Die Reise zu den Schwarzen Löchern, Station 7 – Die Herrscherin macht Druck im All


Seid herzlich gegrüßt,

Vorgeplänkel

Tja, wie das manchmal so ist. Diesen Artikel musste ich nochmal total überarbeiten, weil ich damit unzufrieden war. Ich hatte Wortfindungsstörungen und fand ihn auch inhaltlich zu trocken. Hoffentlich geht es euch, wie mir, und die überarbeitete Version gefällt euch besser.
Also los:

Heute geht es darum, was so passieren kann, wenn Materie von allen Seiten zusammengedrückt wird, wenn also Druck ausgeübt wird.
Wir haben ja schon in den vorigen Artikeln behandelt, dass die heimliche Herrscherin, die Gravitation durch die gegenseitige Anziehung die Himmelskörper, ob Planeten, Sterne, Gas- und Staubwolken und vieles andere, zusammenhält. Da wir zu den schwarzen Löchern wollen, werden wir uns heute mit Gaswolken und Sternen befassen, was der Druck in ihrem Inneren bewirkt, was an ihrem Lebensende geschieht und damit, was Druck mit normaler Materie, also mit Atomen und deren Bestandteilen so anrichten kann.

Der Anfang

Kurz nach dem Urknall, als das Universum entstand, gab es im Wesentlichen nur das Element Wasserstoff, einen kleinen Anteil Helium und etwas Lithium.
Das dem so war, verrät uns das Sternenlicht sehr alter bereits längst vergangener Sterne und gute Simulationen am Computer. Aus diesem Grund werden wir uns nachher, wenn es um Gaswolken geht, eine Wolke vorstellen, die im wesentlichen aus Wasserstoff besteht. Den Staub darin werden wir vernachlässigen. Somit werden wir heute auch nicht über die Entstehung von Planeten sprechen, die eigentlich immer gemeinsam mit ihren Sternen geboren werden.

Verdichtete Materie

Wir haben in vorigen Artikeln schon beschrieben, dass der Grund, dass ein Buch niemals durch die Tischplatte fällt, die Elektronenhülle der Tisch-Atome und die des Buches sind, die sich gegenseitig abstoßen.
Wir können bei festen und flüssigen Körpern die Elektronen quasi nicht in ihre Atomkerne hinein drücken.
Gase sind deshalb so kompressiebel (zusammendrückbar), weil ihre Atome oder Moleküle sich frei im Raum, also z. B. in einer Wolke bewegen. Ihre Bestandteile sind sehr viel weiter voneinander entfernt, als bei festen oder flüssigen Substanzen.
Pralle Luftballone oder Bälle lassen sich gut zusammendrücken, bis das Material ihrer Hüllen dem Druck nicht mehr stand hält und sie platzen. Wenn man Gase presst, dann entsteht Wärme, denn die Bestandteile kommen näher zueinander, so dass, befindet man sich beispielsweise in einem aufgeheizten Raum, man mit mehr von ihnen in Kontakt kommt und ihre Energie als Wärme spürt. Im Weltall gibt es sehr viele sehr heiße Gasatome. Man verbrennt dort aber dennoch nicht, weil die Gase dort so dünn verteilt sind, dass man nur selten mal mit einem einzelnen heißen Gasatom in Berührung kommt. Wer schon mal einen Fahrradreifen oder ähnliches aufgepumpt hat, wird bemerkt haben, dass die Pumpdüse dabei warm wird. Das Gegenteil passiert, wenn ein Gas mit einem Schlag freigesetzt wird, z. B. wenn man es aus einer Gasflasche entlässt. Dann entsteht Kälte, weil die entweichenden Gasteilchen Wärmeenergie mit nehmen und auseinander streben.
Die Atome der Gase bleiben aber noch völlig unbeschädigt, wenn man das Gas unter Druck setzt. Sie rücken nur etwas näher zueinander.

