Alles gute zum Geburtstag ISS


Seid herzlich gegrüßt,

Das ist wirklich unglaublich. Mir kommt es vor, als wenn es erst vor wenigen Jahren begann, aber es sind wirklich schon zwanzig Jahre.
Am 20.11.1998 starteten die ersten drei Module der Internationalen Raumstation mit dem Space Shuttle ins all.
Lasst uns einfach mal dieses Geburtstages gedenken.
Es gibt so viele Aspekte, welche die Raumstation ausmachen.
Sie ist technisch vermutlich die komplexeste Maschine, die je von Menschen gebaut wurde.
Mich fasziniert und begeistert, wieviele Nationen Hand in Hand an dieser Maschine bauen und sie gemeinsam betreiben.
Da gibt es Russische Segmente, den Arm aus Canada (Canadarm), das Europäische Columbus-Modul, ein Japanisches Forschungslabor, verschiedene Möglichkeiten, unterschiedlichste Raumfähren andocken zu lassen, und, und, und. Und am Ende passt alles zusammen, die verschiedenen Standards und Adapter verbinden sich zur Raumstation zusammen und Nationalitäten und Sprachen scheinen keine Probleme mehr zu sein.
In diesem Sinne ist diese Raumstation ein Zeichen des Friedens. Schon bald nach Beendigung des kalten Krieges flogen Shuttles auch zur Mir und Astronauten verschiedener Nationen durften auf dieser Russischen Station forschen. In diesem Sinne überwindet Raumfahrt Grenzen und zeigt uns, dass wir sehr wohl in der Lage sind, sehr komplexe Probleme anzugehen und gemeinsam zu lösen. Die ISS ist ein Beispiel hierfür.

Ich war damals noch Student und verfolgte das mit großem Interesse.
Russland hatte ja mit seinen Raumstationen, z. B. der Mir viel Erfahrung wie das so ist, wenn man Menschen über Monate hinweg im All belässt. Schon vor dem Apollo-Programm gab es Ideen und Wünsche, mal eine Raumstation zu bauen. Über die erste Raumstation der USA, schrieb ich bereits in
Gedenken an die erste Raumstation der Welt
Zur Jahrtausendwende zogen dann die ersten drei Astronauten ein. Für Forschung war zunächst nicht viel Zeit, da die Station noch aufgebaut werden musste.
Als im Jahre 2003 das Shuttle, die Columbia beim Wiedereintritt in die Atmosphäre verglühte, geriet das Projekt ISS in große Gefahr. Bis zur Aufklärung des Vorfalles mussten alle Shuttles am Boden bleiben.
Betroffen davon war z. B. auch das Deutsche Forschungslabor Kolumbus.
Niemand wusste genau, ob es zum Einsatz kommen könnte, denn für Russische Trägerraketen war es zu groß.
Somit wurde für zwei Jahre die ISS nur mit zwei Astronauten besetzt, die versuchten, den Betrieb aufrecht zu halten. Nach zwei Jahren Pause flogen dann die Shuttles wieder. Man war sich aber bewusst, dass die Shuttles in die Jahre gekommen waren und es war fraglich, ob man die Station noch mit deren Hilfe fertigstellen können wird.
Mit dabei war 2006 Thomas Reiter, der sogar einen Außenbord-Einsatz hatte.

2008 war es dann so weit. Endlich konnte das Kolumbus-Modul der ESA an die Raumstation geflantscht werden.
Der Deutsche Astronaut Hans Schlegel half dabei.
Seit 2011 ist die ISS fertig und umkreist in etwa 400 km Höhe ein mal in 90 Minuten die Erde.
2014 arbeitete Alexander Gerst auf dem Kolumbusmodul.
Seit der Ausmusterung der Shuttles, werden die Astronauten mittels der Russischen Sojus-Kapseln transportiert.
Es gibt auch noch die Progress-Kapsel zur unbemannten Versorgung der ISS. Außerdem hatte Europa das ATV.
Mittlerweile finden auch japanische Versorgungsflüge zur ISS statt.

Ihr Aussehen kann ich mir als Blinder nicht vorstellen. aber man kann sie auch schlecht erklären. Sie hat im Grunde genommen keine Form. Die dosenartigen Module sind über eine Gitterstruktur miteinander verbunden.

Ich finde es großartig, dass die Medien jetzt so Anteil haben, an dem, was auf der Raumstation geschieht.
Wenn ich mir vorstelle, ich hätte in meiner Schulzeit die Möglichkeit gehabt, eine Frage an Alexander Gerst zu stellen, dann wäre ich vermutlich, keine Ahnung, was ich dann wäre, aber ich wäre sicher nicht der, der ich vorher war.
In einer Ausgabe des Vereinsorgan Deutscher Amateurfunker konnte ich ganz genau lesen, was alles gebraucht wurde, um so einen Kontakt zur ISS, her zu stellen.
Antennen, Kabel, Rotoren zur Nachführung Transceiver und vieles mehr. Die Kinder wurden im Vorfeld auf das Ereignis vorbereitet. Sie durften beim Aufbau der Anlage helfen, mussten ihre Fragen üben, weil das Zeitfenster knapp ist und erhielten einen Einblick in so viele verschiedene Technologien.
Von denen, welchen ein derartiges Erlebnis vergönnt war und noch sein wird, sollte sich der eine oder die andere in einem Ingenieurs- oder MINT-Fach später wieder finden.
Vielleicht war ja in einem Klassenzimmer schon der nächste Astronaut dabei, der dann vielleicht mal auf der Mondstation sein wird und seinen Kindern vom Funkkontakt zu Alexander Gerst erzählt.
Auf jeden Fall ist das genau der richtige Weg, Kinder an MINT-Berufe heran zu führen. Raumfahrt und Astronomie ziehen bei Kindern doch irgendwie immer.
Es gäbe hier noch viel zu schreiben, aber an dieser Stelle überlasse ich das Feld gerne den Experten. Ich habe mal diverse Links zu Podcast-Folgen, Youtube etc. gesammelt, mit denen man sich für Stunden in das Thema ISS vertiefen kann.

Um eine Vorstellung über die ISS und deren Geschichte zu bekommen, lohnt sich auf jeden Fall das hier:
ISS bei Wikipedia

Podcast-Hörer werden nun in folgendem bemerken, dass meine Linksammlung einiges des Podcasts @raumzeit von Tim Pritlove, aufführt. Er hat einfach viele Interviews mit Experten zur ISS und sich darum rankende Themen geführt. Seit Jahren höre ich diesen Podcast und habe unglaublich viel darüber lernen dürfen.
In Folge 64 des Podcast Raumzeit von Tim Pritlove geht es um die ISS.
Episode 64 ISS

Folge 56 desselben Podcasts befasst sich mit dem Thema „Forschung in Schwerelosigkeit“. Viele Experimente lassen sich wegen der Schwerkraft auf der Erde nicht durchführen. Es gibt zwar Parabelflüge und Falltürme, in welchem man für wenige Sekunden quasi Schwerelosigkeit erzeugen kann, das reicht aber beispielsweise für medizinische Langzeitversuche nicht aus. Und diese Versuche benötigen wir, wenn wir Menschen wieder zum Mond, Mars oder sonst wohin aufbrechen wollen.
Episode 56, Forschung in Schwerelosigkeit

In RZ010 geht es um Raumstationen allgemein.
Zu Folge 10
Und in Folge 17, um das Europäische Transportschiff ATV.
Zum ATV

Ich habe mal nach Sounds gesucht, wie es auf der ISS so klingt.
Man hört meist nicht viel. Im Grunde hört sich vieles ähnlich an, als wäre man in einem Server-Raum, aber so bescheiden ein Geräusch auch klingen mag, die Tatsache, dass es von der ISS stammt, wertet es für mich schon unheimlich auf.
Soundbeispiel 1
oder
Beispiel 2
Das fliegende Klassenzimmer mit Alexander Gerst ist ein sehr hörenswerter Youtube-Kanal
Zum Fliegenden Klassenzimmer
Ach ja, es gibt hier noch ein Interview mit Alexander Gerst vom @Omegataupodcast. Dieser Podcast ist wirklich extrem hörenswert.
Interview mit Alexander Gerst

Nicht zuletzt war Major Tom auch schon auf der ISS. Zumindest wurde das Lied Major Tom von David Bowie dort schon gesungen.

So, jetzt wünsche ich der ISS alles gute zu ihrem Geburtstag.
Vielleicht hat ja jemand von euch Lust, mal in das ein oder andere Thema feierlich mit einzusteigen.
Wenn jemand einen Link hat, von dem er glaubt, der wäre noch unbedingt erwähnenswert, dann darf sie oder er den gerne über einen Kommentar mit uns teilen.
Beste Grüße
Euer Gerhard.

Brenne auf mein Licht, aber nur meine liebe Laterne nicht


Seid herzlich gegrüßt,

In den Läden weihnachtet es schon seit September. Überall werden schon die Weihnachtsmärkte aufgebaut und man bereitet sich auf diese Lichterzeit vor. Den Anfang machten gestern die Kinder mit ihren Laternenumzügen.
„Gehe auf mein Licht, aber nur meine liebe Laterne nicht“,
ist der Satz aus dem Kinderlied, das wir noch alle kennen.
Die Bitte, die in diesem Lied steckt, können viele heutige Kinder im Grunde nicht mehr verstehen, Da wir Kerzen, meist Teelichter in unseren Laternen verwendeten, kam es schon mal vor, dass die eine oder andere Laterne durch eine kleine Unachtsamkeit in Flammen aufging und als kurzes Feuerspektakel endete.
Heute werden die LED-Laternen, die sogar flackern, mit Batterien gespeist. Die können zwar auch leer werden, aber in Flammen wird dort eher nichts mehr aufgehen.

Die Weihnachtszeit mit all ihren Lichtern, ist neben meiner Mondscheibe, über die ich in meinem Buch im Kapitel „Einmal und nie wieder“ schrieb, die stärkste visuelle empfindung, die ich mit meinem Sehrest wahrnahm, und deren Erinnerung mir bis heute geblieben ist. Vermutlich ist das mit ein Grund, dass ich so gerne Abends auf Weihnachtsmärkte gehe, weil mir neben all dem, was man dort so riechen, schmecken tasten und hören kann, immer wieder diese kindlichen visuellen Erinnerungen erscheinen.
Aber dieses nur am Rande.
Gerade in klaren Winternächten gibt es so einiges am Himmel, das aufglüht, und wieder erlischt, in Form von Sternschnuppen zu sehen. Im November und Dezember kreuzt die Erde mindestens drei Meteorschauer.

Die Leoniden

Da sind zunächst die Leoniden
Die Leoniden bilden einen Meteorstrom (Sternschnuppenstrom), der alljährlich im November zu beobachten ist. Sein Radiant liegt im Sternbild des Löwen. Das bedeutet, dass es so aussieht, als kämen diese Sternschnuppen aus dem Löwen.
Viele Meteorströme sind nach den Sternbildern benannt, aus denen sie zu kommen scheinen.
Der prominenteste Strom, den die Erde so im Jahreslauf passiert, ist vermutlich der Perseiden-Strom im August, der aus dem Sternbild Perseus uns mit Sternschnuppen versorgt. Ich schrieb darüber in
„Sternschnuppen Sehen und Hören“
Der Ursprung des Leonidenstroms ist der Komet Tempel-Tuttle, der auf seiner Umlaufbahn um die Sonne zahllose Bruchstücke (Meteoroiden) hinterlässt, wenn er gerade mal wieder in unserer Nähe ist.
Kreuzt die Erdbahn eine solche Wolke von Bruchstücken, und geraten diese in die Erdatmosphäre, so verglühen sie und können als Sternschnuppen (Meteore) wahrgenommen werden.
Das Aktivitätsmaximum ist in der Nacht vom 17. auf den 18. November zu beobachten. Die Sternschnuppen sind dabei mit einer geozentrischen Geschwindigkeit von ca. 71 km/s außerordentlich schnell. Einst war der Leonidenstrom wesentlich aktiver als heute, weshalb in früheren Zeiten der November als Sternschnuppenmonat schlechthin galt. Inzwischen ist die Trümmerwolke des Ursprungskometen jedoch schon sehr weit gestreut, weshalb der Strom in der Regel ein nur mehr schwach ausgeprägtes Maximum aufweist.
Alle 33 Jahre kann es jedoch zu einem besonderen Himmelsspektakel kommen: Kreuzt die Erde die Umlaufbahn des Kometen Tempel-Tuttle kurz nachdem dieser das innere Sonnensystem durchquert hat, so ist die Zahl der sichtbaren Leoniden-Meteore besonders groß. Es kommt dann zu einem Meteorsturm mit mehreren tausend Meteoren pro Stunde, wie es beispielsweise 1966 der Fall war. Im November 1833 sollen pro Stunde sogar bis zu 200.000 Sternschnuppen beobachtet worden sein.
Dieses Spektakel war damals sicherlich gut zu sehen, als die Lichtverschmutzung in unseren Städten noch nicht so schlimm war, weil es einfach noch deutlich weniger Lichtquellen gab. Über die Lichtverschmutzung schrieb ich letztes Jahr im Artikel „Im Dunkeln sieht man besser“.

