Sonnenfinsternis vom 20.03.2015


Liebe Astro-Freunde,

manche mögen sich jetzt vielleicht fragen, wieso veröffentlicht der jezt so einen alten Text. Die Sofi ist doch längst gegessen. Das stimmt natürlich, aber gerade wurde auf Twitter daran erinnert, und als diese Sofi stattfand, schickte ich meinen Text nur einigen wenigen Personen per Mail. Und bevor er mir verloren geht, verewige ich die wichtigsten Dinge heute mal hier, die ich damals so zur Sofi schrieb.
Bitte verzeiht mir, aber ich schreibe den Kram jetzt nicht extra in die Vergangenheit. Dazu bin ich schlicht und ergreifend zu faul.

Ich wünsche trotzdem viel Freude mit meinen Sofi-Erinnerungen.

Im Büro war ich damals quasi Sofi-Beauftragter. Alle Fragen dazu, wurden an mich gestellt.
Da musste ich mich mal selbst reinarbeiten, wie die genau verlaufen wird.
Jetzt beginnt der Zeitsprung bis kurz vor die Finsternis:
So verläuft die Sonnenfinsternis 2015
Am 20. März 2015 spielte sich über Deutschland ein seltenes Naturereignis ab. Dann stehen Sonne, Mond und Erde genau in einer Linie. Schiebt sich dann der Mond von einem Punkt auf der Erde aus gesehen vor die Sonne, kommt es zu einer Sonnenfinsternis. Wissenschaftlich gesprochen wirft der Mond dabei seinen Kernschatten auf die Erde. An den Orten, an denen dieses Ereignis sichtbar ist, schiebt sich eine schwarze Scheibe vor die Sonne und lässt damit das Tageslicht verschwinden. Es gibt auch abgeschwächte Varianten, dann tritt die Erde nur in den Halbschatten des Mondes. Solche partiellen Sonnenfinsternisse bleiben oftmals von vielen unbemerkt – im Jahr 2011 war das etwa so.
Die Sonnenfinsternis 2015 ist eine totale Sonnenfinsternis, auch Eklipse genannt. Für einige Minuten wird am Himmel eine „schwarze Sonne“ zu sehen sein. Das Ereignis beginnt 700 Kilometer südlich der grönländischen Küste und zieht in einem Bogen nach Nordosten. Die Sonnenfinsternis endet schließlich etwa 70 Kilometer vom Nordpol entfernt. Sowohl die Färöer-Inseln als auch Spitzbergen liegen im totalen Schatten. Die Sonnenfinsternis wird hier für gut zwei Minuten am besten zu sehen sein.

Wo ist die Sonnenfinsternis sichtbar?
Hohe Bedeckungsgrade, die zu einer erkennbaren Verdunkelung des Tageslichtes führen, werden in fast ganz Europa, im Nordwesten Sibiriens, in der Arktis inklusive Grönlands sowie auf den Azoren und auf Madeira sichtbar.
Was wird von Deutschland aus zu sehen sein?
Zwischen etwa 9.30 Uhr und 12 Uhr wird in Deutschland eine partielle Sonnenfinsternis zu sehen sein. Das heißt, bis zu 82 Prozent der Sonne werden durch den Mond abgedeckt. Im Süden Deutschlands ist es weniger. Dort wird die Sonne zu rund 67 Prozent verdeckt. Da die Verdunkelungen des Tageslichts ab einer Abdeckung von 50 Prozent der Sonne sichtbar wird, ist das Ereignis in ganz Deutschland wahrnehmbar. Je nach Ort ist die „schwarze Sonne“ in Deutschlands Städten zwischen 10.30 Uhr und 10.50 Uhr zu sehen.

Anschließend bat ich die Leserinnen und Leser meiner Astro-Mailingliste doch bitte ihre Erlebnisse mit uns zu teilen.
Nun kommt eine Zeitzeugin zu Wort, die auch hier mitliest
Hallo in die Runde,

bevor der Alltag wieder einiges vergessen macht, will ich kurz
berichten, wie ich das schöne Ereignis heute Vormittag in Hannover
erleben durfte:

Es war ein strahlend heller Morgen mit blauem Himmel bei ca. 8 Grad
im Schatten. Für 10.20 Uhr hatte ich mich mit einer sehenden
Bekannten verabredet, um die Sofi gemeinsam zu erleben. Um 10.10 Uhr
ging ich schon mal vor die Tür um die Bekannte zu erwarten und schon
mal ein wenig Sonne zu erleben. Mit meinem noch sehr kleinen Sehrest
konnte ich erkennen, dass die Sonne schon etwas anders als
normalerweise schien, es war schon ein ganz klein wenig dunkler.

Wir gingen ca. 10 Minuten in die nahe gelegenen Grünanlagen. Auf dem
Weg dorthin horchte ich auf den Gesang der Vögel. Dabei hörte ich zu
meiner großen Freude den ersten Zilpzalp in diesem Frühjahr. Um
10.37 waren wir an unserem „Ausguck“, und die Sonne war wieder etwas
dunkler geworden. Von der letzten Sofi 1999 hatte ich noch eine
Sonnenschutzbrille für meine Bekannte. Sie schaute gleich hindurch
und beschrieb mir: „Die Sonne ist jetzt eine schmale Sichel (links
unten), und der obere innere Teil der Sichel ist rot, als ob es
glüht, der äußere Teil ist noch golden.“ Um 10.39 Uhr: „Die Sonne
ist jetzt eine schmale Sichel, liegend.“ Wir standen ziemlich still
da und ließen alles auf uns wirken. Dabei sangen die Vögel scheinbar
ganz unbeeindruckt weiter. Es wurde dunkler und die Sonnenwärme auf
der Haut ließ deutlich nach. Die Sonnen-Sichel war nun wie eine
Schale, d. h. also, der Mond ist oben und von rechts nach links an
der Sonne vorbeigezogen und hat unten noch ein Stück Sonne frei
gelassen. Kurze Zeit später wurde es wieder etwas heller und die
Wärme nahm zu. Nun war die Sonnen-Sichel auf der rechten unteren
Seite der Sonnenscheibe und wurde immer größer. Ziemlich schnell,
fand ich, war es wieder gut hell und warm auf der Haut. Gegen 11 Uhr
gingen wir schließlich beeindruckt nach Hause. Ich wär gern noch
länger draußen geblieben, aber wir hatten beide noch einiges anderes
zu tun.

Und hier kommt noch etwas, das ich im Nachgang darüber schrieb:
sie liegt nun hinter uns, die für manche enttäuschende partielle Finsternis.
Für mich war sie nicht enttäuschend, denn ich durfte sehr vieles lernen, verstehen und noch besser begreifen. Ich weiß, dass dem auch z. B. für Ulrike, die hier mitliest, so war.

Das Erlebnis war natürlich weit weniger intensiv als 1999 am elften August.
Auch der Medienrummel würdigte das Ereignis lediglich am Rande. Letztlich ist es ja wirklich astronomisch so, dass eine Sonnenfinsternis im Grunde genommen nichts besonderes ist. Sie kommen deutlich häufiger vor, als z. B. Sonnenfleckenmaxima und Minima sich abwechseln.
Trotzdem! Ich fand sie einfach ganz wunderbar. Die Vorfreude darauf, das alles mit euch zu teilen, war für mich große Klasse.

Zwei Dinge sind mir aber im Nachgang der Finsternis extrem aufgestoßen.
Da gab es tatsächlich Zeitungsberichte, die alle Beobachter ohne Schutzbrille in Sicherheit
wähnen sollten. Es wäre nicht nötig, eine zu tragen, denn man könne sowieso nicht hinein schauen und vieles mehr in dieser Richtung wurde hier verzapft.
Als vollblinder Mensch möchte ich das jetzt nicht dramatisieren. Ich kenne aber wirklich keinen Astronomen, der das ohne Schutzfilter versucht geschweigedenn  jemandem empfohlen hätte, darauf zu verzichten. Entweder Filter, Teleskop mit Spezialfilter, Schutzbrille oder Projektionsmethode sollten hierbei Anwendung finden.

Die andere etwas befremdlich wirkende Geschichte war die scheinbare Angst der Strombetreiber, dass das Netz zusammenbrechen könnte, wegen der Finsternis.
Auch hierfür habe ich vielleicht nicht genug Hintergrundwissen, aber ehrlich gesagt kommt mir das etwas strange vor. Am Sonnenstrom, der vielleicht durch die etwas verdeckte Sonne etwas weniger wird, kann es ja kaum liegen. Wie oft ist die Sonne gar nicht zu sehen. und außerdem macht der Sonnenstrom bisher nur wenige Prozent aus.
Ich denke, die Geschichte begann anders.
Eine weitaus größere Gefahr für Stromversorger, Satelliten und andere Kommunikationstechnologie stellt die Sonne selbst unverdeckt und quasi nackt dar.
In Zeiten hoher Sonnenaktivität kann es sein, dass ein Sonnenausbruch die Erde trifft. Insbesondere dann, wenn so ein magnetischer Sturm beispielsweise in eine lange Stromleitung hinein induziert, kann es zu Abschaltungen des Stromnetzes kommen. Das wäre nicht das erste mal.
Wir befinden uns zwar momentan eher zwischen einem Sonnenflecken-Maximum, was mit hoher Sonnenaktivität einher geht, und einem Minimum. Es sind aber durchaus noch genügend Flecken des Zyclus aktiv, die hier ausbrechen könnten und uns einen Sturm elektrisch geladener Teilchen bescheren könnten.
Aus diesem Gerücht könnte schnell eine Angst-Geschichte vor der Finsternis entstehen, weil so etwas sich einfach besser erzählt.

Ich habe sogar ein Sofi-Bild von meinem Arbeitskollegen, das er durch sein Milchglas-Dach machte.