Gaswolken

Findet sich Materie im All, z. B. in Form einer Gaswolke zusammen, so beginnt die Gravitation ihre Arbeit. Eine ungestörte Gaswolke könnte eigentlich für immer und ewig als solche existieren und in einem Gleichgewicht zwischen dem Gravitationsdruck, der zum Mittelpunkt hin wirkt, und dem Druck, den ihr die elektromagnetische Kraft der Elektronen der zusammenrückenden Gas-Atome oder Moleküle entgegensetzt, verharren.
Nun besteht aber das Universum aus vielen Himmelskörpern, die alle eine Masse haben. Manchmal explodiert vielleicht ein Stern in der Nähe unserer Gaswolke und erzeugt in ihr eine Schockwelle, oder ein anderer massereicher Himmelskörper kommt vorbei und verändert mit dieser die Gasverteilung in der Wolke.
Es gibt dann Orte in der Wolke, an welchen das Gas etwas dichter ist, also mehr Moleküle pro $cm^3$, und andere, bei
denen es sich umgekehrt, also weniger dicht verhält.
An solchen Orten höherer Dichte wittert die Herrscherin ihre Chance. Sie wird alles daran setzen, diese Orte noch dichter zu bekommen, indem sie versucht, noch mehr Material dort hin anzuziehen.
Das bedeutet dass die Dichte an diesem Ort im Gegensatz zu seiner Umgebung immer größer wird. Es entsteht quasi eine Unterwolke in der Wolke, ein Gastropfen oder eine Gaskugel, die um so schwerer wird, desto mehr Material sie aus ihrer Umgebung an sich ziehen kann. Dieses wiederum bewirkt, dass der Druck im Inneren solch eines Gasballs immer weiter ansteigt, desto größer und massereicher er wird. und das sorgt dafür, dass die Temperatur im Innern stetig zunimmt.

Gasplaneten und Protosterne

Die Abstoßungskraft zwischen den Gasteilchen, welche durch ihre Elektronenhüllen ausgeübt wird, ist nicht unendlich stark. Das bedeutet, dass die heimliche Herrscherin, obwohl weit abgeschlagen als schwächste Kraft, den Gasatomen durchaus etwas anhaben kann, wenn nur genügend Material vorhanden ist, das Druck durch Masse ausüben kann. eine Temperatur von vielen tausend Grad im inneren unserer Wasserstoff-Kugel bewirkt, dass die Atome so stark und oft miteinander kollidieren, dass sie sich gegenseitig manchmal Elektronen aus ihren Hüllen schlagen. Wasserstoff-Moleküle werden also zu Wasserstoff-Atomen zerrissen und diese verlieren sogar noch ihre Elektronen. Das hat zur Folge, dass das Gemisch jetzt aus positiv geladenen Protonen und negativ geladenen Elektronen besteht. Freie Neutronen gibt es dort nicht, weil Wasserstoff keine besitzt. Diese Proton-Elektronen-Suppe nennt man ein Plasma. Das ist neben fest, flüssig und gasförmig der vierte Aggregat-Zustand. Fast 100 % der Materie im Universum befindet sich in diesem Zustand. Ich erwähnte in einem der vorigen Artikel den Gasplaneten Jupiter, der fast nur aus Wasserstoff, etwas Helium und Spuren kosmischen Staubes besteht. Da er 90 % der Masse aller sich außer der Sonne in unserem Sonnensystem befindlichen Körper in sich vereint, darf man in seinem Inneren, obwohl er im wesentlichen aus Gas besteht, eine höhere Temperatur erwarten, als beispielsweise in unserer Erde. 1973 und 1974 flogen zwei amerikanische Raumsonden, Pionier 10 und Pionier 11 in geringem Abstand an Jupiter vorbei. Aus den Messdaten konnte man tatsächlich die Kerntemperatur des Gasriesen abschätzen. Die Wolkenschicht des Planeten ist rund 71.000 Kilometer von seinem Zentrum entfernt. Dort herrscht eine Temperatur von etwa -175 Grad Celsius. In einer Tiefe von 2900 km (4 % des Planetenradius) beträgt die Temperatur bereits etwa 5000 Grad. Das ist etwa so viel, wie die Kerntemperatur unserer Erde oder die Oberflächentemperatur auf unserer Sonne. 24.000 Kilometer unter der Wolkenobergrenze, nach einem Drittel des Weges zum Planetenzentrum würde das Thermometer bereits stramme 11.000 Grad anzeigen. Im Mittelpunkt des Jupiter wird eine Temperatur um 30.000 Grad vermutet, mehr als fünf mal so viel, als auf unserer Sonnenoberfläche.
Auch auf unserer Erde kann man derlei Druckphänomene beobachten.
Der Kern unserer Erde besteht im wesentlichen aus Eisen und Nickel. Der Druck im Inneren der Erde ist so hoch, dass es tatsächlich gelingt, die Elektronen etwas in Richtung ihrer Atomkerne zu drücken. Die Atome sind dort also bereits etwas kleiner in ihrem Durchmesser.