Und noch mehr Winter-Feuerwerk

Geminiden (aus dem Sternbild Zwillinge und Ursiden (vom kleinen Bären, Ursa Minor) sorgen im Dezember für viele Sternschnuppen.
Diese beiden Funkenregen im Dezember stehen leider etwas im Schatten der Perseiden im August, obwohl hier eigentlich deutlich mehr Sternschnuppen zu erwarten sind. Das hängt einfach mit dem Wetter zusammen. Im August ist es sommerlich warm und oft nicht so bewölkt.
Bis 1983 war nicht klar, woher die Geminiden eigentlich kommen. Sind sie Reste eines zerbrochenen Kometen oder Trümmer eines Asteroiden, z. B. aus dem Asteroidengürtel.
Als Ursprungskörper der Geminiden gilt der 1983 entdeckte kleine Asteroid 1983 TB, welche später den Namen Phaeton erhielt. Seine Bahn um die Sonne ähnelt stark der eines Kometen, wenn man davon absieht, dass er die Sonne in nur 1,4 Jahren umrundet. Derartig kurze Umlaufzeiten kennt man eigentlich nur von Planeten her.
Es wurde verschiedentlich vermutet, dass Phaeton ein „erloschener“ Komet ist, der seine flüchtigen Bestandteile (Gas und Staub) bereits vollständig verloren hat. In diesem Fall gäbe es dann keinen Schweif aus Gas mehr und auch keine Koma, die den nun „nackten“ Kometenkern einhüllte.

Eine andere Hypothese besagt, das Phaeton ein Bruchstück des Hauptgürtel-Asteroiden Pallas ist, das bei einem Zusammenstoß mit einem anderen Asteroiden abgetrennt wurde. Dabei sollen dann auch die Geminiden entstanden sein. Allerdings könnten die Geminiden auch die Überreste einer Kollision von Phaeton selber mit einem anderen Objekt darstellen.
Für diese Theorie sprechen die Entdeckungen der beiden kleinen Asteroiden 1999 YC und 2005 UD, welche sich auf ähnlichen Bahnen wie Phaeton bewegen und scheinbar ähnlich zusammengesetzt sind.

Nach Beobachtungen mit Raumsonden ist Phaeton ein „Steinkomet“. Da der Asteroid im Perihel (sonnennächster Punkt) dicht an die Sonne heran kommt, könnten durch die Aufheizung Risse im Fels entstehen, wodurch dann Staub und Steinbrocken freigesetzt werden. Tatsächlich wurde bei zwei Perihelpassagen des Asteroiden in 2009 und 2012 eine schweifartige Struktur beobachtet. Es handelt sich hier dann nicht um den vom Sonnenwind verwehten und stets von ihr weg zeigenden Gas-Schweif, sondern um einen aus Staub und Trümmern.

Die Ursiden sind ein Meteorstrom, der in der letzten Dezember-Woche beobachtbar ist. Der Ursprung dieses Meteorstromes ist der Komet 8P/Tuttle. Sein Radiant liegt im Sternbild Ursa Minor (Kleiner Bär)
Im Maximum weisen die Ursiden eine Schnuppenhäufigkeit von 10 Meteoren pro Stunde auf. Jedoch wurden vereinzelt auch deutlich höhere Zahlen beobachtet.
Die Ursiden wurden um 1900 von William F. Denning entdeckt, wurden aber erst mal nur wenig beachtet,weil sie eben nicht so viele Sternschnuppen produzierten, wie andere Ströme.
Am 22. Dezember 1945 beobachteten tschechische Astronomen durch Zufall einen kräftigen Ausbruch des Meteorschauers, wobei eine Häufigkeit von über 100 Schnuppen pro Stunde erreicht wurde.
Aufgrund dieser Tatsache, schauten die Astronomen nun etwas genauer hin. Allerdings ließ das Interesse mit der Zeit wieder nach, weil sich diese Ausbrüche scheinbar nicht wiederholen wollten.
Anfang der 1970er Jahre erfolgten weitere Untersuchungen durch britische Amateurastronomen, die zunächst keinen signifikanten Anstieg feststellen konnten.
Durch Radiobeobachtungen wurde jedoch in den Tagesstunden des 22. Dezember 1973 ein kurzer Ausbruch mit einer Schnuppenrate von etwa 30 Meteoren pro Stunde nachgewiesen.
Im Artikel
„Sternschnuppen Sehen und Hören“
beschrieb ich, dass Sternschnuppen ob ihrer Ionisierung auch Radiowellen erzeugen. Das ist dann eine Messmethode, mit der man Sternschnuppen auch am Tag nachweisen kann, wo das Sonnenlicht fast alles andere am Himmel überstrahlt.
Vergleichbar stark traten die Ursiden am 22. Dezember 1979 in Erscheinung, diesmal waren es norwegische Beobachter, die die Meteore am Nachthimmel sichten konnten.
Seit langem war bekannt, dass es sich bei 8P/Tuttle um den Ursprungskometen der Ursiden handelt. Die Umlaufszeit dieses Schweifsterns beträgt 13,5 Jahre. Interessanterweise fielen die beobachteten Ausbrüche der Ursiden in den Jahren 1945, 1973 und 1986 nicht etwa mit der Sonnennähe, sondern mit der Sonnenferne des Kometen zusammen.
Eigentlich sollte es doch so sein, dass mehr Sternschnuppen fallen sollten, wenn der Komet gerade mal wieder bei uns war, und seine Trümmerspur wieder neu aufgefüllt hat.

Zwei Astronomen, Peter Jenniskens und Esko Lyytinen, entwickelten ein Modell, das diese merkwürdigen Ausbrüche durch die Schwerkraftwirkung des Planeten Jupiter zu erklären versuchte, was nicht abwägig wäre.
In der Regel ist Jupiter der Staubsauger unseres Sonnensystems, weil er viele gefährliche Einschläge von uns fern hält, indem er den Gefahren-Brocken aufsaugt, bevor er uns schaden könnte. Die Frage, ob die Erde ohne ihn genügend Ruhe gehabt hätte, dass Leben entstehen könnte, kann man in diesem Zusammenhang durchaus stellen. Es ist hinlänglich bekannt, dass das Aussterben der Dinos wahrscheinlich durch einen großen Asteroideneinschlag und dessen Folgen, verursacht wurde.
Manchmal kann Jupiter uns aber durch seine Schwerkraft auch etwas entgegen schleudern, was in diesem Fall so zu sein scheint.
Dieselben Autoren sagten für den 22. Dezember 2000 – wieder war der Komet in Sonnenferne – einen erneuten Ausbruch der Ursiden voraus.
Die Ergebnisse waren nicht eindeutig. Vor allem Radioechos deuteten auf verstärkte Meteor-Aktivität hin, aber visuelle Beobachtungen verzeichneten keinen nennenswerten Anstieg.
Dass ein Planet einen Kometen oder Asteroiden, der Sternschnuppen produzieren soll, durch seine Schwerkraft beeinflusst, ist durchaus denkbar und auch nachgewiesen.
Dieser, und noch weitere Effekte führen dazu, dass sich Kometen z. B. um wenige Jahre verspäten können.

So schön Sternschnuppen auch sind, so mahnen sie uns stets, dass wir vor größeren Brocken auf der Hut sein müssen. Schön nach zu lesen in
„Droht Gefahr durch Asteroiden aus dem All?“

Jetzt wünsche ich euch viele Sternschnuppen in der Vorweihnachtszeit, passende Wünsche dazu, und dass diese dann auch in Erfüllung gehen.
Quellen dieses Artikels sind:
Wikipedia,
alte Artikel von mir,
das buch „Rückkehr des Halleyschen Kometen“ von Isaac Asimov
und sicherlich noch andere, die ich mit den Jahren las und in mein Wissen assimiliert habe.

Kommt gut mit den Schnuppen durch den Vorweihnachtsstress.
Bis zum nächsten Mal grüßt euch
Euer Gerhard.

Gastro-Astronomie


Seid herzlich gegrüßt,

Gestern habe ich vielleicht die leckersten Königsberger Klopse meines Lebens gegessen.
Wer mal zufällig nach Rheinstetten kommt, sollte in der #Giebelstuben in Mörsch
Die Giebelstuben in Rheinstetten
vorbei schauen. Vielleicht gibt es ja grad welche.
Und bei diesem herrlichen Abendmahl viel mir ein, dass Königsberg und Astronomie durchaus etwas miteinander zu tun haben.

Johann Müller aus Königsberg war einer der größten Mathematiker und Astronomen des 15. Jahrhunderts.
Er ist auch unter dem Namen „Regio Montanus“ bekannt. Dieser Lateinische Name, leitet sich aus seinem Geburtsort „Königsberg“ ab.

Er erstellte u. a. Sternkarten und Sterntafeln für Seefahrer, die sich großer Beliebtheit erfreuten und die Navigation deutlich verbesserten.
In Wikipedia steht unglaublich viel von ihm.
Hätte Kolumbus nicht seine Efimeriden auf seinen Schiffsfahrten benutzt, so wäre es ihm einmal richtig schlecht ergangen und es hätte ihn vermutlich das Leben gekostet. Dank Müller blieb er am Leben.

Kolumbus und die Mondfinsternis vom Februar 1504:

Er war mit seiner Mannschaft auf Jamaika gestrandet. Der Sturm hatte die Schiffe zerstört und teile der Mannschaft begannen zu meutern.
Auch Nahrung und Wasser wurden knapp.
Außerdem mussten sie mit Racheangriffen der Indianer rechnen, die sie zuvor geplündert hatten.

Nun erkannte Kolumbus, dass eine Mondfinsternis bevorstand. Hierfür benutzte er astronomische Karten zur Navigation des Astronomen Johannes Müller.
Er ist vermutlich eher unter dem Namen Regio Montanus bekannt, was der lateinische Name seines Heimatortes Königsberg, bedeutet.
Kurz um, wandte sich Kolumbus mit dieser Tatsache derart an den Häuptling, dass er für den Fall, dass keine weitere Hilfe von Seitens der Indianer käme, er seinem christlichen Gott befehlen würde, ihnen Leid zu zu fügen. Als Zeichen, dass dieser Gott es Ernst meine, werde er in der folgenden Nacht dem Mond den Glanz nehmen.

Zum Glück sagten Kolumbusens Sternkarten die Mondfinsternis richtig voraus, ansonsten wären vermutlich einige in den Kochtöpfen der Ureinwohner  gelandet.
So aber, bekamen diese Angst und versorgten die Mannschaft weiterhin mit Nahrung und was sonst von Nöten war, um die Heimreise antreten zu können.

Es gäbe noch mehr über Königsberg zu berichten, z. B. das Sieben-Brücken-Problem, aber das ist eher für Informatiker und weniger für Astronomen interessant.

Es ist halt schon so. Astronomie klingt fast, wie Gastronomie…

Beste Grüße

Euer Gerhard.

Die Unreine Sonne


Liebe Leserinnen und Leser,

leider ist der 31.10., der Reformationstag, in diesem Jahr kein Feiertag mehr. Dieses Geschenk erhielten wir im letzten Jahr anlässlich des 500 Jahre Luther-Jubiläums.
Immerhin ist in manchen Bundesländern der 01.11. einer.
Und weil das im letzten Jahr mit dem zusätzlichen Feiertag so schön war, nehme ich in diesem Jahr nochmal ein Thema, das mit der Evang. Kirche und Astronomie zu tun hat.