Foto Sonnenfinsternis
Sofi 2015

So, das war mein Angedenken an die Sonnenfinsternis vom 20.03.2015.

Große Frauen in Astronomie und Wissenschaft, zum Frauentag am 08.03.2019


Liebe Leserinnen und Leser,

auch in diesem Jahr möchte ich meiner Tradition treu bleiben und zum Weltfrauentag eine der zahlreichen Vorkämpferinnen in Astronomie und Naturwissenschaften würdigen.
Bis heute sind Frauen in naturwissenschaftlich-technischen Berufen leider noch immer unterrepräsentiert. Die Statistiken sprechen hier eine sehr deutliche Sprache. Trotz Frauenbewegung, Emanzipation, Erziehungsurlaub auch für Männer, gesetzliche Gleichberechtigung und dafür aufgeschlossene Männern, ist es noch nicht gelungen, diesen Missstand in den Griff zu bekommen.
Dennoch hat es immer wieder Frauen gegeben, die trotz Benachteiligung, Unterdrückung, Bildungsverbot und Leben in einer streng patriarchaisch dominierten Gesellschaft, großartiges in Wissenschaft, z. B. der Astronomie, geleistet haben. Sie setzten sich in einer harten Männerwelt durch und waren vielleicht sogar öfter, als man denkt, die schlaueren Köpfe. Zumindest zeugen einige Dokumente davon, dass viele starke kluge Frauen die Fäden ihrer Professoren-Männer in Händen hielten…
Bis in biblische Zeiten hinein, kann man diese Phänomene beobachten. Somit scheint der Satz “Der Mann kann noch so viele Dinge bauen – Es steht und fällt ein Volk mit seinen Frauen” mehr Wahrheitsgehalt zu haben, als manchen lieb ist.
So lasst uns den Weltfrauentag 08.03.2019 damit begehen, indem wir die Person und das Lebenswerk von
Maria Mitchell betrachten und würdigen.

Maria Mitchell (* 1. August 1818 in Nantucket, Massachusetts; † 28. Juni 1889 in Lynn, Massachusetts) war eine US-amerikanische Astronomin und Vorkämpferin für die Frauenrechte.

Ich kam auf Maria Mitchell, weil sie mir in der Adventszeit großes Kopfzerbrechen bereitete, denn sie war in einem Weihnachtsrätsel der @Weltraumreporter so gut versteckt, dass sogar Google zumindest am Anfang völlig nutzlos war. Ich fand sie dann im Buch „Die Planeten“ von Dava Sobel. In diesem Buch ist ein ganzes Kapitel ihr und Frau Herschel gewidmet, die zum Frauentag 2018 hier geehrt wurde.
Wer das nochmal nachlesen möchte, kann dies hier gerne tun.
Das Kapitel in Dava Sobels Buch ist in einen wunderschönen Briefwechsel zwischen den beiden Astronominnen eingebettet. Leider konnte ich nicht recherchieren, ob es diesen Briefwechsel tatsächlich gab, oder ob es künstlerische Freiheit der Autorin war. Auf jeden Fall ist es ein sehr gelungenes Kapitel.

Also, wer war nun Maria Mitchel.
Maria Mitchell gehörte zu den Frauen, bei denen viele positive Faktoren zusammen kamen, so dass sie zu den wurde, was sie war, und das sie erreichte, was Frauen in der damaligen Zeit eher unzugänglich war.
Eine der ersten Grundvoraussetzungen, die ihr ihre Laufbahn ermöglichten war, dass ihre Eltern Quäker waren.
Diese Religionsgemeinschaft vertritt, dass Frauen dasselbe Recht auf Bildung haben, als Männer.
Ihr Vater, William Mitchell, war Lehrer und Hobbyastronom. Bald schon bemerkte er die naturwissenschaftliche Begabung seiner Tochter und unterrichtete sie in Astronomie und Mathematik.
Er ermunterte sie auch, eigene Untersuchungen anzustellen.
Normalerweise wurden Töchter aus derlei Elternhäusern höchstens in hauswirtschaftlichen Dingen oder den schönen Künsten, wie Musik, unterrichtet.
Somit stellte Maria Mitschel schon bald eine Ausnahme dar.

Ein weiterer Umstand, der sie quasi zwangsläufig zur Astronomie brachte war, dass ihr Wohnort astronomischer nicht sein konnte.
Sie wurde 1818 auf Nantucket geboren, einer kleinen von Seefahrt geprägten und rund 50 Meilen vor der Küste Massachusetts gelegenen Insel. Hier ankerte die weltweit größte Walfangflotte und von hier aus stachen Seefahrer in See, deren Wissen um den Sternenhimmel als Navigationshilfe unabdingbar war.
Somit gab es in allen Haushalten astronomische Instrumente, wie Sextanden, Efimeriden (Sternkarten), Teleskope und Schiffsuhren.
Letztere durfte sie schon mit vierzehn Jahren eichen. Es ist unglaublich wichtig, dass diese Uhren genau geeicht waren, denn man brauchte sie zur Bestimmung des Längengrades auf hoher See. Alleine mit der Geschichte über diese Uhren, könnte man irgendwann mal einen eigenen Artikel verfassen.

Man kann davon ausgehen, dass die Bedingungen der Sternbeobachtung von dieser Insel aus all nächtlich prächtig gewesen sein sollte. Die Insel war weit genug vom Festland entfernt, so dass keinerlei Lichtverschmutzung vorhanden gewesen sein dürfte.
Der Name der Insel, Nantucket,bedeutet weit entferntes Land. Klarer, schwarzer stockfinsterer Sternenhimmel also.

Bald schon war Maria in der Bedienung nautischer Instrumente besser, als so mancher Seebär.
Aber auch sonst verlief ihr Leben ereignisreich und sehr ungewöhnlich.

Schon mit 14 Jahren kalibrierte sie Chronometer für Seefahrer oder unterwies sie im Gebrauch von Sextanten. Mit 17 Jahren gründete Maria Mitchell auf Nantucket eine Mädchenschule und unterrichtete Mathematik. Mit 18 Jahren wurde sie zur Leiterin der Bibliothek von Nantucket ernannt. Hier liegt auch die Wiege ihrer Bildung. Fast täglich hielt sie sich in dieser Bibliothek auf, in der auch Frauen willkommen waren – anders als in den meisten anderen Bibliotheken der USA.

Berühmt wurde Maria Mitchell mit 29 Jahren durch die Entdeckung eines Kometen:
Am 01. Oktober 1847 entdeckte sie vom Observatorium ihres Elternhauses aus den später nach ihr benannten Mitchell-Kometen.
Bereits ein Jahr später, 1848, wurde sie als erste Frau in die American Academy of Arts and Sciences aufgenommen sowie 1850 in die American Association for the Advancement of Science.

Sie leitete die Bibliothek von Nantucket, bildete sich mit Hilfe der ihr anvertrauten Bücher weiter, arbeitete gemeinsam mit ihrem Vater an astronomischen Fragestellungen und unterhielt umfangreiche wissenschaftliche Korrespondenz mit den großen amerikanischen Universitäten. Maria Mitchell las Deutsch und Französisch im Original und war der Überzeugung, dass der Zugang zur Astronomie durch Mathematik erfolgt.[2] Sie wurde als Rednerin zu vielen Vorträgen und Konferenzen eingeladen und

1865 eröffnete mit dem Vassar College in Poughkeepsie, New York, eine der ersten amerikanischen Frauen-Universitäten. Maria Mitchell erhielt den Ruf und wurde mit 47 Jahren die erste Astronomieprofessorin Amerikas – ohne jemals selbst eine Universität besucht zu haben.

Sie setzte sich dafür ein, dass Frauen die gleichen Rechte erhielten, wie sie die Männer an den Universitäten Yale und Harvardinne hatten und dass die Frauen auch fachlich gleich zogen.

So verteidigte sie ihre Studentinnen gegen herrschende Konventionen, die beispielsweise Frauen untersagten, nach 22 Uhr vom Observatorium aus zu beobachten.

1873 gründete sie die American Association for the Advancement of Women und wurde zwei Jahre später deren Präsidentin. Nicht nur in Vorträgen, sondern in der täglichen Arbeit als Professorin und Direktorin des Vassar-College-Observatoriums setzte sie sich beständig für die Gleichberechtigung von Frauen ein.

Ein Kredo von ihr war:
„We especially need imagination in science. It is not all mathematics, nor all logic, but is somewhat beauty and poetry.
In der Wissenschaft brauchen wir vor allem Fantasie. Es geht nicht nur um Mathematik oder um Logik, sondern auch ein wenig um Schönheit und Poesie“
Es braucht nicht viel Interpretationsgabe, um das Kredo auch so zu lesen“In der Wissenschaft braucht es auch weibliche Faktoren“.

Mitchell war eine der berühmtesten Wissenschaftlerinnen (Männer und Frauen) in den USA des 19. Jahrhunderts.
Mitchell galt als ausgezeichnete Professorin, die sich für ihre Studentinnen einsetzte und sie dabei unterstützte, wirklich gute Wissenschaftlerinnen zu werden, obwohl sie „nur“ Frauen waren.

Praxiserfahrung war ihr ganz wichtig. Mit der Frage „Did you learn that from a book or did you observe it yourself?“, ging sie in die Analen der amerikanischen Wissenschaft ein.

Maria Mitchell beschäftigte sich auch mit grundlegenden mathematischen Fragen, etwa mit dem ´Großen Fermatschen Satz`. Eine harte Nuss, die im 17. Jahrhundert von Pierre de Fermat formuliert, aber erst 1994 von dem britischen Mathematiker Andrew Wiles bewiesen wurde.

