter Abgabe einer Strahlung (eines Photons).

Und damit soll die Geschichte des Atoms erst mal genügen. Es gab weitere Modifikationen und Erweiterungen des Atom-Modells. Bis heute ist das alles noch im Fluss und entwickelt sich weiter.
Für uns ist an dieser Stelle wichtig:

  • Atome bestehen aus einem Kern von Protonen und Neutronen und einer Elektronenhülle
  • Das Unteilbare wurde mit der Zeit immer teilbarer.
  • Protonen sind positiv geladen und Elektronen negativ. Neutronen sind neutrale Teilchen, die sich ebenfalls im Atomkern befinden.
  • Ein Atom ist dann neutral, wenn die Anzahl seiner Protonen im Kern und die seiner Elektronen gleich sind.
  • Die Anzahl der Elektronen legt die chemischen Eigenschaften eines Atoms fest, will sagen, wie willig es ist, sich mit anderen Elementen zu „verheiraten“, oder eben nicht.

Jetzt könnte man berechtigt meinen, dass die Kerne in dem Fall doch eher auseinander fallen sollten, weil sich die Protonen abstoßen, denn sie sind, wie gesagt positiv geladen. Außerdem könnte es ja sein, dass die Elektronen ob ihrer negativen Ladung in den Kern hinein gezogen werden. Wir erinnern uns, dass Bohr sich diese Fragen auch stellte.
Es muss also Kräfte geben, die all dieses verhindern.

Der Klebstoff des Universums

Was die Welt in ihrem Inneren zusammen hält sind vier Grundkräfte, die in unserem ganzen Universum gültig sind.

Da sind zunächst die starke und die schwache Kernkraft. Diese sorgen dafür, dass Atomkerne trotz ihrer Abstoßung der Protonen stabil zusammen bleiben und dass Atome auch radioaktiv in andere Teilchen zerfallen können. Diese beiden Kräfte werden wir auf unserer Reise als die Kernkraft zusammen fassen. Diese, vor allem auch die starke Kernkraft wirkt nur auf sehr schwache Distanz, etwa eines Durchmessers eines Atomkerns, aber dann um so mehr. Stellt euch zwei Magnete vor, die sich gerne anziehen würden, es aber nicht können, weil sie von einer starken Feder auseinander gedrückt werden. Die Feder steht in dem Falle für die abstoßende Kraft zwischen zweier Protonen.
Wenn man nun die Feder zusammendrückt, so dass sich die beiden Magnete nahe kommen, dann kann es geschehen, dass plötzlich die Magnetkraft überwiegt und stärker als die Feder wirkt.
Die Kraft zwischen den Magneten steht in diesem Beispiel für die Kernkraft, die nur auf kurze Distanzen wirkt.
Ich meine mich zu erinnern, dass es derartige Spielzeuge mit Magneten und Federn tatsächlich gab.

Auf jeden Fall ist die elektromagnetische Kraft, also die Abstoßung von Elektronen dafür verantwortlich, dass wir Materie spüren können. Ein Buch auf dem Tisch fällt trotz der überwiegenden Leere des Vakuums nicht durch die Tischplatte, weil sich die Elektronen der Buchhülle und die der Atome der Tischplatte gegenseitig abstoßen. Es sind einfach immer genügend Elektronen vorhanden, die das Buch nicht in die Leere stürzen lassen. Dasselbe geschieht natürlich auch mit deiner Hand, wenn Sie auf den Tisch liegt.
Hier mal kurz eine Tabelle, die zeigt, wie stark die einzelnen Kräfte gegeneinander verglichen, tatsächlich sind.

Name Verhältn.
Starke Kernkraft 10 hoch 3
Elektromagnetische Kraft 1
Schwache Kernkraft 10 hoch minus 11
Gravitationskraft 10 hoch minus 39

Über die Gravitation, die heimliche Herrscherin des Universums haben wir uns schon unterhalten.
Ich habe auf meinen Artikel dazu schon auf einer unserer letzten Stationen hin gewiesen und möchte dies an dieser Stelle dringend wiederholen. Ich empfehle wirklich, sich mit dieser Dame und ihres Wesens vertraut zu machen.
Zur heimlichen Herrscherin bitte hier lang.

Das Vakuum

Der letzte Punkt für heute, der uns stutzen lassen sollte ist die Tatsache, dass wenn man ein Atom auf die Größe eines Fußballstadions aufblasen würde, dann schwebte der Kern, der fast 100 % der Atommasse ausmacht, gleich einer Schrotkugel in der Mitte des Stadions, wobei die Elektronen ruhelos durch die Zuschauerränge waberten. Das meiste also in Atomen ist leere und noch viel mehr leere gibt es zwischen ihnen, im sog. Vakuum.