Zur Reformation, Martin Luther  und Astronomie, findet sich nicht gerade viel. Was ich anlässlich des Jubiläums letztes Jahr zu Tage förderte, kann, wer mag, nochmal zur Erinnerung zum Luther-Jahr hier nachlesen.
Luther und Kopernikus

Zu diesem Reformationstag möchte ich mal eines Pastors aus Norddeutschland und seines Sohnes, gedenken. Ich wandle gerne auf den Spuren alter Astronominnen und Astronomen, und da waren eben vor allem viele Kirchenmänner dabei, weil Bildung und Wissenschaft damals zu einem erheblichen Teil in Klöstern stattfand. Auch Kopernikus war ein Mann der Kirche.

Es geht um Pfarrer David Fabricius und seinen Sohn, Johann.

War der Pastor tagsüber für seine Gemeinde da, so widmete er sich des Nachts und in den frühen Morgen- und Abendstunden dem Studium des Sternenhimmels und der Sonne.

Der Evangelische Pastor David Fabricius wurde als Sohn eines Schmiedes in Esens geboren. Über seine Kindheit und Jugend ist nicht viel bekannt. Er besuchte die Lateinschulen in Norden und vermutlich in Braunschweig. Er bemerkte später einmal, dass Heinrich Lampadius, ein Gelehrter aus Bremen († 1583) in Braunschweig ihn in die Astronomie und Mathematik eingeführt habe.

Huch, in einem Jahr eine Einführung in die Mathematik, dass man damit schon astronomische Probleme berechnen kann?

Nach Abschluss der Schule studierte er, vermutlich in Helmstedt.

Nach seinen Studien, trat er bereits im Alter von 20 Jahren eine Stelle als Pastor  in Resterhafe bei Dornum an.

Ich bin immer wieder tief beeindruckt, wie jung viele damals schon sehr verantwortungsvolle Tätigkeiten übernahmen. John Goodricke, der gehörlose Astronom, machte sich beispielsweise auch schon mit 21 Jahren einen Namen in der Astronomie.
Ich meine, der SchriftstellerWillhelm Hauff verfasste seinen riesigen Roman „Lichtenstein“, als er gerade mal 21 Jahre alt war. Also ich hatte mit 21 Jahren noch Mühe, gute Schulaufsätze zu schreiben, geschweige denn ganze Bücher zu füllen.

Von dieser Zeit an beschäftigte sich der Pastor intensiv mit der Astronomie. Er beobachtete Sonne, Mond, Sterne, Planeten, Kometen und Polarlichter und trat in Briefwechsel mit den großen Gelehrten seiner Zeit, darunter Tycho Brahe, dem Astronom Simon Marius und Johannes Kepler. Mit letzterem tauschte er zwischen 1601 und 1609 vierzig Briefe aus, in denen es hauptsächlich um den Planeten Mars ging.

Man stelle sich heute mal vor, ein Jüngling von 20 jahren träte in Kontakt mit den Gelehrten unserer Zeit, und würde dabei sogar noch ernst genommen.
Gerade Günstling von Tycho Brahe zu sein, war sicherlich nicht einfach, denn Tycho galt nicht unbedingt als der friedlichste und zugänglichste Zeitgenosse. Sicherlich war auch eine gewisse Arroganz eine Charaktereigenschaft Tychos. Zumindest gab er seine gesammelten Daten nur Häppchenweise an Kepler heraus.
Und sehr streitbar soll Tycho wohl auch gewesen sein. Immerhin trug er eine goldene Nasenprotese, nachdem er seine eigene bei einem Duell verloren hatte.

Im Juli/August 1596 des Gregorianischen Kalenders, bemerkte Fabricius als Erster die Veränderlichkeit des Sterns Omikron Ceti im Sternbild Walfisch. Dieser Stern verändert mit einer Periode von etwa 331 Tagen seine Helligkeit, wobei er im Maximum deutlich sichtbar ist, im Minimum dagegen für das bloße Auge unsichtbar wird. Aufgrund dieses eigenartigen Verhaltens nannte er den Stern in Briefen res mira, seit Johannes Hevelius heißt er Mira.

Und hier schließt sich wieder der Kreis zu dem gehörlosen Astronomen John Goodricke, denn auch er befasste sich mit den Cefeiden, Sternen, die ihre Helligkeit ändern.

Interessant ist an dieser Stelle, dass der Pastor offensichtlich keine größeren Probleme mit der Dynamik des Sternenhimmels zu haben schien, die durchaus im Widerspruch zu manchen Inhalten der Bibel stand.

Neben der Astronomie setzte sich Fabricius mit der Meteorologie auseinander, wobei er seine Wetterbeobachtung in ein „Calendarium“ eintrug, das bis heute erhalten ist.
Wie viele andere auch, ging er davon aus, dass Sterne und Mond, unser Wetter beeinflussen könnten.
Dieser Glaube besteht noch heute. Für viele Zeitgenossen ist der Mondwechsel für die Änderungen einer Wetterperiode verantwortlich. Der Stern Sirius brachte den Ägyptern die Nielflut. Es ist aber anders herum. Die Nielflut kam und ging mit den Jahreszeiten. und der Stern Sirius fiel in die Zeit dieser Flut. Nicht die Sommersternbilder machen den Sommer, wie auch z. B. das Wintersechseck nicht für den Winter verantwortlich ist. Unsere Jahreszeiten kommen und gehen ungeachtet der Sternbilder am Himmel, aber sie sind eine gute Orientierung für das, was z. B. wettermäßig eintreten könnte.

1611 kehrte sein Sohn Johann (der älteste von sieben Söhnen) vom Studium aus der Stadt Leiden zurück und brachte ein Teleskop mit.
Damit beobachtete dieser u. a. die Sonne, was nicht ungefährlich war, da er keine Hilfsmittel hatte, um das helle Licht abzuschwächen. Er verlegte lediglich die Beobachtungszeit in die Morgen- und Abendstunden, in denen das Sonnenlicht weniger grell war.

Am 27. Februar 1611 nahm Johann erstmals dunkle Flecken auf der Sonne wahr. Da er sich zunächst unsicher war, ob es sich um atmosphärische Erscheinungen oder eine optische Täuschung handelte, wiederholte er seine Beobachtungen, wobei er seinen Vater hinzuzog. Da diese Art der Beobachtung ihren Augen schadete,
wandten sie später eine ungefährlichere Beobachtungsmethode an: Mittels einer Lochblende lenkten sie das Sonnenlicht in ein abgedunkeltes Zimmer und betrachteten die Sonnenscheibe auf einem weißen Papierschirm (das Prinzip der Lochkamera (Camera Obscura).
Die stellt zwar alles auf den Kopf, aber oben und unten, ist in der Astronomie nicht so wichtig. Viele Teleskope tun das auch.

Die Existenz der Flecken konnte zweifelsfrei nachgewiesen werden. Deren tägliche Bewegung auf der Sonnenscheibe wurde ganz folgerichtig auf die Rotation der Sonne zurückgeführt. Im Juni des gleichen Jahres veröffentlichte Johann Fabricius in Wittenberg eine 22seitige Schrift De Maculis in sole observatis et apparente earum cum Sole conversione narratio, worin er alle Einzelheiten der Entdeckung beschreibt und seinem Vater einen gebührenden Anteil zuspricht.
bereits der Mönch Christoph Scheiner aus Ingolstadt, Galileo Galilei in Pisa und Thomas Harriot in London hatten im Jahre 1610 Flecken auf der Sonne entdeckt, Johann Fabricius war aber der Erste, der darüber eine wissenschaftliche Abhandlung verfasste und veröffentlichte.

Ein wesentlicher Grund für die Erblindung Galileis, dürfte auch bei ihm die häufige Sonnenbeobachtung ohne ausreichenden Lichtschutz vor den Augen gewesen sein.
Lassen Sie und ihr es euch um Himmels Willen niemals einfallen, die Sonne ohne ein Filter direkt und schon gar nicht durch ein optisches Instrument zu beobachten. Das könnte der letzte Blick gewesen sein, und man wird künftig meine Artikel vorgelesen bekommen müssen…

Die Entdeckung der Sonnenflecken stand im Gegensatz zur klassischen Anschauung des Aristoteles, nach der die Sonne vollkommen war, und der Lehrmeinung der Kirche, wonach die Sonne gleichsam „unbefleckt“, wie die Jungfrau Maria sein sollte.
Für einen Katolischen Mönch, wie Scheiner es war, war es nicht ohne Risiko, über derlei zu schreiben. So riet ihm sein Abt, besser nicht zu veröffentlichen. Scheiner entdeckte auch, dass die Sonne keine perfekt glatte Oberfläche habe, sondern eher gekörnt sei, vergleichbar vielleicht mit der rauen körnigen Oberfläche einer Orange.
Wie Galilei mit der Inquisition in Konflikt kam, ist hinlänglich bekannt, und die Mutter von Kepler entging nur knapp einem Hexen-Prozess.

Zumindest dieses unrühmlichen Kapitels der Inquisition muss sich die Evangelische Kirche nicht verantworten, was nicht heißen soll, dass es in ihrer Geschichte keine dunklen Flecken gegeben hätte.

Das Ende von David Fabricius ist etwas kurios. So soll er kurz vor seinem Tod eine Predigt gehalten haben, in der er behauptete, einen Gänse- und Hühnerdieb zu kennen, er wolle dessen Namen aber nicht preisgeben. Ein selbst erstelltes Horoskop sah für den 7. Mai 1617 Unheil voraus und Fabricius verbrachte den Tag in seinem Haus. Am Abend wähnte er die Gefahr vorüber und machte sich zu einem Spaziergang auf. Auf dem Weg wurde er von einem Bauern, Frerik Hoyer, mit einem Torfspaten erschlagen. Hoyer fühlte sich offensichtlich als Dieb bloßgestellt und war darüber in Zorn geraten. Er wurde wegen seiner Tat zu Tode gerädert.
Heute erinnern ein Denkmal auf dem Friedhof von Osteel und eine Sandsteinplakette an der Kirche von Resterhafe an David Fabricius. Der Mondkrater Fabricius ist nach ihm benannt.
Sein Sohn Johannes starb jung auf einer Fahrt nach Basel, was keppler äußerst bedauerte.

Als Quellen zu diesem Artikel verwendete ich zum einen Wikipedia, und zum anderen das Buch „Der Stern von dem wir leben – Den Geheimnissen der Sonne auf der Spur“ von Rudolf Kippenhahn.

Da die damaligen Entdecker der Sonnenflecken nicht wussten, was sie sind und wie sie entstehen, bewahre auch ich mir das für einen meiner nächsten Artikel auf.

Jetzt wünsche ich Ihnen und euch, wenn auch der Reformationstag kein Feiertag ist, einen geruhsamen 01.11., Aller Heiligen, der zumindest bei uns in Baden-Württemberg einer ist.
Bis zum nächsten Mal grüßt Sie und euch

Gerhard Jaworek.

So interessant ist unser Pluto, auch als Zwergplanet


Meine lieben Leserinnen und Leser,

und hier kommt er, der angekündigte Artikel über unseren super interessanten Pluto.

Das Pluto nun seit Juli 2006 der Planetenstatus aberkannt wurde, soll uns nicht stören, wie es auch die Forscher nicht zu stören scheint. Wie das Preisschild letztlich auch die Kunst nicht macht, so fasziniert uns dieser Himmelskörper mit seinen fünf Monden nicht minder, wenn er auch nur noch ein Zwergplanet ist.
Noch nie erhielten wir so detaillierte und hoch aufgelöste Bilder von ihm, wie die Sonde New Horizons uns lieferte.
So weit draußen sollte er uns einige unserer brennenden Fragen beantworten, die mit der Entstehung unseres Sonnensystems zusammen hängen.
Hier nun einige von mir gesammelten Daten und Fakten über ihn.

Namensgebung:

Die Planeten haben Namen aus der römischen Götterwelt. Zum Teil haben ihre Entdecker sie benannt. Dabei hat man sich immer Götternamen ausgesucht, die etwas mit dem Aussehen, der Lage zur Sonne und den Merkmalen des Planeten zu tun haben.

In der römischen Mythologie ist Pluto der Gott der Unterwelt. Der Planet erhielt seinen Namen wahrscheinlich, weil er so weit von der Sonne entfernt ist, dass er nie ins Licht gelangt und ständig in der Dunkelheit liegt. Außerdem sind PL die Initialen von Percival Lowell, der 1894 das Lowell Observatory in Arizona gründete. Seine Bemühungen galten der Erforschung des Mars. Seit 2006 zählt Pluto allerdings nicht mehr zu den Planeten, sondern gilt als Zwergplanet.