Hier noch einige Ehrungen zum Schluss:
Für die Entdeckung des Mitchell-Kometen wurde sie vom König von Dänemark mit einem Orden ausgezeichnet.

1905 wurde sie in die Hall of Fame for Great Americans aufgenommen.

Nach ihrem Tod wurde zu Ehren Maria Mitchells die Maria Mitchell Astronomical Society gegründet.

Der Hauptgürtelasteroid (1455) Mitchella, den der Heidelberger Astronom Alfred Bohrmann (1904-2000) am 5. Juni 1937 entdeckte, ist nach ihr benannt.

Auch auf dem Mond erhielt sie einen Platz.
Schon im Amateurteleskop kann man auf dem Mond den an den Krater Aristoteles grenzenden Einschlagkrater Mitchell erkennen, der 1935 von der Internationalen Astronomischen Union nach der großen Forscherin und Frauenrechtlerin benannt wurde. Sein Durchmesser beträgt etwa 30 Kilometer. Er zeigt deutliche Erosionsspuren und sein Ringwall ist vom später entstandenen, etwa 80 Kilometer großen Krater Aristoteles teilweise überdeckt.

Sie war eine großartige Wissenschaftlerin und Vordenkerin für Frauenrechte. Einige ihrer Themen sind bis heute Aktuell.
Gerade in der heutigen Zeit, wo Raubbau an Natur, Mensch und sozialen Errungenschaften im Namen des Fortschritts getrieben wird, sollten wir uns derer erinnern, die VorkämpferInnen und VorReiterinnen für viele Menschenrechte waren.

Quellen:
Wikipedia
Die Planeten von Dagmar Sobel
Weihnachtsrätsel 2018 der @Weltraumreporter

Was ist der Supermond?


Seid herzlich gegrüßt,

da ist es wieder, das Medienereignis des „Supermondes“.
Was soll das überhaupt sein? Darum geht es in diesem Artikel.
Vollmond ist astronomisch gesehen nur ein Augenblick, weil der Mond auf seiner Bahn nicht stehen bleibt, um sich von uns feiern zu lassen, sondern weil er für uns unsichtbar sogleich wieder mit dem Abnehmen beginnt.

Es dürfte niemandem entgangen sein, dass die Medien nicht bei jedem gewöhnlichen Vollmond von einem Supermond sprechen.
Der Mond bewegt sich ein mal pro Monat auf seiner elliptischen Bahn um die Erde. Das bedeutet, dass der Mond der Erde einmal pro Monat seinen erdnächsten – und einmal seinen erdfernsten Punkt durchläuft. Die Erde steht in einem der beiden Brennpunkte der Ellipse.

Die Zeitspanne zwischen zweier Durchläufe des Perigäums, erdnächster Punkt,, nennt man den anomalistischen Monat.
Er spielt in unserem Jahreslauf keine Rolle und wird von Astronomen benötigt, um in Finsternisberechnungen einzufließen.

Die Zeitspanne zwischen zweier Neumonde, nennen wir den synodischen Monat.
Dieser bestimmt sich von Neumond zu Neumond und dauert im Mittel 29,53… Tage.
Er spielt für uns lediglich im Kirchenjahr eine Rolle, indem man mit ihm den Ostertag berechnet, aus welchem sich einige weitere Feiertage ableiten, siehe
Osterbeitrag 2018
Wenn wir Monat sagen, so meinen wir meist unsere kalendarische Einteilung des Erdumlaufes in zwölf Teile um die Sonne. Diese Zeitspanne hat mit dem Mond nichts zu tun, und mit den zwölf Sternzeichen übrigens längst auch nicht mehr.

Nun kann man sich fragen, wieso denn dann nicht jeder Vollmond ein Supermond ist. Kurz gesagt, weil der Mond sich nicht bei jedem Vollmond auf seinem erdnahsten Punkt (Perigäum) befindet. Das liegt daran, dass der synodische Monat nicht gleich lang ist, wie der anomalistische Monat.
Also ist Die Tatsache, dass die Zeitspannen zwischen Neumond und Neumond und Perigäum-Durchgang zu Perigäum-Durchgang nicht gleich lang sind, dafür hauptverantwortlich, dass nicht jeder Vollmond ein Supermond sein kann.
Außerdem bewegt sich das Erd-Mond-System im Jahreslauf um die Sonne, so dass sich der Winkel des Sonnenlichtes täglich um etwa ein Grad nach links verschiebt. Das verlängert den astronomischen Tageslauf etwas über die Zeitdauer einer Erdumdrehung, hinaus.
So selten sind Supermonde gar nicht und kommen quasi jährlich, manchmal sogar mehrfach vor.
Mit bloßem Auge ist ein Supermond nicht von einem gewöhnlichen Vollmond zu unterscheiden, denn dieser Unterschied beträgt nur ungefähr 13 %. Das sieht bei so einem kleinen Mondscheibchen und ohne Hilfsmittel niemand.

Steigt der Vollmond am Horizont auf, wird er oft als übergroß empfunden. Das ist ein Phänomen, dass an dieser Stelle irgendwie unser Gehirn ausgetrickst wird. Ganz erforscht ist das Phänomen noch nicht, aber dass es in den Medien den Supermond noch superlativer macht, ist klar.

Und nein. Die Schwankung der Distanz Erde-Mond, zeigt auch keine erkennbare Wirkung auf Ebbe und Flut. Das kann man mit einfachster newtonschen Mechanik und dem Abstand-Quadrat-Gesetz, Schulphysik also, ausrechnen, dass hier keine plötzlichen Superkräfte auftreten, die uns ob positiv oder negativ, beeinflussen könnten.

Ich möchte an dieser Stelle mondfühligen Menschen diese Schlafstörung nicht absprechen. Ich kenne genügend sehr seriöse Menschen, die unter diesem Phänomen, leiden, bzw. davon sprechen.
Die Himmelsmechanik ist daran aber erwiesener maßen nicht schuld.

Und zum Schluss noch.
Ich liebe unseren Supermond, denn der Mond ist immer super.
Hätten wir den Mond nicht, so würde unsere Erdachse unkontrolliert ihre Stellung verändern. Das bedeutet, dass wir längst nicht so regelmäßige Jahreszeiten hätten. „Danke Mond, dass Du unsere Erdachse irgendwie gerade hältst.“
Ebbe und Flut sind ganz wichtig für unsere Meere und unser Klima. „Danke Mond, dass Du jeden Tag Kraftsport mit unserem Wasser treibst“.

und „Danke, Mond, dass Du, indem Du manchmal die Sonne abdeckst, uns die Schönheiten der Korona zeigst, und dass wir dadurch wissen, dass die Masse der Sterne Licht ablenken kann.“
„Danke auch, dass wir in Dir ein Licht in der Nacht haben“ Hätte ich als Blinder und durch unsere lichtverschmutzten Städte fast vergessen.

Ach ja, eines noch. Ein Kind fragte mich einmal, ob es so etwas wie einen Supermond auch für den Neumond gäbe.
Ja, das gibt es, aber lest selbst.
Gibt es auch einen Supermond bei Neumond??

Fazit: Der Mond ist immer Super.

Und weil ihr bis hier hin ausgehalten habt, obwohl der Artikel etwas länglich war, bekommt ihr hier noch ein Video mit Mondbildern für die Sehlinge und schöner Klaviermusik, bei der man auch über das gelesene nachdenken kann, wenn man die Mondbilder nicht sieht.
Zum Mondvideo
Jetzt wünsche ich einen schönen Blick auf den Supermond.

Klingende Planetenbahnen


Seid herzlichst gegrüßt,
Vor einigen Artikeln startete ich die Serie „Mit dem Ohr am Teleskop“.
Mit dem Ohr am Teleskop

Im ersten Teil befassten wir uns mit der Weltharmonik. Die alten Pythagoräer glaubten, dass sich die Planetenbewegungen in harmonische Gesetze erklären lassen. Ähnlich der Intervalle, aus denen unsere Musik besteht. Noch Johannes Kepler versuchte, diese Weltharmonik zu finden und musste dann feststellen, dass sich die Planetenbahnen nicht ganz so harmonisch verhielten, wie er gerne gehabt hätte.

Trotz allem, lebt die Idee der Planetenmusik weiter und fasziniert bis heute.

Nun greife ich ganz tief in meine Kiste, und ziehe einen meiner ersten Texte, den ich jemals zu Astronomie schrieb, heraus.

Wer mal auf einem meiner Workshops oder Vorträge war, wird sich daran erinnern, dass wir uns die verklanglichten Planetenbahnen anhörten. Ich lernte diese Klänge in den Sendungen von Joachim Ernst Behrendt, „Nada Brama“ und „Das Ohr ist der Weg“, vor fast dreißig Jahren, kennen.

Glücklicherweise sind diese Klänge auch öffentlich im Internet zu finden, so dass ich sie hier präsentieren kann, ohne Urheberrechte zu verletzen.

Bevor es los geht, werde ich einige allgemeine Dinge zur Verklanglichung, auch sonifizierung, von Daten erleutern, damit die Idee klar wird, die hinter all dem steckt.

Jeder, der nach Noten musiziert, verklanglicht Daten. Die Notenschrift ist im Grunde eine graphische Darstellung von Intervallen und Tonlängen und eventuell noch Lautstärke und Tempo.
Was auf dem Notenblatt steht, wird Musik, indem der Inhalt interprätiert und in ein Musikinstrument gegeben wird.
Die Noten selbst sind nicht die Musik, sondern höchstens die Idee oder die Spielanweisung.
Es gibt auch nicht nur eine graphische Notation für Musik. Nun kann man sich überlegen, auch andere Daten zu verklanglichen.

