Sommersonnenwende


Liebe Leserinnen und leser,

Hach, wie ist das praktisch, wenn man einen Text recyceln kann.

Bevor der beginnt, habe ich eine Frage:

Wieso fand, zumindest bei uns in Rheinstetten und anderswo die Sonnwendfeier diesmal schon am Samstag vor dem 21.06. stadt, und nich erst am 23.06., was viel näher dran wäre?

Genau, weil am Samstag, Deutschland spielt.

 

Und nun kommt der renovierte Text:

Für Sehende mag dieser Text eine etwas besondere Leseerfahrung sein, weil er nicht bebildert ist, was im Falle der Veranschaulichung sicher als sehr hilfreich empfunden würde. Lasst euch einfach mal auf diese verbalisierte Version ein. Es geht auch ohne Bilder…

 

Die meisten, die hier mitlesen wissen, was Sonnwend ist und wie unser Jahreslauf funktioniert,  Zumindest glauben sie es. Meine Erfahrung hierzu ist aber auch, dass vieles dazu dann doch nicht ganz so bekannt ist, wenn man auf den Zahn fühlt.
Deshalb hier das wichtigste zu Sonnwend und Jahreslauf.
Unsere vier Jahreszeiten rahmen unser Jahr ein.
Der Astronomische Frühling liegt immer um den 20.03. herum. Das ist dann auch der Tag, der Tag-Nacht-Gleiche. Das bedeutet, dass von diesem Tag an bis Sommersonnwend, um den 21.06. herum, die Tage stets länger als die Nächte sind. Nach Sonnwend kehrt sich der Prozess dann wieder um. Die Tage sind zwar bis zur Herbst-Tag-Nacht-Gleiche noch immer länger als die Nächte, werden aber stets kürzer.
Ab dem Herbst-Equinox, wie man diese Punkte auch nennt, sind dann die Nächte länger, als die Tage.  In Equinox steckt Equi für gleich.
Das verstärkt sich dann, bis zur Wintersonnenwende am 21.12. Von da an werden die Tage dann wieder länger. Im nächsten März, bei der Tag-Nacht-Gleiche beginnt dann der beschriebene Zyklus von vorn.

Dass Neujahr nicht mit einem dieser Equinox-Punkte zusammenfällt, hat historische Gründe.
Hier einige Spielarten für den Neujahrstag, die man normalerweise nicht so kennt:
• der Circumcisionsstil (von lateinisch circumcisio = Beschneidung Jesu am 8. Lebenstag) lässt das Jahr am 1. Januar von Weihnachten aus gesehen, beginnen
• der Annuntiationsstil (von lat. annuntiatio = Verkündigung der Empfängnis an Maria) am 25. März
• der Weihnachtsstil am 25. Dezember
• der Paschalstil (von lat. pascha = Ostern) zwischen dem 22. und 23. März und dem 25. April

Dies aber nur am Rande. Kehren wir zurück zur Sommersonnenwende und dem Lauf der Jahreszeiten.
Die offensichtlichste Bewegung unserer Erde ist ihre Drehung um sich selbst. Tagsüber nimmt man sie durch den Lauf der Sonne wahr und in der Nacht, indem sich die Sphäre der Sternbilder dreht.

Da man nicht spürt, dass sich die Erde dreht, ist es logisch, wenn man von einer ruhenden Erde, Geozentrisches Weltbild ausgeht.

Dass wir diese Drehung körperlich nicht wahrnehmen liegt daran, dass wir relativ zur Erde uns in Ruhe befinden.

Wieso die Annahme, dass die Erde ruht, nicht haltbar blieb, soll Inhalt eines anderen Beitrages über den Wandel des Weltbildes, werden.

 

Jeder bekommt es mit, dass die Tages- und Nachtlänge im Jahreslauf variiert und dass die Sonne im Sommer deutlich höher steigt, als im Winter. Das gilt für alle Erdbewohner nur mit dem Unterschied, dass wenn die einen Winter, die anderen Sommer haben.