Entdeckung

Pluto wurde erst 1930 entdeckt. Er hat etwa die Größe Merkurs und
besitzt fünf Monde.
Neptun und Pluto wurden nicht mit optischen Instrumenten entdeckt. Sie verrieten sich durch ihre Schwerkraft, wodurch sie die Bahnen der anderen Planeten störten.

Aufbau:

Über Plutos Beschaffenheit ist noch wenig bekannt. Mit einem Durchmesser von lediglich 2370 km ist er deutlich kleiner als die sieben größten Monde im Sonnensystem. Seine mittlere Dichte von 1,869 g/cm³ spricht für eine Zusammensetzung aus zirka 65 % Gestein und 35 % Wassereis.
Temperatur
Im Juli 2005 konnte erstmals die thermische Emission von Pluto und seinem großen und nahen Mond getrennt gemessen werden. Dabei hat sich gezeigt, dass die Oberfläche von Pluto mit −230 °C um 10 °C kälter ist, als es einem reinen Strahlungsgleichgewicht entsprechen würde. Der Grund dafür ist die Ausbildung der Atmosphäre, durch deren Sublimation Verdunstungskälte entsteht.
Wir kennen dieses Phänomen vom Alltag her. Wenn wir leichtflüchtige Substanzen, wie Alkohol, auf unsere Haut aufbringen, verdunstet er rasch, nimmt Wärme mit und das empfinden wir als Kühlung.

Oberfläche

Durch New Horizons wurde eine näherungsweise herzförmige, auffällig helle, homogen erscheinende Region sichtbar. Sie liegt zum flächenmäßig größeren Anteil nördlich des Plutoäquators und hat bis auf weiteres nach dem Entdecker des Plutos, Clyde Tombaugh, den Namen Tombaugh Region erhalten. Innerhalb der Tombaugh Region befindet sich wiederum ein Sputnik-Ebene getaufter Bereich. Man geht davon aus, dass diese kraterlose Ebene weniger als 100 Millionen Jahre alt und möglicherweise noch in einem Zustand aktiver geologischer Formung begriffen ist. Sichtbare Schlieren in diesem Bereich könnten durch Winde verursacht sein.
Wassereis ist bei einer Temperatur von -230 Grad hart wie Granit.
Stickstoff hingegen ist noch zähflüssig oder schneeartig.

Geologie:

Auf Pluto gibt es keinen Vulkanismus und auch keine Plattentektonik.
Zumindest vom größten Mond Charon her dürften auch keine Gezeitenkräfte mehr auftreten, da dieses system doppelt gekoppelt in einem Gleichgewichtszustand ist. Die anderen vier Monde hingegen wirken noch auf Jupiter.
Grundsätzlich gibt es auf Jupiter wegen seiner Atmosphäre ein Wetter. Geologische Veränderungen durch fließende Substanzen, wie Wasser auf der Erde oder Methan auf dem Saturnmond Titan, sind durchaus denkbar.

Atmosphäre

Plutos sehr dünne Atmosphäre besteht zum größten Teil aus Stickstoff, zum zweitgrößten Teil aus etwas Kohlenmonoxid und zirka 0,5 % Methan.Nach Messungen am James Clerk Maxwell Telescope ist die Atmosphäre im Jahr 2011 3000 km hoch und das in ihr enthaltene Kohlenstoffmonoxid −220 °C kalt. Zuvor nahm man an, die Atmosphäre sei 100 km hoch. Ihr Druck an Plutos Oberfläche beträgt laut der US-Weltraumbehörde NASA etwa 0,3 Pascal und laut der Europäischen Südsternwarte (ESO) um 1,5 Pascal.
New Horizons entdeckte in der Plutoatmosphäre Aerosole bis in 130 km Höhe. Diese konzentrieren sich hauptsächlich auf zwei Nebelschichten, die erste etwa 50 km über Boden und die zweite in ca. 80 km Höhe.

Leben:

bei -230 Grad ist definitiv kein Leben möglich.
Durch den Sonnenwind können mit dem Stickstoff der Atmosphäre einfachere chemische Verbindungen entstehen. Leben wird daraus allerdings nie werden.

Magnetfeld:

Pluto besitzt kein Magnetfeld.
Deshalb ist seine Atmosphäre ungeschützt den geladenen Teilchen des Sonnenwindes ausgesetzt und wird fortgetragen.
Aus diesem Grund geht dem Mars seine Atmosphäre langsam verloren.

Monde:

Von Pluto sind fünf Monde bekannt. Ihre Umlaufbahnen sind annähernd kreisförmig und zueinander komplanar. Sie liegen in Plutos Äquatorebene, aber nicht in seiner Bahnebene. Mit New Horizons wurde – aus Sicherheitsgründen – vor dem Vorbeiflug nochmals intensiv nach Monden und Staubringen gesucht; es konnten keine weiteren Plutomonde entdeckt werden.

Bei unserem Trabanten ist es genau umgekehrt. Die Mondbahn liegt nahezu in der Ekliptik, nicht aber in der Äquatorebene.

Ihre Namen sind
Charon, Nix, Hydra, Kerberos und Styx.
Ich möchte euch hier nicht mit Daten zu den Umlaufbahnen langweilen. Das merkt man sich eh nicht.
Interessant ist aber doch, dass ein Zwergplanet, kleiner als unser Mond, fünf Monde haben kann.

Laut einem etwas älteren Astronomiebuch aus meiner Sammlung, hat Pluto nur einen Mond und die Atmosphäre besteht aus Methan und ettliche andere Details unterscheiden sich völlig, bzw. werden vermutet.
Es ist einfach so, dass wenn man, was auch immer, genau wissen möchte, dann muss man sich irgendwann auf den Weg machen und hin gehen.

UmlaufBahn:

Pluto benötigt für eine Sonnenumrundung 247,68 Jahre. Im Vergleich zu den Planeten ist die Umlaufbahn Plutos deutlich exzentrischer, mit einer numerischen Exzentrizität von 0,2488. Das heißt, der Abstand zur Sonne ist bis zu 24,88 % kleiner oder größer als die große Halbachse.

Der sonnenfernste Punkt der Plutobahn, das Aphel, liegt bei 49,305 AE, während der sonnennächste Punkt, das Perihel, mit 29,658 AE näher an der Sonne liegt als die sehr wenig exzentrische Bahn Neptuns. Zum letzten Mal durchlief Pluto diesen Bereich, in dem er der Sonne näher ist als die Neptunbahn, vom 7. Februar 1979 bis zum 11. Februar 1999. Das Perihel passierte Pluto 1989. Sein Aphel wird er im Jahr 2113 erreichen. Dort beträgt die Sonnenstrahlung nur etwa 0,563 W/m². Auf der Erde ist sie 2430-mal so hoch. Für einen Beobachter auf Pluto wäre der scheinbare Durchmesser der Sonne nur etwa 1/50 des scheinbaren Sonnendurchmessers, den wir auf der Erde gewohnt sind. Die Sonne sähe für diesen Beobachter wie ein extrem heller Stern aus, der Pluto 164-mal so hell wie der Vollmond die Erde beleuchtet.
Seine Bahn ist um 17 Grad gegen die Ekliptik geneigt.
Wir sprachen im Zusammenhang mit Finsternissen darüber, dass die Bahn des Mondes auch gegen die Ekliptik geneigt ist.
(Stichwort Knotenpunkte und Trakonistischer Monat)

Auffällig ist, dass Pluto in der Zeit, in der sich Neptun dreimal um die Sonne bewegt, genau zweimal um die Sonne läuft. Man spricht daher von einer 3:2-Bahnresonanz.
In der Musik nennt man das eine Synkope.
Schön, nicht wahr?

Rotation:

Pluto rotiert in 6,387 Tagen einmal um die eigene Achse. Die Äquatorebene ist um 122,53° gegen die Bahnebene geneigt, somit rotiert Pluto rückläufig. Seine Drehachse ist damit noch stärker geneigt als die des Uranus, aber im Unterschied zum Uranus und zur Venus ist der Grund dafür allgemein ersichtlich, ebenso die Ursache für Plutos ziemlich große Rotationsperiode, denn die Eigendrehung des Zwergplaneten ist durch die Gezeitenkräfte an die Umlaufbewegung seines sehr großen Mondes Charon gebunden. Damit sind Pluto und Charon die einzigen bisher bekannten Körper im Sonnensystem mit einer doppelt gebundenen Rotation.

Erde und Mond sind einfach gekoppelt. Das bedeutet, dass der Mond uns stets die gleiche Seite zuwendet. Er dreht sich innerhalb eines Monats einmal um sich selbst, wobei die Erde sich unter ihm durchdreht, so dass der Mond aus unserer Sicht auf- und untergeht.
Pluto und Charon sind doppelt gekoppelt. Das bedeutet, dass Charon ihm immer dieselbe Seite zuwendet und gleichzeitig, dass Charon sich mit der selben Geschwindigkeit um Pluto bewegt, wie dieser sich dreht.
Charon und Pluto sind so miteinander gekoppelt, als wären beide fest mit einer Stange verbunden.
Dem Erde-Mond-System wird dieses Schicksal auch einst beschieden sein, denn Ebbe und Flut bremsen das System mit der Zeit ab. Ist dieses Gleichgewicht erreicht, wird der Erdentag deutlich länger sein, der Abstand zum Mond auch, der Mond wird sich in der Äquatorebene der Erde befinden und der Mond wird lediglich noch von einer Stelle der Erde aus zu sehen sein. Ebbe und Flut gibt es dann nicht mehr, und auch keine Mondphasen.

Diese Mail soll aber nicht mit einem Horrorszenario enden. Bis dieses eintritt vergeht noch seeeeeehr viel Zeit.

Liebe Grüße

Gerhard.

Die Internationale Astronomische Union und der Planet, der keiner mehr sein darf


Liebe Leserinnen und Leser,

Anknüpfend an meinen voran gegangenen  Artikel zur Einladung  auf dem Kongress der Internationalen Astronomischen Union in Wien befassen wir uns heute etwas näher damit, was die Internationale Astronomische Union (IAU) ist, und welch gewichtige Entscheidungen sie treffen kann.

Die Internationale Astronomische Union (IAU) ist eine von vielen Welt weiten wissenschaftlichen Vereinigungen. Die große Wissenschaft spielt sich heutzutage international ab. So sind beispielsweise an der ISS weit mehr als 100 Länder beteiligt. Ebenso verhält es sich mit dem gigantischen LHC in Cern.

Das legt nahe, dass viele wissenschaftliche Disziplinen sich international vernetzen, um derlei Großprojekte überhaupt stemmen zu können.

Die Internationale Astronomische Union (IAU; französisch Union astronomique internationale, UAI) ist eine 1919 in Brüssel gegründete weltweite Vereinigung von Astronomen mit Sitz in Paris. Ihr Ziel ist die Förderung der Astronomie und ihrer Forschung durch internationale Zusammenarbeit. Sie ist neben anderen ähnlichen Organisationen für andere Wissenschaftszweige ein Mitglied des Internationalen Wissenschaftsrats, der seinen Sitz ebenfalls in Paris hat. Mit dem Stand von November 2008 hat die IAU 9623 Einzelmitglieder aus weltweit 86 Ländern sowie 65 nationale Mitglieder, das heißt, astronomische Gesellschaften und Akademien.

Quelle war hier Wikipedia.

Früher, vor der Globalisierung und wo die Welt noch nicht so „klein“ war, wie heute, schlossen sich Wissenschaftler eher zu nationalen Vereinigungen zusammen. Ein Beispiel hierfür ist die Royal Society in Großbritannien, die mit ihrer Gründung im Jahr 1660 zu den ältesten wissenschaftlichen Vereinigungen der Welt gehört.

Deutschland hat mit der Astronomischen Gesellschaft, die meine Arbeit derart schätzte, dass sie mich 2013 als Mitglied aufnahm, auch eine der ältesten astronomischen Vereinigungen.

Die Astronomische Gesellschaft (AG) ist der Fachverband der deutschen Astronomie/Astrophysik. Sie wirkt als Förderer von Wissenschaft und Forschung, stärkt den Austausch ihrer Mitglieder untereinander und befördert die Verbreitung wissenschaftlicher Erkenntnisse in öfffentlichkeit und im Bildungswesen.
Sie wurde bereits 1861 in das Vereinsregister eingetragen und hat ihren Sitz in Hamburg.