Wir erinnern uns an den Vergleich des Fußballstadions, auf dessen Rängen sich die Elektronen tummeln und in dessen Mitte der Atomkern schwebt, der die Größe einer Schrotkugel besitzt. Im Inneren der Erde oder auch in Gasplaneten ist das Fußballstadion dann etwas kleiner. Vielleicht nur noch eine große Sporthalle, wobei die Größe des Atomkerns unverändert bleibt.
Im Zentrum, also im Eisenkern der Erde beträgt die Dichte ungefähr 12 $g/cm^3$, obwohl Eisen normalerweise eine Dichte von 7 $\frac{g}{cm^3}$ besitzt.

Der vierte Zustand

Bei diesen Temperaturen von 30.000 Grad im Jupiterkern nimmt das Wasserstoffgas den erwähnten vierten Aggregat-Zustand an und wird zu einem Plasma. Das Gas wird in diesem Zustand leitfähig für Ströme, und wo geladene Teilchen sich bewegen, sind auch Magnetfelder nicht weit.

Was in unseren Neon-Röhren auf der Erde leuchtet, ist durch strom zu Plasma gewordenes Neon-Gas.
Dass ein Plasma elektrisch leitend ist, kann man mit brennenden Gasflammen auf der Erde testen, indem man die Flamme durch einen unterbrochenen Stromkreis schickt. Die Flamme wird ihn schließen und das Messgerät wird Stromfluss anzeigen.
Weil der Wasserstoff im Plasma-Zustand leitfähig ist, nennt man ihn dann metallischen Wasserstoff.
Plasma ist schon alleine so interessant und spannend, dass ich mehr als einen Artikel darüber schreiben könnte, aber heute nicht.
Was passiert aber nun, wenn der Himmelskörper, unsere Wasserstoffkugel noch genügend Material außen herum findet, um noch mehr anzuwachsen, dann geht es ja unseren sowieso schon kaputten Atomen noch schlechter…

Sterne

Wenn der Druck in unserem Gasball so hoch geworden ist, dass die Temperatur in seinem Innern etwa 13 Mio Grad übersteigt, dann kommen sich die Protonen der Wasserstoffkerne so nahe, dass die starke und die schwache Kernkraft, die nur im Innern von Atomkernen wirken, dominieren. Sie und noch weitere kernphysikalische und Effekte der Quantendynamik sorgen nun dafür, dass vier Wasserstoffkerne zu einem Kern des Elementes Helium verschmelzen können.
Die Kernverschmelzung von Wasserstoff zu Helium, ist der Prozess, aus welchem wir unsere Sonnenwärme, ihr Licht etc. empfangen.
Vier Wasserstoff-Atome bestehend aus jeweils einem Proton im Kern und einem das Proton “umkreisenden” Elektron werden zu einem Helium-Aton mit zwei Protonen und zwei Neutronen im Kern, und zwei Elektronen, die diesen “umkreisen”.
Das gewordene Helium-Atom wiegt etwas weniger, als vier Wasserstoffatome zusammen, ein wenig Masse ist somit scheinbar verschwunden, aber in der Physik verpufft nicht einfach etwas im nichts.
Diese kleine Massendifferenz wird als Energie in Form von Neutrinos und dem, was wir letztlich als Sonnenwärme empfangen, davon getragen. Hier begegnet uns die Tatsache von Einstein, dass Energie und Masse ineinander umgewandelt werden können. Die Formel dazu ist E=$m c^2$.
Alle Sterne funktionieren auf die selbe Weise. Deshalb ist für Astronomen häufig der Rest der chemischen Elemente gar nicht so wichtig. Sie sagen, es gibt Wasserstoff und Helium, und die anderen Elemente sind schlicht und ergreifend Metalle.
Ein Astronom soll einmal gesagt haben, dass ein Stern einfacher funktioniere, als eine Eintagsfliege. Damit hat er vermutlich sogar recht.
Das ist aber genau die Genialität des Aufbaus und der Funktionsweise von Sternen. Die Robustheit dieses Systems lässt sie so alt werden.