Am wenigsten wirkt sich das am Äquator aus. Innerhalb des nördlichen und südlichen Wendekreises variiert der Sonnenhöchststand quasi nicht. Auf der Erde sind die Wendekreise die beiden Breitenkreise von je 23° 26′ 05″ (23,43472°) nördlicher (Wendekreis des Krebses) und südlicher (Wendekreis des Steinbocks) Breite. Auf ihnen steht die Sonne am Mittag des Tages der jeweiligen Sonnenwende im Zenit. Die Wendekreise haben vom Äquator je einen Abstand von 2609 km. Der Gürtel zwischen nördlichem und südlichem Wendekreis wird als die Tropen bezeichnet.

 

Wer einen Globus, ein Modell der Erde, hat, sieht, dass seine Dreachse stets schief zum Tisch, auf welchem der Globus steht, ist. Das ist auch im Weltall so. Die Erdachse ist gegenüber der Scheibe, Ekliptik, auf welcher sich alle Planeten bewegen, um ungefähr 23,4 Grad geneigt.
Wieso das so ist, kann man nicht genau sagen. Ein Planet kann gekippt werden z. B. durch einen Einschlag eines großen Asteroiden. Der Mond zieht und zerrt auch an der Erde.
Die Venus steht vermutlich durch so eine Katastrophe auf dem Kopf, denn sie dreht sich falsch herum und sehr langsam dazu um sich selbst. Außerdem muss sie ein Inferno erlebt haben, das ihren enormen Treibhauseffekt auslöste. Vielleicht sind durch einen Einschlag dann alle Vulkane auf ihr gleichzeitig hoch gegangen oder so.
Neptun ist so stark gekippt, dass er quasi auf seiner Bahn entlang rollt.

Aber alles der Reihe nach.

Stellen wir uns im ersten Schritt vor, dass die Erdachse senkrecht auf der Ekliptik steht. Was geschieht dann mit unseren Tag-Nacht-Rhythmus. Genau. Alle Tage wären gleich lang. 12 Stunden wäre es Tag und 12 Stunden Nacht. Wir hätten weder Sommer noch winter, sondern etwas dazwischen. Es wäre immer Tag-Nacht-Gleiche und gäbe kein Sonnwend.

Im nächsten Schritt kippen wir die Erdachse um 23,4 Grad der Sonne entgegen. Das bedeutet, dass die Nordhalbkugel mehr Sonne abbekommt, als die Südhalbkugel. Wir hätten somit immer Sommer und diejenigen auf der Südhalbkugel immer Winter. Wir hätten in diesem Falle quasi immer die Situation einer Sommersonnenwende.

Nun lassen wir die Erde um die Sonne laufen, um zu unseren Jahreszeiten mit Sonnenwenden und Equinoxien zu gelangen.
Beim Umlauf der Erde um die Sonne, ändert die Drehachse ihre Richtung nicht.
Die Bewegungen überlagern sich

Stellen wir uns ein großes Ziffernblatt vor, in dessen Mitte die Sonne ruht.
In Anlehnung an die Beschreibung eines Esstellers, und was sich wo darauf befindet, greifen wir auf die für Menschen mit Blindheit bekannte Uhrzeit-Beschreibung zurück.
Somit beschreibt das Ziffernblatt von eins bis zwölf Uhr den Jahreslauf.
Welche Ziffer welcher Monat ist, spielt hier keine Rolle, da es mir hier eher um die Veranschaulichung geht.
Stellen wir uns die Erde auf sechs Uhr liegend vor und ihre Nordachse mit 23,4 Grad zur Sonne, der Mitte des Ziffernblattes,  zeigend.
Lassen wir nun die Erde links herum um die Sonne laufen, zeigt die Nordachse stehts von uns weg, wenn auch nicht mehr auf die Sonne.
Steht die Erde, wie in unserem Beispiel auf sechs Uhr, so hat die Nordhalbkugel maximale Sonneneinstrahlung. Auf drei Uhr scheint die Sonne direkt auf den Äquator, da die Erdachse quer zu ihrem Licht liegt.Das wäre dann der Herbstanfang.