Schon damals suchte man stets nach Planeten. Nicht unbedingt nach extra terestrischen, dafür hätten die damaligen Messinstrumente niemals gereicht, sondern in unserem Sonnensystem.
Um möglichst viele Astronomen zu dieser Suche zu vereinen, gründete man um 1800 eine internationale Vereinigung, weil man einen Planeten zwischen Mars und Jupiter vermutete.
Dieser vermeindliche „Planet“ ist der Asteroid Ceres. Es ist absolut natürlich, dass man in der großen Lücke zwischen den Umlaufbahnen von Mars und Jupiter noch einen Planeten wähnte. OK, es gibt keinen, aber diese Lücke ist durchaus nicht leer, denn sie beinhaltet den Asteroidengürtel.

Ein weiteres Großprojekt zu dieser Zeit war die Kartographie des Himmels. Hierfür hatte die Pariser Sternwarte 1887 das „Carte du Ciel-Projekt“ ins Leben gerufen.

Ende des 19. Jahrhunderts organisierte der Amerikanische Sonnenforscher George Ellery Hale eine Konferenz, auf der die Idee entstand, etwas internationales zu gründen.

Interessant an dieser ersten internationalen Organisation war, dass es ihnen ein Anliegen war, dass Wissenschaftler so nützlich wie möglich im Krieg eingesetzt werden konnten.
So wurden astronomieerfahrene Soldaten dazu angehalten, nachts, wenn nicht gekämpft wurde, Himmelsbeobachtungen durchzuführen. Das mag vielleicht etwas makaber klingen, aber andererseits dürfte es für viele begabte Wissenschaftler auch eine wichtige Ablenkung ihres grausamen Tagesgeschäftes gewesen sein.

Wie auch immer.
Hier wird offenbar, wie wichtig internationale Kooperationen gerade in der Astronomie sind. Der Himmel ist viel zu groß, um alleine erforscht zu werden. Schon alleine deshalb nicht, weil man nicht gleichzeitig als einzelner jeden Punkt des Himmels beobachten kann.

Nun entwickelten sich über mehrere Stufen und zwischen den Weltkriegen hindurch diverse wissenschaftliche Vereinigungen. Als Gründungsdatum der IAU wird der 28.07.1919 angegeben. Wegen des ersten Weltkrieges konnten Deutschland und Österreich zunächst nicht beitreten. Deutschland weigerte sich sogar, weil es sich hier nicht unterordnen wollte. Dies wurde aber etwas „aufgeweicht“, indem die Organisatoren 1928 einzelne Deutsche Astronomen zum Kongress nach Leiden einluden.

Danach folgte erst einmal der zweite Weltkrieg. Deutschland wurde schließlich 1951 Mitglied der IAU und Österreich folgte 1955.

Schön ausführlich ist die Entstehung der IAU in einer der letzten Folgen der Sternengeschichten von Florian Freistetter erklärt.

http://scienceblogs.de/astrodicticum-simplex/2018/08/31/sternengeschichten-folge-301-die-internationale-astronomische-union/“>http://scienceblogs.de/astrodicticum-simplex/2018/08/31/sternengeschichten-folge-301-die-internationale-astronomische-union/

Lasst mich jetzt an einem der prominentesten Beispiele erläutern, welch weitreichende Entscheidungen die IAU treffen kann.
Ins Gerede ist die IAU im August 2006 gekommen, als sie auf ihrem Kongress in Prag den Entschluss fasste, dass Pluto künftig kein Planet mehr sein darf, sondern nur noch ein Zwergplanet ist.

Ach, wie mühsam haben wir noch in der Schule die Namen der neun Planeten uns eingepaukt. Eine große Hilfe hierbei war der Satz:

„Mein Vater erklärt mir jeden Sonntag unsere neun Planeten“.

Die Anfangsbuchstaben der Planetnamen entsprechen denen, der Wörter dieses Satzes:

„Merkur, Venus, Erde, Mars, Jupiter, Saturn, Uranus, Neptun und Pluto“.

Und Pluto darf jetzt nicht mehr mitmachen? Dann wissen wir ja gar nicht mehr, was für neun Objekte unser Vater all sonntäglich erklärt.

Naja, jetzt musste man den Satz auf die verbleibenden acht Planeten reduzieren.
Er heißt nun:
„Mein Vater erklärt mir jeden Sonntag unseren Nachthimmel.“

Auch schön, denn dort gibt es noch deutlich mehr erklärenswertes, als nur unsere acht Planeten, von denen höchstens sechse, einschließlich der Erde  mit bloßem Auge zu sehen sind.

Eine berechtigte Frage in diesem Zusammenhang ist die, wie so denn plötzlich Zweifel hochkochen, was denn nun ein Planet sein soll, und was nicht.

Das hat sich doch schon seit den alten Griechen und noch davor nicht mehr geändert. Es kam halt lediglich immer mal wieder ein neuer Planet hinzu. Merkur, Venus, Mars, Jupiter und Saturn sind mit bloßem Auge sichtbar. Zu alter Zeit sowieso, als es noch keine Lichtverschmutzung gab. Für die Entdeckung des Uranus, der am 13. März 1781 von William Herschel und vermutlich mit Unterstützung seiner Schwester Lucrezia, entdeckt worden war, brauchte man schon ein starkes Spiegelteleskop. Sterne sind so weit weg, dass sie selbst im Teleskop zwar heller, aber letztlich doch nur als nadelstichartige Punkte zu sehen sind. Ein Planet hingegen präsentiert sich als Scheibchen, das über einige Beobachtungsnächte hinweg, seine Position am Sternenhimmel verändert. Außerdem bildet das Scheibchen keinen Schweif aus, so dass mit der Zeit ein Komet ausgeschlossen werden kann. Durch die Veränderung der Position stellte Herschel sehr bald fest, dass es sich hier um einen bis dato unsichtbaren Planeten handeln muss, der unsere Sonne umkreist.

Die beiden letzten Planeten, Neptun und damals noch Pluto, wurden nicht durch Sicht entdeckt. Sie verrieten sich, indem sie durch ihre Schwerkraft die anderen sichtbaren Planeten in ihren Bahnen leicht störten.

Heutzutage sind die Teleskope natürlich so stark, dass man auch diese beiden letzten  bei guten Bedingungen als Scheibchen wahrnehmen kann. Heutige Teleskope lösen sogar ferne Galaxien, Nebel und Sternhaufen in ihre einzelnen Sterne auf, und es gibt weitere Verfahren, mehr über ihre Beschaffenheit und Oberflächen zu erfahren.

Trotzdem. Wieso plötzlich diese Aufregung um den Planetenstatus des Pluto?

Außer Kometen, die plötzlich mit ihren prächtigen Schweifen scheinbar aus dem Nichts auftauchten, nahezu geradlinig durch die Sternbilder zogen und wieder verschwanden, gab es nichts weiter außer den Planeten mit ihren Monden in unserem Sonnensystem. Das änderte sich jedoch mit der Entwicklung immer stärkerer Messinstrumente. Da waren plötzlich unzählige Asteroiden zwischen Mars und Jupiter zu sehen. Diese bilden den Asteroidengürtel und stellen quasi die Schneegrenze in unserem Sonnensystem dar, weil es jenseits von ihnen eisige Planeten gibt, wobei weiter innen die Steinplaneten Merkur, Venus, Erde und Mars ihre Bahnen um die Sonne ziehen. Und damit nicht genug. Es wurde auch ein weiterer Asteroidengürtel jenseits des Neptun entdeckt, der Kuiper-Gürtel, benannt nach dem Astronomen Gerard Peter Kuiper (1905–1973). Bei so vielen neu gefundenen Objekten, musste man sich ernsthaft überlegen, was denn nun ein Planet, was ein Zwergplanet und was schließlich nur einer unter vielen Asteroiden sein soll.

Auslöser für diese Diskussion war die Tatsache, dass man zunehmend Himmelskörper im oder am Rand unseres Sonnensystems fand, die Pluto durchaus ebenbürdig in Form und Größe sind. Da gibt es beispielsweise das Kuiper-Objekt Xena, das größer als Pluto ist.

Außerdem war Pluto sowieso etwas seltsam.

Da haben wir von innen nach außen vier Steinplaneten, Merkur, Venus, Erde und Mars. Dann kommen die vier Gasplaneten Jupiter, Saturn, Uranus und Neptun. Und jetzt kommt noch so ein Winzling, kleiner als unser Mond, bestehend aus Eis und Stein, der sich zudem noch auf einer sehr exzentrischen Bahn bewegt, dessen Bahn zudem noch gegen die Ekliptik ziemlich gekippt ist und der quasi auf seiner Bahn entlang rollt, weil seine Achse derart gegen  seine Umlaufbahn geneigt ist.

Und so traf sich 2006 im August die IAU zu ihrem Kongress in Prag, um diese Frage ein für allemal zu klären.

Zunächst einmal wurde von einer ausgewählten Expertenrunde ein erster Entwurf zur Abstimmung vorgelegt. Doch der wurde sehr kritisiert.
Nach diesem Entwurf sind Planeten Himmelskörper, die folgendes erfüllen müssen:
1. so viel Masse haben, dass sie durch Eigengravitation in eine runde Form gezwungen wurden. Was leichter ist, hat eher eine Kartoffelform und ist auf jeden Fall nicht rund.

2. einen Stern umkreisen, ohne selbst Sterne oder Monde, also Trabanten anderer Planeten zu sein. Ohne Monde haben wir Merkur und Venus. Auf diese beiden trifft aber Teil eins der Definition zu. Sie sind schwer genug, um Rund zu sein.

Nach dieser Definition hätte Pluto seinen Status als Planet behalten, es wären aber noch zahlreiche andere Himmelskörper in Frage gekommen, zum Beispiel Ceres und Xena.  Es wäre äußerst unpraktisch, müssten wir vielleicht gar dutzende oder mehr Planetennamen auswendig lernen. Wie lang wäre dann die Eselsbrücke, der Merksatz?

Innerhalb der vollwertigen Planeten sollte in zwei Gruppen aufgeteilt werden: die klassischen Planeten von Merkur bis Uranus und die Zwergplaneten wie Pluto, Ceres oder Xena.
Für diesen Entwurf einer Definition, ließ sich keine Mehrheit finden.
Stattdessen einigte man sich auf folgende neue Definition von Planeten:

1. Diese Planetendefinition gilt nur für unser Sonnensystem.
Das ist schade, dass man nichts fand, was für alle Sternsysteme gelten könnte. Vielleicht wird das im Zuge der Neuentdeckung von Planeten, die um andere Sterne kreisen, nochmal irgendwann neu aufgerollt werden müssen.

2. Ein Planet soll ab jetzt nur noch ein Körper sein, dessen Masse der Gesamtmasse aller anderen Körper in seinem Bahnbereich übertrifft. Will sagen, der auf seiner Bahn zumindest einigermaßen aufgeräumt hat.

Gerade letzteres trifft auf den Pluto nicht zu. Er bewegt sich im Kuiper-Gürtel mit zahlreichen anderen Himmelskörpern.

In unserem Sonnensystem gibt es also nur noch die acht klassischen Planeten Merkur, Venus, Erde, Mars Jupiter, Saturn, Uranus und Neptun, sowie Zwergplaneten, Monde und Kleinkörper. Pluto, Charon und Ceres sowie das kürzlich entdeckte Himmelsobjekt Xena sind Zwergplaneten und damit keine Planeten.

Als Kleinkörper gelten Asteroiden, Kometen und andere Objekte geringer Größe, die keine Monde sind und die Sonne umkreisen.

Bis heute entfacht die Diskussion um diese Definition immer mal wieder. Die Degradierung Plutos zum Zwergplaneten dürfte vor allem die Amerikaner tief getroffen haben, denn Pluto war der einzige Planet, der von einem Amerikaner entdeckt worden war.

Es standen noch andere Definitionen zur Auswahl, die bis heute immer mal wieder in Erwägung gezogen werden.

Das würde uns aber hier zu weit führen. Der Artikel soll ja nur beispielhaft zeigen, zu welch folgenschweren Entscheidungen die IAU, die mich eingeladen hat, bemächtigt ist.

Ich denke, es ist schade, dass Pluto nicht mehr dabei sein kann, aber die Zeiten ändern sich und durch die verbesserten Instrumente auch die Grundvoraussetzungen, die eventuell alte lieb gewonnene Definitionen in Frage stellen.

Wie oft wurde, was für uns viel folgenschwerer war, der Mensch von seinem Platz im Universum vertrieben.