Der Fluch von E = m $c^2$

Welch schreckliche Auswirkungen die Umwandlung von Masse zu Energie haben kann, machen wir uns an der furchtbaren Wirkung von Atombomben klar. Dort passiert zwar das umgekehrte. Atomkerne werden in ihnen nicht fusioniert, also verschmolzen, sondern gespalten. Nichts desto Trotz passiert auch in diesem Prozess, dass Masse in Energie umgewandelt wird, die dann freigesetzt ihre verhehrende und zerstörerische Wirkung entfalten kann. In der Atombombe von Hiroschima waren ungefähr 60 Kilo spaltbaren Urans enthalten. Es wurde aber nur ungefähr ein Gramm davon tatsächlich in Energie umgewandelt.
Uran ist ein sehr schweres und radioaktives Metall. Seine Dichte beträgt ungefähr 19 g /$cm^3$. Es ist also fast drei mal so schwer als Eisen und 19 mal so schwer als Wasser. Das bedeutet, dass ein Gramm Uran ungefähr das Volumen eines Fünftels eines Kubikzentimeters einnimmt. Das ist ungefähr so viel, wie ein Stecknadelkopf. Und dieses kleine Bröckchen kann solch furchtbare Energie entfesseln, um eine ganze Stadt zu zerstören.
Einfach unfassbar.
Ob der ganzen Gefahren der Kernspaltung, z. B. Unfällen in Kernkraftwerken und wohin mit dem radioaktiven Apfall, versucht die Menschheit seit mehr als fünfzig Jahren das Sonnenfeuer, die Kernverschmelzung hier auf Erden zu zünden. Diese Energiegewinnung gilt als sauberer und soll ein für alle mal den Energiehunger der Menschheit stillen. Seit fünfzig Jahren heißt es, dass wir in fünfzig Jahren so weit wären. Bisher gibt es aber nur kleine Versuchsreaktoren, wie Wendelstein in Greifswald, der sich in Südfrankreich im Bau befindende Iter und andere die in Planung sind. Mag sein, dass der Menschheit es eines Tages gelingen wird, ein kleines Sonnenfeuer hier auf Erden zu entfachen. Ob das dann hält, wass man sich derzeit erhofft, muss sich weisen.

Aber zurück zu unseren Sternen.

nichts ist für die Ewigkeit – Das Ende

Unsere Sonne ist ein relativ kleiner Stern, weshalb sie so sparsam mit ihrem Wasserstoff haushaltet, dass sie bereits seit fünf Milliarden Jahren Energie für unser Sonnensystem liefert und dies auch noch weitere fünf Milliarden Jahre tun wird. Riesensterne, die ein vielfaches an Sonnenmassen in sich vereinen, leben eventuell nur wenige Millionen Jahre, weil die Kernverschmelzung in ihrem Innern heftiger abläuft und sie ihren Wasserstoff somit schneller verbrauchen und zu Helium verbacken.
Nun stellt sich die Frage:

Was passiert mit unserer Sonne, wenn sie ihren Wasserstoff im Kern zu Helium verbacken hat.