Das Vakuum ist so ein merkwürdig Ding, dass ich an dieser Stelle dringend auf meinen Artikel Nichts ist auch was hinweisen möchte. Ich rate euch, den zu lesen, denn er behandelt das Vakuum in seiner Schönheit und in seinen Einzelheiten.
Danach haben jene, die noch nicht erschlagen sind, die Möglichkeit, tiefer in die Eigenschaften der Leere einzutauchen.
Hierfür schrieb ich ganz am Anfang dieses Blogs den Artikel „Die Leere füllt sich wieder“. Der ist zwar schön und faszinierend, und ich freue mich, wenn er gelesen wird, aber für unsere folgenden Stationen ist er nicht von Belang.
Er ist etwas nerdig…
Dazu bitte hier lang.

Vorschau

Auf unserer nächsten Station befassen wir uns mit etwas, dass uns allgegenwärtig umgibt. Mal mehr, mal weniger. Es wird sich um nichts geringeres als das Licht drehen. Da schwarze Löcher auch das Licht beeinflussen, wie die meisten schon gehört haben dürften, ist es richtig und wichtig, sich auch in diesem Zusammenhang mal mit ihm zu beschäftigen. Ich verrate euch jetzt schon, dass es sehr spannend und aufregend werden wird mit vielen Geschichten und allem, was ich gerne so in meine Artikel schreibe…

Die Reise zu den Schwarzen Löchern, Station 4, – Wie komme ich hier wieder wech?


Meine lieben Mitlesenden,

und hier melde ich mich mit Station 4 auf unserer Reise zu den schwarzen Löchern zurück.

Prolog

Ich habe schon gehört, dass vor allem die letzten beiden Stationen doch etwas sehr mathematisch waren und das manche daher eher mal ausgestiegen sind. Ja, das war schon bissel viel Mathe, aber wir werden uns im Laufe unserer Reise daran erinnern. Nur erinnern und nicht mehr. Heute gebe ich hier und jetzt das Versprechen, dass wir zwar heute noch kurz etwas Mathematik machen müssen, aber dann sind wir damit über den Berg.

Auf den letzten Stationen unserer Reise wird uns zwar Albert Einstein begegnen, aber nur begegnen. Wir werden sein Werk würdigen, aber nicht mit seinen Formeln zu rechnen versuchen.

Worum es heute geht

Heute wollen wir uns zum Abschluss dieser ganzen Gravitations-Berechnungen nochmal kurz darüber unterhalten, was man beachten muss, wenn man überhaupt der Gravitation eines Himmelskörpers entweichen möchte.

  • Jeder hat sicher schon mal gehört, dass schwarze Löcher schwarz sind, weil sie alles aufsaugen, was in ihre nähe kommt und weil sie so schwer sind, dass nicht mal mehr das Licht aus ihnen entweichen kann.
  • Das Licht unserer Sonne kann noch von ihr entweichen, weil sie leichter ist.
  • Wir können mit einer Rakete von der Erde entweichen, wenn sie stark genug ist.
  • Die Mondfahrer konnten wieder vom Mond abheben, um zur Erde zurück zu kehren. Er hielt das Raumschiff mit seiner Gravitation nicht fest genug.
  • Momentan macht ein kleiner Hubschrauber auf dem Mars Furore. Der könnte, ganz davon abgesehen, dass er nicht für das Weltall gebaut ist, nicht so hoch vom Mars abheben, weil er diese Kraft nicht aufbringen kann.
  • Nicht zuletzt schaffen wir es aus eigener Kraft mit einem Hüpfer nicht ins all. Wir fallen immer wieder zurück.

All diesen Beispielen ist gemeinsam, dass Gravitationskräfte von Himmelskörpern überwunden werden müssen, um ins All zu kommen und nicht wieder zurück zu fallen.
Wie viel Kraft, also Energie oder Treibstoff es kostet, einen Himmelskörper verlassen zu können hängt von seiner Masse und auch von seinem Volumen ab. Ein relativ kleiner Körper, der eine sehr hohe Dichte hat, z. B. ein Bleiplanet, könnte uns stärker an seine Oberfläche binden als ein schwerer Körper, der aus einem Material deutlich geringerer Dichte besteht, z. B. ein Schaumstoff-Planet gleicher Masse.
Um die Verhältnisse der Anziehung auf verschiedenen Himmelskörpern vergleichen zu können, muss man nicht nur die Masse berechnen, die sich aus Newtons und den Keplerschen Gesetzen ergeben. Man muss sich auch darüber klar sein, wie es sich verhält, wenn man z. B. auf so einem Körper landen möchte, und vor allem, wie man von ihm auch wieder weg kommt, wenn man vielleicht mal wieder heim will.
Um dieses Problem geht es jetzt.