Vom Mittelpunkt des Sonnensystems an den Rand, Dann war unsere Sonne nur noch ein Stern unter vielen, Wir waren kein Mittelpunkt im Universum mehr, und fristen unser Dasein am Rand einer Galaxie unter milliarden anderer. Als Trost für Pluto, werde ich einen meiner nächsten Artikel dem Pluto, seinen Monden und seiner Schönheit widmen.

Es grüßt euch bis zum nächsten Mal

Euer Gerhard.

Die Hundstage


Liebe Leserinnen und leser,

 

Hier noch auf die Schnelle ein Artikel für die brüllende Hitze:

Inhaltgeber hierfür war vor allem Wikipedia.

 

 

Als Hundstage werden im Volksmund in Europa die heißen Tage im Sommer, in der Zeit vom 23. Juli bis zum 23. August, bezeichnet, obwohl der Begriff Hundstage in Verbindung des heliakischen Aufgangs des Sirius ursprünglich nicht mit der Jahreszeit vom 23. Juli bis zum 23. August verbunden war.

Namensgebend ist das Sternbild Großer Hund (Canis Major). Der Stern Muliphein stellt den Kopfanfang des Sternbildes dar, ist aber so lichtschwach, dass er erst bei voller Dunkelheit zu sehen ist. Sirius erscheint als hellster Stern bereits in der Morgendämmerung. Mit Aludra ist es dann vollständig aufgegangen.
Vom Aufgang des Sternbildes Großer Hund bis zur Sichtbarkeit als Gesamteinheit vergehen 30 bis 31 Tage, woher sich deshalb die Bezeichnung „Tage vom großen Hund“ (Hundstage) ableitet.
Das Römische Reich ist verantwortlich für die Zeitansetzung (23. Juli bis 23. August) der Hundstage (lateinisch dies caniculares). Am Anfang der Römischen Königszeit erfolgte der sichtbare heliakische Aufgang von Sirius in Rom am 26. Juli, zu Zeiten von Julius Cäsar im Jahr 46 v. Chr. am 1. August.
Im altägyptischen Kalender nahm Sirius als Verkörperung der Göttin Sopdet sowie als Bringer der Nilschwemme im dritten Jahrtausend v. Chr. einen besonderen Rang ein. Das gleiche Ereignis wurde später von den Griechen als heliakischer Aufgang bezeichnet, was so viel wie ‚mit der Sonne (Helios) aufgehend‘ bedeutet.
Die Griechen erklärten den Zusammenhang zwischen der Wiederkehr des Sirius und den Tagen der größten Sommerhitze durch den folgenden Mythos: Die Verschmelzung des Sonnenlichts mit dem Feuer des Sirius sei Ursache der großen Hitze.
Arabische Astronomen bezeichneten die in flirrender Sommerhitze besonders häufig erscheinenden Fata Morgana gar als den vom Himmel tropfenden Speichel des Hundssterns.

Die Eigenbewegung des Sternbildes Canis Major und die Präzession der Erde sind dafür verantwortlich, dass sich die Zeit der Hundstage um etwa 4 Wochen verlagert hat. In Deutschland kann der heliakische Aufgang des Sirius erst frühestens ab dem 30. August beobachtet werden und ist damit jetzt ein Zeichen für den nahenden Herbstanfang. Entsprechend der alten Tradition werden aber immer noch die heißesten Wochen des Jahres als „Hundstage“ bezeichnet.

Erklärung Präzessionsbewegung der Erde:
Präzessionsbewegung der Erde meint, dass unsere Erde sich nicht nur um sich selbst und um die Sonne dreht, sondern einem Kreisel gleich taumelt.
Diese Taumelbewegung sorgt dafür, dass der Frühlingspunkt langsam durch den Tierkreis wandert. Das bedeutet, dass die Erdachse zum Zeitpunkt der Tag-Nacht-Gleiche, sich langsam gegen den Fixsternen-Himmel verschiebt.
Etwa alle 2000 Jahre befindet sich der Frühlingspunkt in einem anderen Sternbild.
Noch nicht lange her, wechselte der Frühlingspunkt von Sternbild Fisch in das Sternbild Wassermann.
Esoterisch veranlagte Menschen sehen in diesem Wechsel immer eine Zeit der Umwälzung und Veränderung, wie beispielsweise die New-Age-Bewegung in den sechziger Jahren des letzten Jahrhunderts.

Sternschnuppen Sehen und Hören


Liebe Leserinnen und Leser,
Heute geht es um Sternschnuppen im Sommer, um die Perseiden. Es geht auch darum, wie man sie sehen, aber auch hören kann.

„Wie bitte, hören?“ Ja, genau, hören.

 

Die Perseiden oder auch Laurentiustränen, Tränen des Laurentius genannt, sind ein jährlich im Sommer wiederkehrender Meteorstrom, der in den Tagen um den 12. August ein deutliches Maximum an Sternschnuppen aufweist. Der scheinbare Ursprung dieses Stroms, liegt im namensgebenden Sternbild Perseus.

Das Sternbild soll die Gestalt des griechischen Helden Perseus darstellen, der die tödliche Medusa besiegte. Der Stern Algol repräsentiert das abgeschlagene Medusenhaupt, das er in der Hand hält.

Perseus gehört zu den 48 klassischen Sternbildern, die von Ptolemäus beschrieben wurden.
Bereits im Mittelalter hatten arabische Astronomen die eigenartige Verdunklung des Sterns Algol beobachtet. Der Name leitet sich aus dem arabischen Ras al Ghul ab und bedeutet Haupt des Dämonen.

In meinem Buch im Kapitel „Wissenschaftler mit vier Sinnen“ berichte ich über den gehörlosen Astronomen John Goodricke, der sich mit Sternen beschäftigte, die ihre Helligkeit ändern.
Zurück zu den Perseiden:

Vom 17.Juli bis zum 24. August kann vermehrt mit Sternschnuppen gerechnet werden.

Diesmal fällt das Maximum, die Nacht vom 12. auf den 13.08. auf kurz nach Neumond, denn amm 11.08. findet, leider nicht bei uns,  eine partielle Sonnenfinsternis statt, die es nur bei Neumond geben kann.

Für Sternschnuppenjäger bedeutet das, dass der Himmel nicht störend vom Mond aufgehellt wird. Somit steigen die Chancen, Sternschnuppen zu entdecken.
Am besten beobachtet man die Sternschnuppen an einem möglichst dunklen Ort auf dem Land, wo kein Stadtlicht stört. Man legt sich am besten auf eine Wiese auf den Rücken und wendet nach Mitternacht den Blick gen Osten, also in Richtung Erddrehung. Man dreht sich dann quasi mit der Erde in den Meteorschauer hinein.

Am besten sichtbar sind die Perseiden auf der Nordhalbkugel.
Hörbar sind die Perseiden zumindest für Amateurfunker, die einen Empfänger und eine passende Antenne besitzen, auch.

Diese Disziplin des Amateurfunks nennt man Meteor Scatter.

Das ist dann auch wieder mal was für „Das Ohr am Teleskop“.
Wer einen passenden Empfänger und eine Antenne besitzt, kann das Französische Radar-Signal des Weltraumradars GRAVES benutzen. Dieses französische Radarsystem sendet auf 143,050 MHz einen Dauerträger, Dauerton, der über Phasenarray-Antennen den Himmel “abtastet”. Meteoriten, aber auch andere Objekte (Flugzeuge, Satelliten, die ISS, der Mond) reflektieren das Signal und streuen es in alle Richtungen, und diese Reflexionen können dann in Europa gut empfangen werden. Anhand der Doppler-Abweichung erkennt man dann, welches Objekt das Funksignal reflektiert hat: der Mond oder Flugzeuge bewirken eine sich nur langsam ändernde Dopplerabweichung, bei Objekten in Erdumlaufbahn ändert sich die Abweichung schnell, und bei Meteoriten extrem schnell.

Als Einstieg in den Empfang von Signalen des GRAVES Radars empfiehlt es sich, den Aufsatz von Rob Hardenberg, mit Rufzeichen PE1ITR, zu lesen.

Dank @dbsv-jugendclub gibt es hier einen Link, wie sich das anhört.
„Sternschnuppen hören“

Was sind nun die Perseiden?

Die Perseiden bestehen aus dem, was der Komet 109P/Swift-Tuttle. bei seinen letzten Besuchen durch erwärmung, schmelzen etc. verloren hat.
Er erscheint ungefähr alle 130 Jahre und entfernt sich dann stets etwas schlanker, als er vorher war. Das nächste Mal wird er um das Jahr 2126 erwartet. Ganz genau kann man das bei Kometen nie sagen, weil ihre Bahn von den Planeten gestört werden können, bzw. sie selbst ihre Bahn ändern, wenn sie aktiv sind. Dann wirkt sich die Aktivität wie kleine Schubdüsen aus.
Die Erde kreuzt auf ihrer Bahn immer um den 12. August die Staubspur, die dieser Komet im All hinterlässt, wenn er vorbei kommt. Die Staubteilchen treffen dabei mit hoher Geschwindigkeit auf die Atmosphäre und bringen die Luftmoleküle zum Leuchten. Die Sternschnuppe ist daher nicht das verglühende Staubkorn selbst, sondern wird durch das Rekombinationsleuchten der ionisierten Luft sichtbar.

Momentan werden die zu erwarteten Sternschnuppen jedes Jahr immer weniger, weil zum einen schon viel in der Erdatmosphäre verglühte und zum anderen sich der Kometenstaub, immer mehr verteilt und somit ausdünnt.

Es wird Zeit, dass er mal wieder vorbei kommt, und seine Bahn für uns mit neuem „Sternenstaub“ auffüllt.

Eines Tages wird der Komet vollständig aufgelöst sein.

Dann wird es die Perseiden nicht mehr geben, weil kein Nachschub an Staub mehr kommt.

Die erste überlieferte Beobachtung der Perseiden fand vor etwa zwei Jahrtausenden in China statt. Danach gibt es Berichte aus Japan und Korea. In Europa stammt die erste bekannte Beobachtung aus dem Jahr 811.
Da das Erscheinen der Perseiden mit dem Fest des Märtyrers Laurentius am 10. August zusammenfällt, der im Jahre 258 das Martyrium auf einem glühenden Rost erlitt, werden sie im Volksmund auch Laurentiustränen oder Tränen des Laurentius genannt. Kurz vor seinem Tod soll Laurentius der Legende nach seinem Widersacher, dem römischen Kaiser Valerian, die folgenden Worte gesagt haben: „Du armer Mensch, mir ist dieses Feuer eine Kühle, dir aber bringt es ewige Pein.“
Hach, wie ist das einfach nett, wenn man in der Astronomie so schön vom Höckchen auf’s Stöckchen kommt.

Jetzt wünsche ich ihnen und euch viele schöne klare Sommernächte mit vielen Sternschnuppen und Wünschen, die dann in Erfüllung gehen.

 

Ihr und euer Gerhard.

Droht Gefahr durch Astroiden aus dem All?


Liebe Leserinnen und Leser,

immer am 30.06. ist Asteroid Day. Bis vor wenigen Wochen wußte ich auch nicht, dass es so einen Tag überhaupt gibt. Naja, wofür gibt es denn keinen Tag…
An diesem Tag laufen viele Veranstaltungen, an Sternwarten, der ESA, und sonstigen Einrichtungen, die sich irgendwie mit Weltall und, Astronomie und dann natürlich auch mit Asteroiden, die uns bedrohen könnten, befassen.
Am Asteroid Day jährt sich ein Ereignis, das durch einen einschlagenden Asteroiden verursacht wurde.

das Tunnguska-Ereignis.

Das Tunguska-Ereignis bestand aus einer oder mehreren sehr großen Explosionen (daher auch Tunguska-Explosion am 30. Juni 1908 im sibirischen Gouvernement Jenisseisk, der heutigen Region Krasnojarsk, deren Ursache sich bisher nicht zweifelsfrei klären ließ. Das Ereignis fand in der Nähe des Flusses Steinige Tunguska (Podkamennaja Tunguska) im Siedlungsgebiet der Ewenken statt.
Als wahrscheinlichste Ursache gilt der Eintritt eines Asteroiden – des nach der Region benannten Tunguska-Asteroiden – oder eines kleinen Kometen in die Erdatmosphäre, wo er in einigen km Höhe explodierte. Nach neueren Erkenntnissen ist auch eine vulkanische Eruption nicht auszuschließen. Es gab sogar Spekulationen darüber, dass es ein kleines Schwarzes Loch oder gar eine außerirdische Lebensform gewesen sein könnte…
Zum Glück fand das Ereignis in relativ unbewohntem Waldgebiet statt. Aber noch Jahrzehnte danach waren, sind vielleicht die Schäden noch sichtbar.