Hier ein einfaches Beispielvon Sonifizierung:
Kein Fernsehfilm, in welchem eine Szene auf einer Intensivstation vorkommt, wäre denkbar, ohne das rhythmische Pipsen des Herz-Sensors zu hören. Das ist die Verklanglichung des Herzschlages, oder Pulses des Patienten.
In diesem Fall dient der Klang dazu, auch ohne Sichtkontakt zu wissen, wie es um den Patienten steht. Das Tempo der Tonfolge zeigt den Pulsschlag an, der dann vom Arzt verstanden werden muss.
Der Pipston könnte ebenso ein Trommelschlag oder Knacken sein.

Viele Sonifizierungen beziehen noch die Tonhöhe mit ein.
Das Variometer eines Segelflugzeuges zeigt via ansteigender oder fallender Töne an, ob sich das Flugzeug im Steig- oder Sinkflug befindet.
Segelflieger mögen mir hier verzeihen, dass ich etwas ungenau bin, aber für den Moment reicht es so.

Somit haben wir also als ersten Parameter die Zeit und als zweiten Parameter die Tonhöhe.
Damit kann man alle zweidimensionalen Daten verklanglichen, wenn man die Tonintervalle entsprechend klug wählt.

Zu jedem Zeitpunkt X, lässt sich ein Wert Y ablesen, der mittels eines Tones ausgegeben wird.
Ändert sich die Tonhöhe nicht, bedeutet das, dass y immer gleich bleibt. Wir haben eine Parallele zur X-Achse.

Steigt der Ton gleichmäßig an, könnte es sich um eine steigende Gerade handeln.

Hören wir eine auf- und absteigende Tonfolge, ist es vielleicht ein Sinus.

Eine Parabel Ax^2 +bx +c, mit a>0,

wäre dann ein zunächst sehr schnell abfallender Ton, dessen Fallen immer langsamer wird. Nach dem Durchgang durch ihr Minimum, würde der Ton zunächst langsam, dann aber immer schneller ansteigen, bis er vermutlich den Hörbereich verlässt.
Mein Farberkennungsgerät zeigt Lichtintensitäten mittels Tonhöhen an.

Ein derartig zweidimensionales Klangsystem reicht schon aus, um die Bahnen unserer Planeten zu verklanglichen.
Johannes Kepler schrieb ein Buch darüber, wie man die Bahnen der Planeten sich musikalisch vorstellen kann. Er legte die Umlaufbahn des Saturn auf das tiefe G, etwas jenseits des linken Endes einer Piano-Tastatur und verteilte dann die Intervalle der anderen Umlaufbahnen auf die Tastatur.

Trägt man die Geschwindigkeiten der Planeten auf der Y-Achse ab und den zeitlichen Verlauf auf X, dann erhält man eine regelmäßige Welle für jeden Planeten. Befindet sich der Planet nahe der Sonne auf seinem Perihel, so bewegt er sich etwas rascher. An seinem sonnenfernsten Punkt, dem Aphel, ist er am langsamsten. Dazwischen sind dann alle anderen Werte. Inhaltlich beschreibt das Kepler in seinem zweiten Gesetz.

Es besagt, dass wenn man einen Fahrstrahl vom Stern zum Planeten zieht, dieser in gleicher Zeit stets gleich große Flächen überstreicht.

Daraus folgt, dass der Planet in Sonnennähe etwas schneller sein muss, als bei seinem Aphel. Wie stark diese Geschwindigkeit variiert, hängt von der Exzentrizität der Umlaufbahn ab.

Das erste Keplersche Gesetz besagt, dass sich Planeten auf elliptischen und nicht auf Kreisbahnen bewegen. Der Kreis ist ein Sonderfall einer Ellipse, bei dem beide Brennpunkte auf den selben Punkt fallen.

Ordnet man nun den Umlaufgeschwindigkeiten Töne nach der Idee Keplers zu, passiert folgendes.
Der Ton variiert um so mehr, desto elliptischer die Bahn des Planeten ist.
Merkurs Tonkurve variiert sehr stark, weil er eine sehr exzentrische Bahn hat.
Venus und Erde dagegen variieren nur wenig, da ihre Bahnen fast kreisförmig sind. Dieses Intervall, das zwischen der kleinen und der großen sechsten variiert, schwankt zwischen Dur und Moll.
Kepler nannte es daher das ewige Lied des Elends der Erde.

Mars variiert wegen seiner exzentrischen Bahn wieder sehr stark. Man muss hier aber dann schon etwas länger zuhören, weil er durch seine größere Entfernung zur Sonne dann schon langsamer ist.

Zwischen Mars und Jupiter ist eine große Lücke, in welcher der Asteroidengürtel Platz findet.
Das macht sich im Sprung eines großen Intervalles bemerkbar.

Saturn klingt dann schon sehr tief. Uranus und Neptun sind überhaupt nicht mehr als Töne wahrnehmbar. Ihre Frequenzen sind so tief, dass man sie nur noch als Rhythmen wahrnimmt.

Bei den äußeren Planeten ist es sehr schwer, die Exzentrizität der Bahnen zu hören, weil sich diese zeitlichen Umschichtungen innerhalb vieler Minuten bis Stunden sehr langsam vollziehen.
Außerdem waren Uranus und Neptun noch nicht bekannt, als Kepler die restlichen Umlaufbahnen auf eine Piano-Tastatur verteilte. Er ging davon aus, dass es keine weiteren Himmelskörper in unserem System mehr gäbe, weil er jede Umlaufbahn in einen der fünf platonischen Körper einschrieb.
Platonische Körper sind solche, die gleiche Flächen besitzen.
Am bekanntesten sind der Würfel und das Tetraeder.

Zwei Professoren, Willie Ruff & John Rodgers, haben in den siebziger Jahren des letzten Jahrhunderts Keplers Umlaufbahnen und sein Vorschlag, diese musikalisch darzustellen, aufgegriffen und in einen Computer gespeist, der dann die Klänge synthetisch erzeugte.
Sie nutzten sogar noch das Sterio-Panorama, um das ganze noch etwas plastischer werden zu lassen.
Legt man die Sonne z. B. in den Nullpunkt eines Koordinatensystems, so gruppieren sich alle Planeten irgendwo um den Nullpunkt herum. lässt man sie nun laufen, drehen sie sich um den Nullpunkt.

Sie legten die Perihels der Planeten eher auf die rechte Seite und die Aphels auf die linke.
Somit entsteht fast der Eindruck von akustischen Kreisbahnen, wenn man sich das über einen Kopfhörer anhört.

Man ist quasi die Sonne und hört die Planeten um einen herum laufen.
Die Tonhöhe sagt etwas über den Abstand zur Sonne aus, und das Panorama gibt einem noch eine Positionsinformation.
Gernot Meiser vom AV-Atelier.de besitzt ein mobiles Planetarium. Er hat es geschafft, den Sound, den ich in meinem Vortrag abspielte, tatsächlich um das ganze Planetarium herum laufen zu lassen. Das war großartig.
Vielleicht erinnert sich ja der eine oder die andere noch daran, wie es sich in der Orgelfabrik Durlach, bzw. im Theater in Sarlouis, anhörte.

Jetzt wird es Zeit, sich mal anzuhören, worüber ich hier spreche.

Hier noch einige Hörhinweise, damit ihr euch in dieser Kackophonie zurecht findet.
1) Wir starten mit dem schnellen sausenden Merkur auf seiner stark elliptischen Bahn. Er pipst sehr hoch, weil er so nahe an der Sonne, und somit sehr schnell unterwegs ist.

2) Jetzt folgt das Moll-Dur-Duo von Venus und erde, das immer zwischen Moll und Dur variiert. Zuerst kommt die Venus und dann die Erde etwas später.

3) Nun folgt der Mars, dessen bahn stark elliptisch ist, was man im laufe des Stückes deutlich wahrnimmt. Wenn Jupiter dazu kommt, hört man sehr deutlich, wie Mars beschleunigt, weil er sich seinem Perihel nähert.

4) Der Sprung über den Asteroidengürtel hinweg zum tiefen brummenden Jupiter, ist unüberhörbar.

5) Nun setzt das ganz tiefe brummen des Saturn ein. Es kann sein, dass manche Lautsprecher oder Headsetz diesen tiefen Ton kaum noch darstellen können.

6) Die Planeten Uranus, Neptun und Pluto sind nur noch als Rhythmen wahrnehmbar. Der Uranus tickt so vor sich hin.
Dann folgt der Neptun als tiefere Trommel und ganz zum Schluss ertönt die Basstrommel des Pluto.

Im ersten Link zu meiner Aufnahme, habe ich den Pluto als Zwergplaneten weg geschnitten.
Im Interview mit Ruff, einem der Erfinder dieses Sonifizierungsprojekts der Keplerdaten, , ist Pluto noch dabei, weil er zu dieser Zeit noch Planet war.
Auch dieses Interview ist sehr hörenswert, allerdings auf Englisch.

Die sonifizierten Umlaufbahnen gab man sogar den Voyager-Sonden mit auf die Reise. Ich habe keine Ahnung, ob außerirdische Wesen, die nicht meinen Blog lesen, diese Sounds interpretieren können…

Jetzt wünsche ich erfolgreiches Hören.

Zuden klingenden Bahnen

Hier nun das erwähnte Interview eines der beiden Erfinder dieses Sonifizierungs-Projekts.

Zum Interview auf Youtube

Nun hoffe ich, dass euch diese Sounds ebenso faszinieren, wie mich schon seit Jahrzehnten.
Bis zum nächsten Mal grüßt euch

euer Gerhard.