Die Oberflächenschwerkraft

Das ist die Kraft, die man an der Oberfläche eines Körpers erfährt. Die ist wichtig, wenn man vergleichen möchte, wie es sich verhält, wenn man sich an der Oberfläche eines Himmelskörpers befindet. Sie drückt quasi aus, wie stark etwas an seiner Oberfläche festgehalten wird.Nehmen wir das Beispiel Erde-Mond, weil Menschen schon oft auf seiner Oberfläche gestanden haben und die ganzen Theorien überprüfen konnten.

Jeder kennt die Bilder, zu welch hohen Sprüngen die Astronauten auf der Mondoberfläche fähig waren. Das lag nicht an der Freude, dass sie die ersten dort waren, sondern eben an der unterschiedlichen Oberflächenschwerkraft von Mond und Erde.
Wie man diese nun miteinander vergleicht, kommt jetzt.

Wann immer man zwei Punkte miteinander vergleicht, von denen der eine ebenso weit vom Erdmittelpunkt der Erdoberfläche entfernt ist, wie der andere vom Mittelpunkt des Mondes zur Mondoberfläche, dann ist das Schwerefeld der Erde in einem Punkt 81,3 fach stärker als das Schwerefeld des Mondes im anderen Punkt.
Wenn wir auf dem Mond stehen, sind wir 1738 km vom Mondmittelpunkt entfernt. Stehen wir auf der Erde, so sind wir 6371 km vom Erdmittelpunkt entfernt. Berechnet man nun die jeweilige Oberflächen schwerkraft, muss man die Abstände zu den Mittelpunkten berücksichtigen.
Der Abstand der Erdoberfläche zum Erdmittelpunkt ist 3,666 mal größer als der Abstand vom Mond-Mittelpunkt zur Mondoberfläche.
Die Stärke der Schwerkraft sinkt quadratisch, so dass die Oberflächenschwerkraft der Erde im Verhältnis zur Oberflächenschwerkraft des Mondes um einen Faktor 3,666 zum Quadrat = 13,44 geschwächt erscheint.

Wir müssen also das eigentliche Schwerefeld der Erde, das ja 81,3 fach stärker ist als das des Mondes durch 13,44 teilen, was dann 6,05 ergibt.
Somit ist die Oberflächenschwerkraft der Erde nur 6,5 mal stärker, als die des Mondes.
Voilla, auf dem Mond wiegen wir noch ein Sechstel, obgleich der Mond doch um 81,3 fach leichter ist, als die Erde. Hier schlägt tatsächlich der Radius zu.

Das kann man natürlich jetzt auch mit allen anderen Himmelskörpern des Sonnensystems so tun. Da fragt sich nur, wo denn bei den Gasriesen die Oberfläche sein soll. Sie bestehen ja bis tief in ihr Inneres aus Gas. Im Inneren dürfte beispielsweise Jupiter aus flüssigem metallischen Wasserstoff bestehen. Ob er in der Mitte einen festen Kern besitzt, wissen wir noch gar nicht so genau.

Man nimmt dazu die Atmosphärenschicht des Gasplaneten, bei der ihr Druck dem Normaldruck auf Meereshöhe hier auf der Erde entsprechen würde, könnte man dort Station machen. Was soll man auch anderes vergleichbares nehmen. Gasplaneten haben ja sozusagen keinen festen Boden.

Wie die Dichte von Atmosphären, also von Gasen mit ihrer Dicke zunimmt, weiß man ziemlich genau. Diese Formeln benötigen wir hier auf der Erde in der Luft- und Raumfahrt und für die Vorhersage unseres Wetters. Da sich im Gegensatz zu Flüssigkeiten Gase zusammendrücken lassen, nimmt der Druck in ihnen nicht linear zu, wie beispielsweise in Wasser, sondern exponentiell. Den Druck auf sie übt natürlich das Gravitationsfeld des Planeten aus, dessen Atmosphäre sie sind.
Die genaue Erklärung dieser Gas-Druck-Geschichte würde aber den Artikel hier sprengen und ich würde mein Versprechen brechen, nicht wieder so mathematisch werden zu wollen.

Hier eine kleine Tabelle, die mal die jeweilige Oberflächenschwerkraft aller Planeten im Verhältnis zu derjenigen der Erde darstellt. Die Erde hat daher die 1.