Da die sehr energiereiche Verschmelzung von Wasserstoff nun endet, fällt der Motor in ihrem Inneren weg, der sich erfolgreich gegen die Gravitation durchsetzen konnte, um ein weiteres Zusammenstürzen des Sternes zu verhindern. Dieses setzt nun ein und die Herrscherin hat zunächst wieder die Oberhand. Das geht so lange, bis die Temperatur in ihrem Innern einen weiteren kritischen Wert überschritten hat. an diesem Punkt beginnt das Helium-Brennen. Über viele Kernprozesse hinweg entstehen nun Sauerstoff, Kohlenstoff, Stickstoff und weitere schwerere Elemente. Das Helium-Brennen liefert so viel Energie, dass der sterbende Stern sich derart gegen die Gravitation stemmen kann, dass er sich aufbläht. Das wird mit unserer Sonne so passieren. Sie wird sich im Laufe vieler Millionen von Jahren so weit aufblähen, dass auf jeden Fall Merkur und Venus und vielleicht sogar die Erdbahn sich in ihrem Inneren befinden werden. Lange vorher wird aber schon kein Leben auf der Erde mehr möglich sein, weil die Erde aufglühen wird. Und diese Erwärmung, das sei an dieser Stelle ausdrücklich gesagt, hat nichts mit der Erwärmung zu tun, die wir gerade im von Menschen gemachten Klimawandel erfahren. Manchmal wird das behauptet, aber noch ist die Sonne nicht so weit. Sie hat damit noch nicht angefangen, weil sie in ihrem Kern noch ungefähr 90 % ihres Wasserstoff enthält. Erst etwa 10 % des Wasserstoffs sind also zu Helium geworden.
Wenn euch also jemand sagt, der Klimawandel käme von der Sonne, dann ist das schlicht und ergreifend eine Falschaussage, die euch jeder andere bestätigen wird, der sich etwas mit Sonnenphysik und so sachen auskennt.
Auf jeden Fall ist sie in diesem aufgeblähten Zustand zu einem roten Riesen geworden. Da aus dem inneren Kern zwar mehr Energie erzeugt wird, die Sonne aber durch ihre Aufblähung eine viel größere Oberfläche besitzt, wird die Energie über diese abgestrahlt. Das führt dazu, dass ob der Größe der Sonne weniger Energie pro Flächeneinheit abgestrahlt wird, als jetzt, wo die Aufblähung noch nicht begonnen hat. Deshalb leuchtet sie im kühleren langwelligeren roten Bereich und nicht, wie jetzt im weißen Licht.

Irgendwann ist dann auch das Helium-Brennen und die Verschmelzung schwererer Elemente beendet. Das schwerste Element, das in unserer Sonne entstehen kann, ist Eisen. Will man Eisen zu schwereren Elementen verschmelzen, z. B. zu Gold, dann muss man Energie hinzu fügen und bekommt keine heraus. Deshalb entstehen diese Elemente in anderen Prozessen, die uns vielleicht auf unseren weiteren Stationen noch begegnen werden.
Auf jeden Fall kontrahiert die Sonne nun wieder, weil es außer den Kernkräften und der elektromagnetischen Kraft nichts mehr gibt, das der Gravitation etwas entgegen zu setzen hätte. Sie schrumpft also wieder.
Auf diesen Moment hat die heimliche Herrscherin Milliarden von jahren gewartet. Sie hat geduldig Druck gemacht, bis alle Energie aus dem Kern erloschen war.
Und diesmal schrumpft sie über ihre ursprüngliche Größe hinaus bis sie nur noch einen Durchmesser von wenigen Kilometern hat. Dabei erhitzt sich ihre Oberfläche und Reste von Wasserstoff können noch verschmelzen.
Sie wird einen Teil dieser Wasserstoffhülle als planetaren Nebel absprengen. Bis zu 25 % ihrer ursprünglichen Masse kann so davon getragen werden. Natürlich hat sie während ihres langen Lebens auch stetig Masse durch die Verschmelzung von Elementen und die davon getragene Energie, aber auch durch den aus geladenen Teilchen bestehenden Sonnenwind verloren, aber das fällt bei ihrer riesigen Masse von $1,989 \times 10^30$ kg (1,989 mal 10 hoch 30 kg) selbst über so einen langen Zeitraum hinweg, nicht ins Gewicht.
Das ist kaum zu glauben, wenn man bedenkt, dass in ihrem Inneren in jeder Sekunde 597 Millionen Tonnen Wasserstoff zu 593 Millionen Tonnen helium verschmolzen werden. Die verbleibenden vier Millionen Tonnen werden zur Energie, die die Sonne stetig ins Weltall bläst und die unser Leben ermöglicht. Man sieht auch hier wieder, wieviel Energie in Masse steckt.
Was von der Sonne dann noch übrig ist, nennt man einen weißen Zwerg. Weiß, weil er so hell leuchtet und so heiß ist, und Zwerg, weil er so klein geschrumpft ist. Dabei ist er so dicht, dass ein Teelöffel seines Materials viele Tonnen wiegen würde. Die Atome sind natürlich längst schon in ihre Elektronen und Protonen zu Plasma zerfallen und dadurch können sich die Kerne so nahe kommen, dass sich solch schwere entartete Materie bilden kann.
Was ein weißer Zwerg ist und noch weitere Merkwürdigkeiten werden wir in Station acht auf unserer Reise kennen lernen.
Jetzt lassen wir die Sonne erst mal in Ruhe vor sich hin fusionieren und meine Gedanken dann auch, dass daraus Station acht wachsen kann.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.