Und noch einer:

Der Meteor von Tscheljabinsk war ein am 15. Februar 2013 um etwa 9:20 Uhr Ortszeit (4:20 Uhr MEZ) weithin sichtbarer Meteor in der Tscheljabinsker Oblast rund um die Stadt Tscheljabinsk im russischen Ural nachdem ein Meteoroid bzw. kleiner Asteroid in die Erdatmosphäre eingetreten war.
Es handelte sich um den größten bekannten Meteor seit über 100 Jahren.
Bisher einmalig für einen Meteoritenfall war die hohe Zahl der verletzten Personen von rund 1500 – die meisten allerdings durch splitterndes Fensterglas.

Weitere Katastrophen

Viele werden schon davon gehört haben, dass vor 65 Mio Jahren ein großer mehrere Kilometer durchmessende Asteroid auf dem Amerikanischen Kontinent auf die Erde aufgeschlagen ist. Durch den Einschlag wurde so viel Staub, Ruß und anderes in die Atmosphäre geschleudert, dass sich die Sonne derart verfinsterte, dass es eine dramatische Klimakatastrophe mit Abkühlung gab, an welche sich die gigantischen Saurier nicht rasch genug anpassen konnten, und vermutlich auch große Teile ihrer Nahrungskette verloren. Man geht von mindestens drei derartiger Katastrophen aus, die entweder einen Neustart des Lebens bedeuteten, quasi ein „Reset Evolution“ oder gravierende Veränderungen zeitigten…

Das Nördlinger Ries ist ein Becken, das auch auf einen etwa 2 km großen Asteroiden schließen lässt. Es gibt noch weitere Krater, die diesen Ursprunges sind. Auf der Erde sind die manchmal gar nicht so leicht zu finden. Wind, Wasser, Vulkanismus und sonstige Beben formen die Erde stets um. Ihre Oberfläche ist somit allenfalls verwischte Erdgeschichte.

Das große Bombardement

vor 4,5 Milliarden Jahren, als unser Sonnensystem gerade am Entstehen war, gab es noch deutlich mehr Asteroiden und somit auch mehr Kollisionen. Die meisten Brocken haben sich zu den Steinplaneten geballt, aber es ist schon noch einiges übrig, z. B. im Asteroidengürtel, der sich zwischen Mars und Jupiter befindet und die inneren Steinplaneten von den äußeren Gasplaneten trennt.

Vermutlich erlitt unsere Venus einen fürchterlichen Zusammenstoß. Sie erleidet momentan eine enorme Klimakatastrophe in Form eines Treibhauseffekts. Außerdem scheint sie auf dem Kopf zu stehen, denn sie dreht sich sehr langsam falsch herum um sich selbst. Eine Kollision könnte sie auf den Kopf gekippt haben und der Einschlag verursachte dann dieses extreme Klima.

Unser Mond ist extrem verkratert. Da es auf ihm keine Eruption gibt, ohne Wasser, Luft und Bodenaktivität, kann man an seinen Wunden und Narben viel darüber sagen, wie dieses Bombardement mal gewesen sein muss.
Auch er ist, darf man einigen Theorien glauben, durch eine Kollision eines riesigen Objektes mit der Erde, entstanden und wurde nicht von der Erde eingefangen.

Da sich das Sonnensystem mehr und mehr geordnet hat, nahm dieses Bombardement stets ab. Somit lässt sich über die Kraterhäufigkeit das Alter eines Körpers bestimmen, der keine, wie auch immer geartete, Aktivität besitzt.

Müssen wir uns sorgen?

Nichts desto Trotz zeigen uns obige Ereignisse, dass es durchaus sinnvoll sein könnte, sich mit der Möglichkeit weiterer, vielleicht dann gefährlicherer, Einschläge zu beschäftigen. Jede Sternschnuppe, möge sie die Wünsche des Betrachters erfüllen, ist uns eine ungefährliche Mahnung darüber, dass permanent Staub, Trümmer, Steinchen, auf die Erde fallen. Im Falle der Schnuppe, ist das völlig harmlos und kann entspannt unter „Einfach schön“ geführt werden.
Wächst sich so ein Bröckchen allerdings mal in den Bereich so um viele Meter bis gar Kilometer aus, dann wird es, wenn man das Teil nicht vorher mit einem Teleskop entdeckt, um Maßnahmen einzuleiten, eventuell gefährlich.
So ein zwei bis drei Kilometer großer Brocken in Mitten Deutschlands, dann wäre von Deutschland vermutlich nicht mehr viel übrig. Unvorstellbar, wenn so etwas in eines unserer Ballungszentren fiele.
Dass die Erdoberfläche zu etwa 3/5 von Wasser bedeckt ist, macht die Situation nicht unbedingt besser. So ein Brocken würde einen enormen Tsunami verursachen, der viele Küsten treffen könnte.

Andererseits ist es so, dass die Zeit, bis so etwas vielleicht mal in tausenden Jahren geschieht, nicht unbedingt gegen uns arbeitet. Die Teleskope, die Himmelsdurchmusterung und Messgeräte, wie Radar, werden immer empfindlicher und präziser. Schon Brocken mit wenigen Metern Durchmesser können entdeckt werden, in so fern sie sich auf der Nachtseite der Erde befinden, damit sie von der Sonne angestrahlt werden können.
Gegen die Sonne ist die Erkennung deutlich schwieriger. Das können wir bei Neumond erleben.Wir sehen den vor der Sonne stehenden Mond nicht, weil er völlig von der Sonne überstrahlt wird.

So weit, so gut. OK, wir können immer kleinere Asteroiden früh genug erkennen, um Maßnahmen zu ergreifen.

Was tun?

Gibt es diese Maßnahmen? Was können wir überhaupt tun? Wer koordiniert einen derartigen Katastrophenfall?

Desto größer ein drohender Asteroid ist, desto früher werden wir ihn erkennen, was uns Zeit verschafft, die wir dann aber auch dringend brauchen werden und wo keine kleinste Einheit davon ungenutzt verstreichen sollte.
Wir sprechen hier von Jahren, Jahrzehnten und mehr, bei mehreren Kilometer großen Objekten.
Wie gesagt. Die kleineren entdeckt man zwar später, aber es geht längst nicht so viel Gefahr von ihnen aus.

Stellen wir uns einen großen mehrere Kilometer im Durchmesser, Asteroid vor.
Zunächst mal wird er entdeckt, so gut es geht vermessen, und beobachtet. Durch immer längere Beobachtungszeit wird immer klarer, wie seine Bahn verläuft.
Zum Glück ist es meist so, dass ein anfänglicher Kandidat für eine mögliche Kollision, sich später als doch nicht so gefährlich erweist, weil man mehr und mehr Aussagen über seine Bahn treffen kann.
Hierfür gibt es bei der ESA Datenbanken über Asteroiden. Es prägt sich hier dann tatsächlich eine Art Hitparade aus, welche Kandidaten die ersten Plätze belegen. Das ändert sich, desto mehr man über einen Asteroid, sein vermutetes Gewicht und seine Bahn weiß.
Natürlich ist es so, dass ein anfänglich für harmlos befundener Brocken in der Hitliste aufsteigen könnte, weil man merkt, „Hoppla“, der könnte ja doch …
Das geschieht aber sehr selten, weil es einfach im leeren Raum so ist, dass sich zwei Körper sehr selten treffen.

Außerdem bewahrt uns in den meisten Fällen unser „Staubsauger“ Jupiter davor, weil er durch seine enorme Gravitations-Wechselwirkung sich der Störenfriede entweder entledigt, indem er sie aus dem Sonnensystem wirft, bzw. sie sich gleich selbst einverleibt oder ihre Bahn so verändert, dass sie nimmermehr uns in die Quere kommen können.
Also, zurück zu unserer Entdeckung. Was machen, wenn einer sich verdammt gefährlich weit oben auf der Hitliste befindet.
Desto mehr Zeit man hat, desto mehr Technik Missionen etc. kann man zu der Gefahrenquelle schicken.
Im ersten Schritt sollte sich die Menschheit vereinen, Russland, USA, China, etc. Es geht dann nur noch um ein Ziel, den Asteroiden abzuwehren. Da müssen dann alle anderen Feden hintan stehen.
Es zeigt sich ja, z. B. auf Konferenzen, auf der Raumstation etc. dass dieses auf wissenschaftlicher Ebene durchaus schon sehr erfolgreich funktioniert.
Nun wird jede Weltraumnation im Sinne der Rettung der Welt zunächst mal eine Erkundungsmission hin schicken, bzw. einer macht das stellvertretend, und um die Kosten zu reduzieren, für alle.
Diese Mission wird Klarheit darüber bringen, wie man dem Asteroiden am effektivsten auf den Leib rückt.
Ganz wichtig ist an dieser Stelle, dass man analysiert, wie seine Oberfläche beschaffen, er in seinem Inneren aufgebaut ist, und woraus er im wesentlichen besteht.
Danach kann man dann die geeignete Maßnahme ergreifen, um ihn aus dem Weg zu räumen.
Ist das Objekt stabil und hart, dann könnten einige gleichzeitig mit Raketen abgefeuerte Projektile den Asteroid leicht aus seiner Bahn lenken. Das muss nicht viel sein. Auf die Entfernung summiert sich das und reicht, dass wir verschont bleiben.
Mit der Dard-Mission wurde inzwischen an einem kleinen Doppelasteroid gezeigt, dass das prinzipiell funktionieren kann.

Wäre das Objekt eher porös, wie z. B. Juri, dann wäre diese Art der Problemlösung vielleicht sogar äußerst kontraproduktiv und würde die Gefahr verschlimmern und unkalkulierbarer machen. Das Objekt könnte in viele Teile zerbrechen, von welchen jedes dann für sich eventuell wieder eine potentielle Gefahr darstellte.
In den meisten Fällen dürfte es zielführender sein, den Asteroid möglichst am Stück zu belassen.

Es gibt Studien der ESA, die erforschten, ob man ein relativ schweres Raumschiff starten könnte, das über Jahre oder Jahrzehnte parallel zum Asteroid fliegen könnte, um ihn nach und nach mittels Gravitation ganz leicht von seiner Bahn weg zu ziehen. Das ist gar nicht so einfach. Die Düsen dieses Raumschiffs dürfen beispielsweise nicht den Asteroid anblasen, weil das ihn ja in die entgegen der gewollten Richtung schieben würde.

Eine weitere spannende Überlegung wäre, ob man den Asteroid zumindest zur Hälfte oder so, anmalen sollte. Das führte dazu, dass sich die Absorbtion des Sonnenlichts veränderte. Dieses übt einen leichten Druck auf den Asteroid aus, der ihn, genügend Zeit vorausgesetzt, etwas aus seiner Bahn drücken sollte.

Es besteht auch die Möglichkeit, dass man den Asteroid mittels von einer Atombombe erzeugten Druckwelle verschiebt. Das bedeutet, dass man die Bombe nicht auf den Körper werfen würde, sondern davor zünden. Auf ihn werfen, könnte ihn ja zerbrechen lassen, was man nicht möchte.

Zum Glück kommt ein derartiges Ereignis äußerst selten vor. Nachteil daran ist, dass alle Politiker so ein Szenario auf die nächste Legislatur verschieben, weil es ja soooooo weit weg und unwahrscheinlich scheint.
Also bei kleineren Asteroiden würde man vermutlich keine Technikschlacht durchführen. Hier würde man evakuieren und sich so verhalten, wie man das bei einer Tornado-Warnung, einer Tsunami-Warnung u. Ä. täte.
Es gibt durchaus Notfallpläne dafür und durch den Einschlag von 2013 sind Politiker etwas für die Sache sensibilisiert, so dass Gelder für die Erforschung der Asteroiden-Frühwarnung und Abwehr bereitgestellt werden.

Wer das Thema der Asteroidenabwehr vertiefen möchte, dem sei Folge 71 des Podcasts @raumzeit von Tim Pritlove sehr empfohlen. Neben Wiki, habe ich diese Folge auch zur Erstellung dieses Artikels heran gezogen.
Asteroidenabwehr

Sommersonnenwende


Liebe Leserinnen und leser,

Hach, wie ist das praktisch, wenn man einen Text recyceln kann.