Planet Oberflächenschwerkraft
Merkur 0,38
Venus 0,9
Erde 1
Mond 0,17
Mars 0,38
Jupiter 2,62
Saturn 1,14
Uranus 0,88
Neptun 1,13

Ganz erstaunlich finde ich, dass man auf dem Jupiter bei unserer hypothetisch gedachten Oberfläche nur etwa zweieinhalb mal so viel wiegt als auf der Erde, obwohl er mehr als doppelt so schwer ist, wie alle anderen Planeten zusammen.
Wer mag, kann sich ja mal im Internet eine Tabelle mit den Planetenradien vornehmen, um sich dieses Wunders zu erfreuen.

Die Entweichgeschwindigkeit

Und nun kommen wir zur eigentlichen Frage der Überschrift.

Wie komme ich hier wieder wech?

Wer in den Weltraum, wer auf Mond, Mars oder sonst wo landen will, muss sich einiges überlegen.

  • Wie schnell muss meine Rakete sein, um z. B. von der Erde weg zu kommen
  • Wieviel Gewicht muss ich mitnehmen
  • Wieviel Treibstoff brauche ich für mein Vorhaben
  • Übersteht mein Raumschiff am Zielort die Landung oder zerquetscht mich dort die Schwerkraft
  • Wie komme ich wieder weg?

Die Geschwindigkeit, die hier zur Flucht nötig ist, nennt man die Entweich-Geschwindigkeit. Sie hängt von der Masse des Himmelskörpers ab, von dem man entweichen will und somit auch von ihrer Oberflächenschwerkraft und damit natürlich auch von dessen Radius.

Auf der massereichen Erde brauchten die Astronauten eine über einhundert Meter lange Rakete, die im wesentlichen nur aus Treibstofftanks bestand. Dass neben der Erdanziehung auch der Widerstand der Atmosphäre überwunden werden musste, ist auch ein erheblicher Treibstoff-Fresser.
Um vom Mond wieder weg zu kommen, reichten ganz kleine Triebwerke aus, die die Landefähre wieder in die Umlaufbahn des Mondes brachten, Auch das Raumschiff wog natürlich auf dem Mond nur ein Sechstel, und der Mond hat keine Atmosphäre, was sich auf den Treibstoff-Verbrauch auswirkt.

In der Umlaufbahn angekommen,wurde sie dann vom Service-Modul wieder aufgelesen. Dessen kleines Triebwerk trug das Modul schließlich bis zu dem Punkt, wo die Erdanziehung die Aufgabe dann übernahm, Schiff und Mannen in Richtung Erde zu ziehen.

Alles, was langsamer ist als die jeweilige Entweichgeschwindigkeit eines Himmelskörpers, muss unweigerlich wieder zu Boden fallen, weil irgendwann auf der Flugbahn die Erdanziehung letztlich doch siegt.

Vor der Entweich-Geschwindigkeit gibt es aber noch zwei Fluchtgeschwindigkeiten.
Mit der ersten Fluchtgeschwindigkeit gelangt man in einen Orbit um die Erde, oder eines Himmelskörpers.
Sie beträgt auf der Erde etwa 7,1 Kilometer pro Sekunde. In diesem Orbit kann man ewig bleiben, wenn nichts und niemand stört. Leider hat man hier auf der Erde an dieser Umlaufbahn nicht viel Freude. Sie liegt noch deutlich innerhalb der Atmosphäre. Man wird von ihr rasch abgebremst und würde schließlich doch herunter fallen.

Die zweite Fluchtgeschwindigkeit bringt einem schon in eine elliptische Kepler-Bahn.

Die Entweichgeschwindigkeit, 11,2 km/s ist schließlich stark genug, dass man sich aus dem Schwerefeld der Erde befreit. Dann kann man sich in Richtung Mond treiben lassen, der einem dann mit seinem Schwerefeld in Empfang nimmt.

Entweich-Geschwindigkeit und Oberflächenschwerkraft werden noch eine große Rolle bei den schwarzen Löchern spielen. Aber bis es so weit ist, werden wir noch einige andere sehr interessante Themen behandeln.

Ausblick:

  • Elementar auf unserer Reise ist, dass wir ein wenig darüber Bescheid wissen sollten, woraus unser Universum im wesentlichen besteht, und was die Welt zusammen hält. Darum wird es ganz unmathematisch in Station 5 unserer Reise gehen.
  • Auf Station 6 erfahren wir etwas über die Eigenschaften des Lichts.
  • Auf Station sieben macht die Herrscherin nochmal richtig Druck im All
  • Station acht bringt uns an das Lebensende von Sternen, denn die leben zwar lang, aber nicht ewig.
  • Station neun bringt uns in die Bäckerei des Universum. Es wird um Quarktaschen gehen.
  • Station zehn wird dann vermutlich die Endstation auf unserer Reise zu den schwarzen Löchern sein.

Ihr seht, es bleibt spannend.