Eine Mondfinsternis als Lebensretterin


Seid herzlich gegrüßt

Dann will auch ich mich nicht lumpen lassen, und mal über eine Mondfinsternis mit Tragweite schreiben.
Kolumbus und die Mondfinsternis vom Februar 1504:

Er war mit seiner Mannschaft auf Jamaika gestrandet. Der Sturm hatte die Schiffe zerstört und teile der Mannschaft begannen zu meutern.
Auch Nahrung und Wasser wurden knapp.
Außerdem mussten sie mit Racheangriffen der Ureinwohner rechnen, die sie zuvor geplündert hatten.
Nun erkannte Kolumbus, dass eine Mondfinsternis bevorstand. Hierfür benutzte er astronomische Karten zur Navigation des Astronomen Johannes Müller.
Er ist vermutlich eher unter dem Namen Regio Montanus bekannt, was der lateinische Name seines Heimatortes Königsberg, bedeutet.
Kurz um, wandte sich Kolumbus mit dieser Tatsache derart an den Häuptling, dass er für den Fall, dass keine weitere Hilfe von Seitens der Eingeborenen käme, er seinem christlichen Gott befehlen würde, ihnen Leid zu zu fügen. Als Zeichen, dass dieser Gott es Ernst meine, werde er in der folgenden Nacht dem Mond den Glanz nehmen.

Zum Glück sagten Kolumbusens Sternkarten die Mondfinsternis richtig voraus, ansonsten wären vermutlich einige in den Kochtöpfen der Ureinwohner  gelandet.
So aber, bekamen diese Angst und versorgten die Mannschaft weiterhin mit Nahrung und was sonst von Nöten war, um die Heimreise antreten zu können.

Johann Müller aus Königsberg war einer der größten Mathematiker und Astronomen des 15. Jahrhunderts.
Er ist auch unter dem Namen „Regio Montanus“ bekannt. Dieser Lateinische Name, leitet sich aus seinem Geburtsort „Königsberg“ ab.
Er erstellte u. a. Sternkarten und Sterntafeln für Seefahrer, die sich großer Beliebtheit erfreuten und die Navigation deutlich verbesserten.
In Wikipedia steht unglaublich viel von ihm.
Hätte Kolumbus nicht seine Efimeriden auf seinen Schiffsfahrten benutzt, so wäre es ihm hier sicher richtig schlecht ergangen und es hätte ihn vermutlich das Leben gekostet. Dank Müller blieb er am Leben.

Licht- und Schattenspiele auf dem Mond


Seid herzlich gegrüßt,

in diesem Jahr steht uns das große Jubiläum der Mondlandung bevor. Deshalb werde ich in diesem Jahr einige Artikel rund um den Mond verfassen.
Hier sollen drei Beispiele zur Sprache kommen, welch schöne Licht- und Schattenspiele Sonne und Mond für begeisterte Astronomen bereit halten.
Ein Astrophotograph veröffentlichte gestern Nacht einen Artikel über ein Phänomen auf dem Mond auf seinem Blog. Der erinnerte mich daran, dass ich vor vielen Jahren, als es meinen Blog noch nicht gab, ebenfals mal einen Artikel über selbiges Phänomen verfasste. Vielleicht erinnern sich manche von euch noch daran, als mein Blog noch eine Mailingliste war. Es geht um den Henkel des Mondes.

Der Goldene Henkel bezeichnet einen visuellen Effekt an der Tag-Nacht-Grenze des Mondes.
Etwa 10 bis 11 Tage nach Neumond liegt das Tal der Regenbogenbucht (Sinus Iridum) noch im Schatten, während die Bergspitzen des angrenzenden Juragebirges (Montes Jura) aufgrund ihrer Höhe bereits vom Sonnenlicht erreicht werden. Durch ihre prägnante, an einen Henkel erinnernde Form und das vom Mond gelblich reflektierte Licht, erhielt diese Formation den Namen „Goldener Henkel“.
Der Goldene Henkel ist bereits mit kleinen Ferngläsern und Feldstechern einmal monatlich für einige Stunden gut erkennbar.
Hier ein Link zum Goldenen Henkel mit Bildern, damit auch unsere Sehlinge auf ihre Kosten kommen.
Zum bebilderten Artikel

Das ist wirklich super spannend, wie ich finde, was hier die Gebirgszüge bewirken.
Vielleicht erinnern sich manche von euch noch an ein anderes Phänomen, das in Zusammenhang mit einer totalen Sonnenfinsternis auftreten kann. Ich bin grad nicht sicher, ob ich darüber schrieb.
Es ist die sog. Perlenschnur. Es kommt vor, dass, wenn die totale Bedeckung fast komplett ist, dass die Sonne noch durch einige Mondtäler am Rand der Mondscheibe leuchtet, wo hingegen die Berge bereits die Sonnenscheibe abdecken. Das sieht dann wie eine Perlenschnur mit Leuchtperlen aus. Das Phänomen dauert aber nur wenige sekunden und ist unterschiedlich ausgeprägt, je nach dem, wo und wann die Finsternis stattfindet.

Ein drittes von Astrophotographen sehr begehrtes Phänomen auf dem Mond ist der Hesiodusstrahl. Ich beschrieb ihn im Zusammenhang der Ankunft meiner taktilen Mondkarte. Es sei mir gestattet, hier einen Teil dieses Artikels erneut aufzuwärmen.

Zu bestimmten Zeiten liegt der Krater Hesiodus am Terminator, der Tag-Nacht-Grenze des Mondes.
Je nach Mondstand sieht der Terminator sehr unterschiedlich aus. Er verläuft bei Nicht-Vollmond immer entlang der Linie, die das fehlende Mondstück markiert. Je nach dem, ob zunehmender oder abnehmender Mond herrscht, ist sie nach rechts oder links gebogen. Denn der Mond nimmt nicht so zu und ab, wie man sich das Zerschneiden eines Kuchens vorstellt.
Ein fast voller Mond sieht nicht, wie eine Pizza aus, bei der ein Stück (abgerundetes Dreieck) fehlt. Er ist eher mit dem Logo der Firma mit dem abgebissenen Obst, vergleichbar.
Wenn man zwei gleichgroße Pappscheiben nimmt und die eine langsam über die andere gleiten lässt, dann kann man den verlauf des Terminators ertasten.
Es ist jetzt so, dass bei einem gewissen Mondstand die Sonne für den Mond so aufgeht, dass der Kraterwall des Hesiodus-Kraters von der Sonne beleuchtet wird. Diese leuchtet dann durch eine Spalte im Krater zum Nachbarkrater Pitatus herüber.
Die Sonnenstrahlen bilden dort einen Lichtstrahl auf dem noch dunklen Boden von Pitatus. Zuerst ist er sehr schmal, wird aber im Laufe von Stunden immer breiter, bis der Kraterboden von Pitatus vollständig ausgeleuchtet wird.
Mich hat jetzt natürlich, wenn ich die Sache schon nicht sehen kann, brennend interessiert, wo diese beiden Krater überhaupt auf der Mondscheibe zu finden sind.
Nun bat ich im ersten Schritt eine sehende Person, dass sie prüft, ob diese Krater auf meiner Karte eine Beschriftung tragen, denn nicht alle Krater und Berge haben ein Label. Das wäre zuviel. Im wesentlichen sind diejenigen beschriftet, die für die Menschheit eine besondere Bedeutung hatten, bzw. haben. So ist natürlich das Meer der Ruhe im Nordosten der Mondscheibe beschriftet, weil dort Apollo11 landete.
Jetzt, was tun. Ich recherchierte im Netz und fand heraus, dass Hesiodus ein Krater im Südwesten zu sein scheint, der ziemlich groß ist.
Auf der Mondscheibe ist Norden oben, und Süden unten.
Ich tastete und fand einige Kandidaten, die in die engere Wahl genommen werden konnten. Mit meiner sehenden Assistenz besorgten wir uns nun ein Bild des Phänomens aus dem Netz, in der Hoffnung, wir können den Krater durch den Vergleich des Bildes mit der taktilen Karte, finden. Um das an dieser Stelle abzukürzen:
Ganz sicher sind wir uns nicht, aber die Wahrscheinlichkeit ist sehr hoch, dass ich Hesiodus gefunden habe. Die Verbindungsrinne zu Pitatus ist bei der Auflösung der Karte vermutlich nicht zu ertasten.
Für mich ist es sehr schön, wenn ich mit der taktilen Karte vieles nachvollziehen kann, das Sehende am Mond fasziniert. Viel wichtiger dabei ist aber,
dass ich zum einen überhaupt etwas nachvollziehen kann und zum andern,
dass ich mitmachen kann.
Ich kann mitreden,
fragen stellen,
mir zeigen lassen, worum es geht,
das Eis der Sehenden brechen, weil sie von der Karte fasziniert sind und vieles mehr. In einem Wort gesagt.
Damit kann ich “Mondinklusion”…
Und um zu beweisen, wie ernst mir das ist, schicke ich hier für die Sehlinge unter uns noch einen Link mit, der zu einem wunderbaren Bericht über die Entstehung eines Hesiodusstrahl-Fotos führt. Dort sind dann auch Bilder drin. Somit kommt der wunderbare Sehsinn auch nicht zu kurz.
Zum bebilderten Artikel
Artikel mit Fotos
Das war mein Hesiodusstrahl. Ich hoffe, er leuchtet auch etwas für euch.

Ich danke den beiden Astro-Bloggern dafür, dass sie ihre spannenden Entstehungsgeschichten ihrer Astrofotos mit uns teilen. Ich finde das alles sehr aufregend und interessant, auch wenn ich das nicht sehe.

Bis zum nächsten Mal grüßt euch
euer Gerhard.

Was haben Kerzen mit Astronomie zu tun?