Bevor der beginnt, habe ich eine Frage:

Wieso fand, zumindest bei uns in Rheinstetten und anderswo die Sonnwendfeier diesmal schon am Samstag vor dem 21.06. stadt, und nich erst am 23.06., was viel näher dran wäre?

Genau, weil am Samstag, Deutschland spielt.

 

Und nun kommt der renovierte Text:

Für Sehende mag dieser Text eine etwas besondere Leseerfahrung sein, weil er nicht bebildert ist, was im Falle der Veranschaulichung sicher als sehr hilfreich empfunden würde. Lasst euch einfach mal auf diese verbalisierte Version ein. Es geht auch ohne Bilder…

 

Die meisten, die hier mitlesen wissen, was Sonnwend ist und wie unser Jahreslauf funktioniert,  Zumindest glauben sie es. Meine Erfahrung hierzu ist aber auch, dass vieles dazu dann doch nicht ganz so bekannt ist, wenn man auf den Zahn fühlt.
Deshalb hier das wichtigste zu Sonnwend und Jahreslauf.
Unsere vier Jahreszeiten rahmen unser Jahr ein.
Der Astronomische Frühling liegt immer um den 20.03. herum. Das ist dann auch der Tag, der Tag-Nacht-Gleiche. Das bedeutet, dass von diesem Tag an bis Sommersonnwend, um den 21.06. herum, die Tage stets länger als die Nächte sind. Nach Sonnwend kehrt sich der Prozess dann wieder um. Die Tage sind zwar bis zur Herbst-Tag-Nacht-Gleiche noch immer länger als die Nächte, werden aber stets kürzer.
Ab dem Herbst-Equinox, wie man diese Punkte auch nennt, sind dann die Nächte länger, als die Tage.  In Equinox steckt Equi für gleich.
Das verstärkt sich dann, bis zur Wintersonnenwende am 21.12. Von da an werden die Tage dann wieder länger. Im nächsten März, bei der Tag-Nacht-Gleiche beginnt dann der beschriebene Zyklus von vorn.

Dass Neujahr nicht mit einem dieser Equinox-Punkte zusammenfällt, hat historische Gründe.
Hier einige Spielarten für den Neujahrstag, die man normalerweise nicht so kennt:
• der Circumcisionsstil (von lateinisch circumcisio = Beschneidung Jesu am 8. Lebenstag) lässt das Jahr am 1. Januar von Weihnachten aus gesehen, beginnen
• der Annuntiationsstil (von lat. annuntiatio = Verkündigung der Empfängnis an Maria) am 25. März
• der Weihnachtsstil am 25. Dezember
• der Paschalstil (von lat. pascha = Ostern) zwischen dem 22. und 23. März und dem 25. April

Dies aber nur am Rande. Kehren wir zurück zur Sommersonnenwende und dem Lauf der Jahreszeiten.
Die offensichtlichste Bewegung unserer Erde ist ihre Drehung um sich selbst. Tagsüber nimmt man sie durch den Lauf der Sonne wahr und in der Nacht, indem sich die Sphäre der Sternbilder dreht.

Da man nicht spürt, dass sich die Erde dreht, ist es logisch, wenn man von einer ruhenden Erde, Geozentrisches Weltbild ausgeht.

Dass wir diese Drehung körperlich nicht wahrnehmen liegt daran, dass wir relativ zur Erde uns in Ruhe befinden.

Wieso die Annahme, dass die Erde ruht, nicht haltbar blieb, soll Inhalt eines anderen Beitrages über den Wandel des Weltbildes, werden.

 

Jeder bekommt es mit, dass die Tages- und Nachtlänge im Jahreslauf variiert und dass die Sonne im Sommer deutlich höher steigt, als im Winter. Das gilt für alle Erdbewohner nur mit dem Unterschied, dass wenn die einen Winter, die anderen Sommer haben.

Am wenigsten wirkt sich das am Äquator aus. Innerhalb des nördlichen und südlichen Wendekreises variiert der Sonnenhöchststand quasi nicht. Auf der Erde sind die Wendekreise die beiden Breitenkreise von je 23° 26′ 05″ (23,43472°) nördlicher (Wendekreis des Krebses) und südlicher (Wendekreis des Steinbocks) Breite. Auf ihnen steht die Sonne am Mittag des Tages der jeweiligen Sonnenwende im Zenit. Die Wendekreise haben vom Äquator je einen Abstand von 2609 km. Der Gürtel zwischen nördlichem und südlichem Wendekreis wird als die Tropen bezeichnet.

 

Wer einen Globus, ein Modell der Erde, hat, sieht, dass seine Dreachse stets schief zum Tisch, auf welchem der Globus steht, ist. Das ist auch im Weltall so. Die Erdachse ist gegenüber der Scheibe, Ekliptik, auf welcher sich alle Planeten bewegen, um ungefähr 23,4 Grad geneigt.
Wieso das so ist, kann man nicht genau sagen. Ein Planet kann gekippt werden z. B. durch einen Einschlag eines großen Asteroiden. Der Mond zieht und zerrt auch an der Erde.
Die Venus steht vermutlich durch so eine Katastrophe auf dem Kopf, denn sie dreht sich falsch herum und sehr langsam dazu um sich selbst. Außerdem muss sie ein Inferno erlebt haben, das ihren enormen Treibhauseffekt auslöste. Vielleicht sind durch einen Einschlag dann alle Vulkane auf ihr gleichzeitig hoch gegangen oder so.
Neptun ist so stark gekippt, dass er quasi auf seiner Bahn entlang rollt.

Aber alles der Reihe nach.

Stellen wir uns im ersten Schritt vor, dass die Erdachse senkrecht auf der Ekliptik steht. Was geschieht dann mit unseren Tag-Nacht-Rhythmus. Genau. Alle Tage wären gleich lang. 12 Stunden wäre es Tag und 12 Stunden Nacht. Wir hätten weder Sommer noch winter, sondern etwas dazwischen. Es wäre immer Tag-Nacht-Gleiche und gäbe kein Sonnwend.

Im nächsten Schritt kippen wir die Erdachse um 23,4 Grad der Sonne entgegen. Das bedeutet, dass die Nordhalbkugel mehr Sonne abbekommt, als die Südhalbkugel. Wir hätten somit immer Sommer und diejenigen auf der Südhalbkugel immer Winter. Wir hätten in diesem Falle quasi immer die Situation einer Sommersonnenwende.

Nun lassen wir die Erde um die Sonne laufen, um zu unseren Jahreszeiten mit Sonnenwenden und Equinoxien zu gelangen.
Beim Umlauf der Erde um die Sonne, ändert die Drehachse ihre Richtung nicht.
Die Bewegungen überlagern sich

Stellen wir uns ein großes Ziffernblatt vor, in dessen Mitte die Sonne ruht.
In Anlehnung an die Beschreibung eines Esstellers, und was sich wo darauf befindet, greifen wir auf die für Menschen mit Blindheit bekannte Uhrzeit-Beschreibung zurück.
Somit beschreibt das Ziffernblatt von eins bis zwölf Uhr den Jahreslauf.
Welche Ziffer welcher Monat ist, spielt hier keine Rolle, da es mir hier eher um die Veranschaulichung geht.
Stellen wir uns die Erde auf sechs Uhr liegend vor und ihre Nordachse mit 23,4 Grad zur Sonne, der Mitte des Ziffernblattes,  zeigend.
Lassen wir nun die Erde links herum um die Sonne laufen, zeigt die Nordachse stehts von uns weg, wenn auch nicht mehr auf die Sonne.
Steht die Erde, wie in unserem Beispiel auf sechs Uhr, so hat die Nordhalbkugel maximale Sonneneinstrahlung. Auf drei Uhr scheint die Sonne direkt auf den Äquator, da die Erdachse quer zu ihrem Licht liegt.Das wäre dann der Herbstanfang.

Auf zwölf, haben wir winter und die Südhalbkugel maximal Sonne. Nun zeigt die Nordachse aus dem Ziffernblatt hinaus.
Auf neun Uhr ist die Situation ähnlich, wie auf drei Uhr. Auf neun Uhr wäre Frühlingsanfang, Tag-Nacht-Gleiche, auf sechs Uhr dann Sommersonnenwende Auf drei Uhr Herbst-Tag-Nacht-Gleiche und auf zwölf Uhr Wintersonnenwende.
Es ist schon seltsam, dass unsere Uhren sich rechts herum drehen, wo sich im Sonnensystem eindeutig alles links herum dreht. Auch mathematisch gesehen, wäre eine Uhr, die links herum läuft richtiger, wenn man den Verlauf von Funktionsgrafen betrachtet.

Zunehmende Steigung bedeutet, links herum. Abnehmende, dagegen rechts.

 

Zur Erdachse kann man sagen, dass das nicht ganz stimmt, dass sie sich nicht bewegt. Bedingt durch den Mond und die anderen Planeten, eiert die Erde etwas auf ihrer Bahn. Das bedeutet, dass die Erde prezediert, wie ein Spielzeug-Kreisel. In einigen tausend Jahren, wird die Nordachse nicht mehr auf den Polarstern zeigen. Somit wandert auch der Frühlingspunkt der Erdachse durch die Sternbilder. Hieraus resultiert die Aussage, dass wir jetzt gerade im Zeitalter des Wassermannes sind. So ein Sternbildwechsel geschieht ungefähr alle 3000 Jahre und Esoteriker sehen hierin dann immer neue Zeiten, anbrechen, die große Umbrüche und Veränderungen mit sich bringen.

Die gekippte Erdachse bewirkt auch, dass die Mondsichel einem manchmal liegender und dann wieder aufrechter erscheint. Die Tage werden auch nicht gleichmäßig an beiden Enden länger bzw. kürzer. Das liegt eben auch daran, dass die Erde eine Kugel ist. Wer mag, kann sich mal mit Calscy, LunarSolCall oder einem sonstigen Kalender ansehen, Wie es sich durch den Jahreslauf hindurch mit den Sonnenaufgängen, den Sonnenhöchstständen und den Sonnenuntergängen verhält.

Das ist sehr spannend und verblüffend. Vorsicht! Sommer- und Winterzeit muss berücksichtigt werden, ansonsten hat man mir nichts, Dir nichts, einen Stundenfehler in seinen Beobachtungen.

Da die Erde pro Tag ungefähr auch ein Grad auf ihrer Jahresbahn weiterläuft, verschiebt sich täglich alles. Könnte man der Sonne bei ihrem Tageslauf zu Fuß folgen, käme man nie mehr dort heraus, wo man den Lauf begonnen hat.
Eine Sonnenuhr muss deshalb immer wieder neu ausgerichtet werden, damit ihr Zeiger um 12 Uhr Mittags keinen Schatten wirft. Stets hängt auch an jeder Sonnenuhr eine Formel, mit welcher man die Ungenauigkeit herausrechnen kann. Diese Formel sieht je nach Breitengrad, wo die Sonnenuhr steht, etwas anders aus.

Außer den Zircumpolaren Sternbildern verändern sich Sternauf- und Untergänge im Jahreslauf erheblich. Vor allem im Bezug auf den Horizont.

Die Cirkumpolarsterne sind so nahe am Polarstern, dass sie nicht auf oder unter gehen, z. B. der große Wagen. Je nach Ansicht und Zeit, sieht man sie aber perspektivisch auf dem Kopf. Der Große Wagen verhält sich so.

 

Alle diese Beobachtungen und noch viele weitere Planetenbewegungen führten letztlich dazu, dass ein geozentrisches Weltbild unhaltbar war.

Kopernikus befand, dass alle Bewegungen am Himmel deutlich einfacher zu erklären waren, wenn man die Sonne in die Mitte setzt und die Erde sich um diese Dreht.

 

Als letztes möchte ich hier nochmal ganz klar stellen. Dass wir Jahreszeiten haben, hat lediglich mit der gekippten Erdachse zu tun. Dass die Erde sich auf einer elliptischen Bahn bewegt, (mal näher und mal sonnenferner) trägt nichts zu den Jahreszeiten bei. Paradochserweise ist es sogar so, dass Neujahr ungefähr mit dem Perihel (sonnennächster Punkt) der Erdbahn, zusammen fällt und es bei uns winter ist. Die Erdbahn ist fast kreisrund.
Jetzt wünsche ich euch eine gute Zeit und dass ihr gut durch die heißen Tage und die Fußball-Wm kommt.

Es grüßt euch

Euer Gerhard.