Seid herzlich und weihnachtlich gegrüßt,
im letzten Jahr schrieb ich zur Weihnachtszeit einen Artikel über Feuerchen und Kerzenschein im Weltall im Hinblick auf gewisse Randbedingungen, die die Astronauten auf der ISS haben, die dort Weihnachten verbringen müssen.
Wer das nochmal lesen möchte findet hier den gemeinten Artikel.
Weihnachtsbeitrag 2017
Da eine Kerzenflamme in Schwerelosigkeit einen erbärmlichen Anblick bietet, könnte man meinen, das Thema Kerzen wäre astronomisch uninteressant.
Dennoch wird in der Astronomie der Begriff “Kerze”, genauer, “Standardkerze” verwendet. Im Gegensatz zum Stern von Betlehem, der plötzlich auftaucht und den Retter der Welt ankündigen soll, führt uns die Klärung dieses Begriffes eher an das andere Ende des Lebens eines Sternes.
Kerzen, die  aus dem selben Wachs gemacht sind und
selbe Dicke,
selbe Höhe,
Dochtlänge,
Dochtdicke,
Dochtsorte,
sollten unter gleichen atmosphärischen Bedingungen und auf gleicher Meereshöhe auch gleich hell sein.
So eine Gewissheit ist sehr praktisch, wenn man die Entfernung messen möchte. Sieht man die Kerze, auf deren Helligkeit Verlass ist, kann man Rückschlüsse auf ihre Entfernung schließen und den Abstand berechnen.
Die Astronomen haben bei Messungen genau dieses Problem. Es stellt sich immer die Frage, wieso ein Himmelsobjekt, z. B. eine Galaxie heller leuchtet, als eine andere.
Hat sie mehr Leuchtkraft
Ist sie nur größer?
oder ist sie einfach näher dran, um heller zu erscheinen? So ein Licht, auf das Verlass ist, wäre super hilfreich. Auf das Sternenlicht alleine kann man hier nicht bauen. Die Sterne funktionieren zwar alle ähnlich, unterscheiden sich aber zum einen durch ihre Masse, zum zweiten in ihrer Zusammensetzung und zum dritten durch ihr Alter. All das bewirkt, dass sie sich in Lichtintensität, Temperatur und Größe unterscheiden.
Glücklicherweise gibt es eine Lichtquelle, die hier Sicherheit bietet.
Da Sterne meist in räumlich relativ begrenzten Umgebungen entstehen, finden sie sich oft zu Doppelsternsystemen zusammen.
Die beiden Partner können aber durchaus unterschiedlich sein.
Sie unterscheiden sich vor allem durch ihre Masse.
Es ist so, dass massereiche Sterne mehr futtern und ihren Brennstoff somit verschwenderischer verbrauchen. Somit leben massereiche Sterne deutlich kürzer, als leichtere.
Es kann nun sein, dass bei einem Doppelsternsystem der eine schon zu einem weißen Zwerg geworden ist, während sich der andere noch seiner Jugend erfreut oder zu einem roten Riesen aufgebläht hat. (Über Sternlebensläufe reden wir separat, weil das den Artikel sprengen würde)
Stehen sich die beiden nahe, kann der weiße Zwerg Masse von seinem Partner zu sich herüber ziehen.
Das bedeutet, dass er im Grunde nochmal schwerer wird und sein Leben etwas verlängern kann.
Nimmt er an Masse zu, ist irgendwann der Punkt erreicht, bei dem die Temperatur so hoch wird, dass die Wasserstoff-Kernfusion zünden kann.
Das führt dazu, dass der geklaute Wasserstoff in der Hülle des Zwerges mit einem Schlag so viel Energie erzeugt, dass der Zwerg aufblitzt und die Hülle weggesprengt wird.
Dieses Szenario kann sich innerhalb eines Doppelsternsystems durchaus wiederholen, wenn danach noch was übrig ist.
Das ist eine Nova.
Zur Standardkerze wird das Szenario deshalb, weil ganz genau bekannt ist, bei welcher Masse der Druck ausreicht, den Wasserstoff zu zünden. Außerdem ist genau bekannt, wieviel Energie und Licht dieser Prozess liefert.
Das hat mit Kernphysik zu tun.
Die Masse, die nötig ist, um so etwas auszulösen, ist eine kritische Masse. Es gibt sie auch bei der Kernspaltung. Hat man einen Block aus spaltbarem Uran, der eine gewisse Masse übersteigt, dann reichen statistisch gesehen die spontanen Kernzerfälle in seinem Inneren aus, um die Kettenreaktion anzustoßen, derer wir zwar viel Wärme und Strom in der Vergangenheit zu verdanken hatten, die aber auch Verheerung und Elend in die Welt brachte.
Beobachten Astronomen mit ihren Teleskopen so einen Nova-Ausbruch,  können sie anhand der Lichtintensität ihren Abstand berechnen, weil sie wissen, wie hell dieser Prozess ist und dass die Lichtintensität mit dem Quadrat zum Abstand der Lichtquelle abnimmt.
Es gibt noch weitere Standardkerzen, aber die bewahre ich mir für ein weiteres Weihnachtsfest auf.

Das ist es, was Weihnachten, Sterne und Kerzen miteinander gemein haben.
Ich hoffe, es hat etwas Freude bereitet.
Bis zum nächstem Mal grüßt euch
euer Gerhard.

Alles gute zum Geburtstag ISS


Seid herzlich gegrüßt,

Das ist wirklich unglaublich. Mir kommt es vor, als wenn es erst vor wenigen Jahren begann, aber es sind wirklich schon zwanzig Jahre.
Am 20.11.1998 starteten die ersten drei Module der Internationalen Raumstation mit dem Space Shuttle ins all.
Lasst uns einfach mal dieses Geburtstages gedenken.
Es gibt so viele Aspekte, welche die Raumstation ausmachen.
Sie ist technisch vermutlich die komplexeste Maschine, die je von Menschen gebaut wurde.
Mich fasziniert und begeistert, wieviele Nationen Hand in Hand an dieser Maschine bauen und sie gemeinsam betreiben.
Da gibt es Russische Segmente, den Arm aus Canada (Canadarm), das Europäische Columbus-Modul, ein Japanisches Forschungslabor, verschiedene Möglichkeiten, unterschiedlichste Raumfähren andocken zu lassen, und, und, und. Und am Ende passt alles zusammen, die verschiedenen Standards und Adapter verbinden sich zur Raumstation zusammen und Nationalitäten und Sprachen scheinen keine Probleme mehr zu sein.
In diesem Sinne ist diese Raumstation ein Zeichen des Friedens. Schon bald nach Beendigung des kalten Krieges flogen Shuttles auch zur Mir und Astronauten verschiedener Nationen durften auf dieser Russischen Station forschen. In diesem Sinne überwindet Raumfahrt Grenzen und zeigt uns, dass wir sehr wohl in der Lage sind, sehr komplexe Probleme anzugehen und gemeinsam zu lösen. Die ISS ist ein Beispiel hierfür.

Ich war damals noch Student und verfolgte das mit großem Interesse.
Russland hatte ja mit seinen Raumstationen, z. B. der Mir viel Erfahrung wie das so ist, wenn man Menschen über Monate hinweg im All belässt. Schon vor dem Apollo-Programm gab es Ideen und Wünsche, mal eine Raumstation zu bauen. Über die erste Raumstation der USA, schrieb ich bereits in
Gedenken an die erste Raumstation der Welt
Zur Jahrtausendwende zogen dann die ersten drei Astronauten ein. Für Forschung war zunächst nicht viel Zeit, da die Station noch aufgebaut werden musste.
Als im Jahre 2003 das Shuttle, die Columbia beim Wiedereintritt in die Atmosphäre verglühte, geriet das Projekt ISS in große Gefahr. Bis zur Aufklärung des Vorfalles mussten alle Shuttles am Boden bleiben.
Betroffen davon war z. B. auch das Deutsche Forschungslabor Kolumbus.
Niemand wusste genau, ob es zum Einsatz kommen könnte, denn für Russische Trägerraketen war es zu groß.
Somit wurde für zwei Jahre die ISS nur mit zwei Astronauten besetzt, die versuchten, den Betrieb aufrecht zu halten. Nach zwei Jahren Pause flogen dann die Shuttles wieder. Man war sich aber bewusst, dass die Shuttles in die Jahre gekommen waren und es war fraglich, ob man die Station noch mit deren Hilfe fertigstellen können wird.
Mit dabei war 2006 Thomas Reiter, der sogar einen Außenbord-Einsatz hatte.

2008 war es dann so weit. Endlich konnte das Kolumbus-Modul der ESA an die Raumstation geflantscht werden.
Der Deutsche Astronaut Hans Schlegel half dabei.
Seit 2011 ist die ISS fertig und umkreist in etwa 400 km Höhe ein mal in 90 Minuten die Erde.
2014 arbeitete Alexander Gerst auf dem Kolumbusmodul.
Seit der Ausmusterung der Shuttles, werden die Astronauten mittels der Russischen Sojus-Kapseln transportiert.
Es gibt auch noch die Progress-Kapsel zur unbemannten Versorgung der ISS. Außerdem hatte Europa das ATV.
Mittlerweile finden auch japanische Versorgungsflüge zur ISS statt.

Ihr Aussehen kann ich mir als Blinder nicht vorstellen. aber man kann sie auch schlecht erklären. Sie hat im Grunde genommen keine Form. Die dosenartigen Module sind über eine Gitterstruktur miteinander verbunden.

Ich finde es großartig, dass die Medien jetzt so Anteil haben, an dem, was auf der Raumstation geschieht.
Wenn ich mir vorstelle, ich hätte in meiner Schulzeit die Möglichkeit gehabt, eine Frage an Alexander Gerst zu stellen, dann wäre ich vermutlich, keine Ahnung, was ich dann wäre, aber ich wäre sicher nicht der, der ich vorher war.
In einer Ausgabe des Vereinsorgan Deutscher Amateurfunker konnte ich ganz genau lesen, was alles gebraucht wurde, um so einen Kontakt zur ISS, her zu stellen.
Antennen, Kabel, Rotoren zur Nachführung Transceiver und vieles mehr. Die Kinder wurden im Vorfeld auf das Ereignis vorbereitet. Sie durften beim Aufbau der Anlage helfen, mussten ihre Fragen üben, weil das Zeitfenster knapp ist und erhielten einen Einblick in so viele verschiedene Technologien.
Von denen, welchen ein derartiges Erlebnis vergönnt war und noch sein wird, sollte sich der eine oder die andere in einem Ingenieurs- oder MINT-Fach später wieder finden.
Vielleicht war ja in einem Klassenzimmer schon der nächste Astronaut dabei, der dann vielleicht mal auf der Mondstation sein wird und seinen Kindern vom Funkkontakt zu Alexander Gerst erzählt.
Auf jeden Fall ist das genau der richtige Weg, Kinder an MINT-Berufe heran zu führen. Raumfahrt und Astronomie ziehen bei Kindern doch irgendwie immer.
Es gäbe hier noch viel zu schreiben, aber an dieser Stelle überlasse ich das Feld gerne den Experten. Ich habe mal diverse Links zu Podcast-Folgen, Youtube etc. gesammelt, mit denen man sich für Stunden in das Thema ISS vertiefen kann.

Um eine Vorstellung über die ISS und deren Geschichte zu bekommen, lohnt sich auf jeden Fall das hier:
ISS bei Wikipedia

Podcast-Hörer werden nun in folgendem bemerken, dass meine Linksammlung einiges des Podcasts @raumzeit von Tim Pritlove, aufführt. Er hat einfach viele Interviews mit Experten zur ISS und sich darum rankende Themen geführt. Seit Jahren höre ich diesen Podcast und habe unglaublich viel darüber lernen dürfen.
In Folge 64 des Podcast Raumzeit von Tim Pritlove geht es um die ISS.
Episode 64 ISS

Folge 56 desselben Podcasts befasst sich mit dem Thema „Forschung in Schwerelosigkeit“. Viele Experimente lassen sich wegen der Schwerkraft auf der Erde nicht durchführen. Es gibt zwar Parabelflüge und Falltürme, in welchem man für wenige Sekunden quasi Schwerelosigkeit erzeugen kann, das reicht aber beispielsweise für medizinische Langzeitversuche nicht aus. Und diese Versuche benötigen wir, wenn wir Menschen wieder zum Mond, Mars oder sonst wohin aufbrechen wollen.
Episode 56, Forschung in Schwerelosigkeit

In RZ010 geht es um Raumstationen allgemein.
Zu Folge 10
Und in Folge 17, um das Europäische Transportschiff ATV.
Zum ATV

Ich habe mal nach Sounds gesucht, wie es auf der ISS so klingt.
Man hört meist nicht viel. Im Grunde hört sich vieles ähnlich an, als wäre man in einem Server-Raum, aber so bescheiden ein Geräusch auch klingen mag, die Tatsache, dass es von der ISS stammt, wertet es für mich schon unheimlich auf.
Soundbeispiel 1
oder
Beispiel 2
Das fliegende Klassenzimmer mit Alexander Gerst ist ein sehr hörenswerter Youtube-Kanal
Zum Fliegenden Klassenzimmer
Ach ja, es gibt hier noch ein Interview mit Alexander Gerst vom @Omegataupodcast. Dieser Podcast ist wirklich extrem hörenswert.
Interview mit Alexander Gerst

Nicht zuletzt war Major Tom auch schon auf der ISS. Zumindest wurde das Lied Major Tom von David Bowie dort schon gesungen.

So, jetzt wünsche ich der ISS alles gute zu ihrem Geburtstag.
Vielleicht hat ja jemand von euch Lust, mal in das ein oder andere Thema feierlich mit einzusteigen.
Wenn jemand einen Link hat, von dem er glaubt, der wäre noch unbedingt erwähnenswert, dann darf sie oder er den gerne über einen Kommentar mit uns teilen.
Beste Grüße
Euer Gerhard.

Brenne auf mein Licht, aber nur meine liebe Laterne nicht


Seid herzlich gegrüßt,

In den Läden weihnachtet es schon seit September. Überall werden schon die Weihnachtsmärkte aufgebaut und man bereitet sich auf diese Lichterzeit vor. Den Anfang machten gestern die Kinder mit ihren Laternenumzügen.
„Gehe auf mein Licht, aber nur meine liebe Laterne nicht“,
ist der Satz aus dem Kinderlied, das wir noch alle kennen.
Die Bitte, die in diesem Lied steckt, können viele heutige Kinder im Grunde nicht mehr verstehen, Da wir Kerzen, meist Teelichter in unseren Laternen verwendeten, kam es schon mal vor, dass die eine oder andere Laterne durch eine kleine Unachtsamkeit in Flammen aufging und als kurzes Feuerspektakel endete.
Heute werden die LED-Laternen, die sogar flackern, mit Batterien gespeist. Die können zwar auch leer werden, aber in Flammen wird dort eher nichts mehr aufgehen.

Die Weihnachtszeit mit all ihren Lichtern, ist neben meiner Mondscheibe, über die ich in meinem Buch im Kapitel „Einmal und nie wieder“ schrieb, die stärkste visuelle empfindung, die ich mit meinem Sehrest wahrnahm, und deren Erinnerung mir bis heute geblieben ist. Vermutlich ist das mit ein Grund, dass ich so gerne Abends auf Weihnachtsmärkte gehe, weil mir neben all dem, was man dort so riechen, schmecken tasten und hören kann, immer wieder diese kindlichen visuellen Erinnerungen erscheinen.
Aber dieses nur am Rande.
Gerade in klaren Winternächten gibt es so einiges am Himmel, das aufglüht, und wieder erlischt, in Form von Sternschnuppen zu sehen. Im November und Dezember kreuzt die Erde mindestens drei Meteorschauer.

Die Leoniden

Da sind zunächst die Leoniden
Die Leoniden bilden einen Meteorstrom (Sternschnuppenstrom), der alljährlich im November zu beobachten ist. Sein Radiant liegt im Sternbild des Löwen. Das bedeutet, dass es so aussieht, als kämen diese Sternschnuppen aus dem Löwen.
Viele Meteorströme sind nach den Sternbildern benannt, aus denen sie zu kommen scheinen.
Der prominenteste Strom, den die Erde so im Jahreslauf passiert, ist vermutlich der Perseiden-Strom im August, der aus dem Sternbild Perseus uns mit Sternschnuppen versorgt. Ich schrieb darüber in
„Sternschnuppen Sehen und Hören“
Der Ursprung des Leonidenstroms ist der Komet Tempel-Tuttle, der auf seiner Umlaufbahn um die Sonne zahllose Bruchstücke (Meteoroiden) hinterlässt, wenn er gerade mal wieder in unserer Nähe ist.
Kreuzt die Erdbahn eine solche Wolke von Bruchstücken, und geraten diese in die Erdatmosphäre, so verglühen sie und können als Sternschnuppen (Meteore) wahrgenommen werden.
Das Aktivitätsmaximum ist in der Nacht vom 17. auf den 18. November zu beobachten. Die Sternschnuppen sind dabei mit einer geozentrischen Geschwindigkeit von ca. 71 km/s außerordentlich schnell. Einst war der Leonidenstrom wesentlich aktiver als heute, weshalb in früheren Zeiten der November als Sternschnuppenmonat schlechthin galt. Inzwischen ist die Trümmerwolke des Ursprungskometen jedoch schon sehr weit gestreut, weshalb der Strom in der Regel ein nur mehr schwach ausgeprägtes Maximum aufweist.
Alle 33 Jahre kann es jedoch zu einem besonderen Himmelsspektakel kommen: Kreuzt die Erde die Umlaufbahn des Kometen Tempel-Tuttle kurz nachdem dieser das innere Sonnensystem durchquert hat, so ist die Zahl der sichtbaren Leoniden-Meteore besonders groß. Es kommt dann zu einem Meteorsturm mit mehreren tausend Meteoren pro Stunde, wie es beispielsweise 1966 der Fall war. Im November 1833 sollen pro Stunde sogar bis zu 200.000 Sternschnuppen beobachtet worden sein.
Dieses Spektakel war damals sicherlich gut zu sehen, als die Lichtverschmutzung in unseren Städten noch nicht so schlimm war, weil es einfach noch deutlich weniger Lichtquellen gab. Über die Lichtverschmutzung schrieb ich letztes Jahr im Artikel „Im Dunkeln sieht man besser“.

Und noch mehr Winter-Feuerwerk

Geminiden (aus dem Sternbild Zwillinge und Ursiden (vom kleinen Bären, Ursa Minor) sorgen im Dezember für viele Sternschnuppen.
Diese beiden Funkenregen im Dezember stehen leider etwas im Schatten der Perseiden im August, obwohl hier eigentlich deutlich mehr Sternschnuppen zu erwarten sind. Das hängt einfach mit dem Wetter zusammen. Im August ist es sommerlich warm und oft nicht so bewölkt.
Bis 1983 war nicht klar, woher die Geminiden eigentlich kommen. Sind sie Reste eines zerbrochenen Kometen oder Trümmer eines Asteroiden, z. B. aus dem Asteroidengürtel.
Als Ursprungskörper der Geminiden gilt der 1983 entdeckte kleine Asteroid 1983 TB, welche später den Namen Phaeton erhielt. Seine Bahn um die Sonne ähnelt stark der eines Kometen, wenn man davon absieht, dass er die Sonne in nur 1,4 Jahren umrundet. Derartig kurze Umlaufzeiten kennt man eigentlich nur von Planeten her.
Es wurde verschiedentlich vermutet, dass Phaeton ein „erloschener“ Komet ist, der seine flüchtigen Bestandteile (Gas und Staub) bereits vollständig verloren hat. In diesem Fall gäbe es dann keinen Schweif aus Gas mehr und auch keine Koma, die den nun „nackten“ Kometenkern einhüllte.

Eine andere Hypothese besagt, das Phaeton ein Bruchstück des Hauptgürtel-Asteroiden Pallas ist, das bei einem Zusammenstoß mit einem anderen Asteroiden abgetrennt wurde. Dabei sollen dann auch die Geminiden entstanden sein. Allerdings könnten die Geminiden auch die Überreste einer Kollision von Phaeton selber mit einem anderen Objekt darstellen.
Für diese Theorie sprechen die Entdeckungen der beiden kleinen Asteroiden 1999 YC und 2005 UD, welche sich auf ähnlichen Bahnen wie Phaeton bewegen und scheinbar ähnlich zusammengesetzt sind.

Nach Beobachtungen mit Raumsonden ist Phaeton ein „Steinkomet“. Da der Asteroid im Perihel (sonnennächster Punkt) dicht an die Sonne heran kommt, könnten durch die Aufheizung Risse im Fels entstehen, wodurch dann Staub und Steinbrocken freigesetzt werden. Tatsächlich wurde bei zwei Perihelpassagen des Asteroiden in 2009 und 2012 eine schweifartige Struktur beobachtet. Es handelt sich hier dann nicht um den vom Sonnenwind verwehten und stets von ihr weg zeigenden Gas-Schweif, sondern um einen aus Staub und Trümmern.

Die Ursiden sind ein Meteorstrom, der in der letzten Dezember-Woche beobachtbar ist. Der Ursprung dieses Meteorstromes ist der Komet 8P/Tuttle. Sein Radiant liegt im Sternbild Ursa Minor (Kleiner Bär)
Im Maximum weisen die Ursiden eine Schnuppenhäufigkeit von 10 Meteoren pro Stunde auf. Jedoch wurden vereinzelt auch deutlich höhere Zahlen beobachtet.
Die Ursiden wurden um 1900 von William F. Denning entdeckt, wurden aber erst mal nur wenig beachtet,weil sie eben nicht so viele Sternschnuppen produzierten, wie andere Ströme.
Am 22. Dezember 1945 beobachteten tschechische Astronomen durch Zufall einen kräftigen Ausbruch des Meteorschauers, wobei eine Häufigkeit von über 100 Schnuppen pro Stunde erreicht wurde.
Aufgrund dieser Tatsache, schauten die Astronomen nun etwas genauer hin. Allerdings ließ das Interesse mit der Zeit wieder nach, weil sich diese Ausbrüche scheinbar nicht wiederholen wollten.
Anfang der 1970er Jahre erfolgten weitere Untersuchungen durch britische Amateurastronomen, die zunächst keinen signifikanten Anstieg feststellen konnten.
Durch Radiobeobachtungen wurde jedoch in den Tagesstunden des 22. Dezember 1973 ein kurzer Ausbruch mit einer Schnuppenrate von etwa 30 Meteoren pro Stunde nachgewiesen.
Im Artikel
„Sternschnuppen Sehen und Hören“
beschrieb ich, dass Sternschnuppen ob ihrer Ionisierung auch Radiowellen erzeugen. Das ist dann eine Messmethode, mit der man Sternschnuppen auch am Tag nachweisen kann, wo das Sonnenlicht fast alles andere am Himmel überstrahlt.
Vergleichbar stark traten die Ursiden am 22. Dezember 1979 in Erscheinung, diesmal waren es norwegische Beobachter, die die Meteore am Nachthimmel sichten konnten.
Seit langem war bekannt, dass es sich bei 8P/Tuttle um den Ursprungskometen der Ursiden handelt. Die Umlaufszeit dieses Schweifsterns beträgt 13,5 Jahre. Interessanterweise fielen die beobachteten Ausbrüche der Ursiden in den Jahren 1945, 1973 und 1986 nicht etwa mit der Sonnennähe, sondern mit der Sonnenferne des Kometen zusammen.
Eigentlich sollte es doch so sein, dass mehr Sternschnuppen fallen sollten, wenn der Komet gerade mal wieder bei uns war, und seine Trümmerspur wieder neu aufgefüllt hat.

Zwei Astronomen, Peter Jenniskens und Esko Lyytinen, entwickelten ein Modell, das diese merkwürdigen Ausbrüche durch die Schwerkraftwirkung des Planeten Jupiter zu erklären versuchte, was nicht abwägig wäre.
In der Regel ist Jupiter der Staubsauger unseres Sonnensystems, weil er viele gefährliche Einschläge von uns fern hält, indem er den Gefahren-Brocken aufsaugt, bevor er uns schaden könnte. Die Frage, ob die Erde ohne ihn genügend Ruhe gehabt hätte, dass Leben entstehen könnte, kann man in diesem Zusammenhang durchaus stellen. Es ist hinlänglich bekannt, dass das Aussterben der Dinos wahrscheinlich durch einen großen Asteroideneinschlag und dessen Folgen, verursacht wurde.
Manchmal kann Jupiter uns aber durch seine Schwerkraft auch etwas entgegen schleudern, was in diesem Fall so zu sein scheint.
Dieselben Autoren sagten für den 22. Dezember 2000 – wieder war der Komet in Sonnenferne – einen erneuten Ausbruch der Ursiden voraus.
Die Ergebnisse waren nicht eindeutig. Vor allem Radioechos deuteten auf verstärkte Meteor-Aktivität hin, aber visuelle Beobachtungen verzeichneten keinen nennenswerten Anstieg.
Dass ein Planet einen Kometen oder Asteroiden, der Sternschnuppen produzieren soll, durch seine Schwerkraft beeinflusst, ist durchaus denkbar und auch nachgewiesen.
Dieser, und noch weitere Effekte führen dazu, dass sich Kometen z. B. um wenige Jahre verspäten können.

So schön Sternschnuppen auch sind, so mahnen sie uns stets, dass wir vor größeren Brocken auf der Hut sein müssen. Schön nach zu lesen in
„Droht Gefahr durch Asteroiden aus dem All?“

Jetzt wünsche ich euch viele Sternschnuppen in der Vorweihnachtszeit, passende Wünsche dazu, und dass diese dann auch in Erfüllung gehen.
Quellen dieses Artikels sind:
Wikipedia,
alte Artikel von mir,
das buch „Rückkehr des Halleyschen Kometen“ von Isaac Asimov
und sicherlich noch andere, die ich mit den Jahren las und in mein Wissen assimiliert habe.

Kommt gut mit den Schnuppen durch den Vorweihnachtsstress.
Bis zum nächsten Mal grüßt euch
Euer Gerhard.

Gastro-Astronomie


Seid herzlich gegrüßt,

Gestern habe ich vielleicht die leckersten Königsberger Klopse meines Lebens gegessen.
Wer mal zufällig nach Rheinstetten kommt, sollte in der #Giebelstuben in Mörsch
Die Giebelstuben in Rheinstetten
vorbei schauen. Vielleicht gibt es ja grad welche.
Und bei diesem herrlichen Abendmahl viel mir ein, dass Königsberg und Astronomie durchaus etwas miteinander zu tun haben.

Johann Müller aus Königsberg war einer der größten Mathematiker und Astronomen des 15. Jahrhunderts.
Er ist auch unter dem Namen „Regio Montanus“ bekannt. Dieser Lateinische Name, leitet sich aus seinem Geburtsort „Königsberg“ ab.

Er erstellte u. a. Sternkarten und Sterntafeln für Seefahrer, die sich großer Beliebtheit erfreuten und die Navigation deutlich verbesserten.
In Wikipedia steht unglaublich viel von ihm.
Hätte Kolumbus nicht seine Efimeriden auf seinen Schiffsfahrten benutzt, so wäre es ihm einmal richtig schlecht ergangen und es hätte ihn vermutlich das Leben gekostet. Dank Müller blieb er am Leben.

Kolumbus und die Mondfinsternis vom Februar 1504:

Er war mit seiner Mannschaft auf Jamaika gestrandet. Der Sturm hatte die Schiffe zerstört und teile der Mannschaft begannen zu meutern.
Auch Nahrung und Wasser wurden knapp.
Außerdem mussten sie mit Racheangriffen der Indianer rechnen, die sie zuvor geplündert hatten.

Nun erkannte Kolumbus, dass eine Mondfinsternis bevorstand. Hierfür benutzte er astronomische Karten zur Navigation des Astronomen Johannes Müller.
Er ist vermutlich eher unter dem Namen Regio Montanus bekannt, was der lateinische Name seines Heimatortes Königsberg, bedeutet.
Kurz um, wandte sich Kolumbus mit dieser Tatsache derart an den Häuptling, dass er für den Fall, dass keine weitere Hilfe von Seitens der Indianer käme, er seinem christlichen Gott befehlen würde, ihnen Leid zu zu fügen. Als Zeichen, dass dieser Gott es Ernst meine, werde er in der folgenden Nacht dem Mond den Glanz nehmen.

Zum Glück sagten Kolumbusens Sternkarten die Mondfinsternis richtig voraus, ansonsten wären vermutlich einige in den Kochtöpfen der Ureinwohner  gelandet.
So aber, bekamen diese Angst und versorgten die Mannschaft weiterhin mit Nahrung und was sonst von Nöten war, um die Heimreise antreten zu können.

Es gäbe noch mehr über Königsberg zu berichten, z. B. das Sieben-Brücken-Problem, aber das ist eher für Informatiker und weniger für Astronomen interessant.

Es ist halt schon so. Astronomie klingt fast, wie Gastronomie…

Beste Grüße

Euer Gerhard.