Auf zwölf, haben wir winter und die Südhalbkugel maximal Sonne. Nun zeigt die Nordachse aus dem Ziffernblatt hinaus.
Auf neun Uhr ist die Situation ähnlich, wie auf drei Uhr. Auf neun Uhr wäre Frühlingsanfang, Tag-Nacht-Gleiche, auf sechs Uhr dann Sommersonnenwende Auf drei Uhr Herbst-Tag-Nacht-Gleiche und auf zwölf Uhr Wintersonnenwende.
Es ist schon seltsam, dass unsere Uhren sich rechts herum drehen, wo sich im Sonnensystem eindeutig alles links herum dreht. Auch mathematisch gesehen, wäre eine Uhr, die links herum läuft richtiger, wenn man den Verlauf von Funktionsgrafen betrachtet.

Zunehmende Steigung bedeutet, links herum. Abnehmende, dagegen rechts.

 

Zur Erdachse kann man sagen, dass das nicht ganz stimmt, dass sie sich nicht bewegt. Bedingt durch den Mond und die anderen Planeten, eiert die Erde etwas auf ihrer Bahn. Das bedeutet, dass die Erde prezediert, wie ein Spielzeug-Kreisel. In einigen tausend Jahren, wird die Nordachse nicht mehr auf den Polarstern zeigen. Somit wandert auch der Frühlingspunkt der Erdachse durch die Sternbilder. Hieraus resultiert die Aussage, dass wir jetzt gerade im Zeitalter des Wassermannes sind. So ein Sternbildwechsel geschieht ungefähr alle 3000 Jahre und Esoteriker sehen hierin dann immer neue Zeiten, anbrechen, die große Umbrüche und Veränderungen mit sich bringen.

Die gekippte Erdachse bewirkt auch, dass die Mondsichel einem manchmal liegender und dann wieder aufrechter erscheint. Die Tage werden auch nicht gleichmäßig an beiden Enden länger bzw. kürzer. Das liegt eben auch daran, dass die Erde eine Kugel ist. Wer mag, kann sich mal mit Calscy, LunarSolCall oder einem sonstigen Kalender ansehen, Wie es sich durch den Jahreslauf hindurch mit den Sonnenaufgängen, den Sonnenhöchstständen und den Sonnenuntergängen verhält.

Das ist sehr spannend und verblüffend. Vorsicht! Sommer- und Winterzeit muss berücksichtigt werden, ansonsten hat man mir nichts, Dir nichts, einen Stundenfehler in seinen Beobachtungen.

Da die Erde pro Tag ungefähr auch ein Grad auf ihrer Jahresbahn weiterläuft, verschiebt sich täglich alles. Könnte man der Sonne bei ihrem Tageslauf zu Fuß folgen, käme man nie mehr dort heraus, wo man den Lauf begonnen hat.
Eine Sonnenuhr muss deshalb immer wieder neu ausgerichtet werden, damit ihr Zeiger um 12 Uhr Mittags keinen Schatten wirft. Stets hängt auch an jeder Sonnenuhr eine Formel, mit welcher man die Ungenauigkeit herausrechnen kann. Diese Formel sieht je nach Breitengrad, wo die Sonnenuhr steht, etwas anders aus.

Außer den Zircumpolaren Sternbildern verändern sich Sternauf- und Untergänge im Jahreslauf erheblich. Vor allem im Bezug auf den Horizont.

Die Cirkumpolarsterne sind so nahe am Polarstern, dass sie nicht auf oder unter gehen, z. B. der große Wagen. Je nach Ansicht und Zeit, sieht man sie aber perspektivisch auf dem Kopf. Der Große Wagen verhält sich so.

 

Alle diese Beobachtungen und noch viele weitere Planetenbewegungen führten letztlich dazu, dass ein geozentrisches Weltbild unhaltbar war.

Kopernikus befand, dass alle Bewegungen am Himmel deutlich einfacher zu erklären waren, wenn man die Sonne in die Mitte setzt und die Erde sich um diese Dreht.

 

Als letztes möchte ich hier nochmal ganz klar stellen. Dass wir Jahreszeiten haben, hat lediglich mit der gekippten Erdachse zu tun. Dass die Erde sich auf einer elliptischen Bahn bewegt, (mal näher und mal sonnenferner) trägt nichts zu den Jahreszeiten bei. Paradochserweise ist es sogar so, dass Neujahr ungefähr mit dem Perihel (sonnennächster Punkt) der Erdbahn, zusammen fällt und es bei uns winter ist. Die Erdbahn ist fast kreisrund.
Jetzt wünsche ich euch eine gute Zeit und dass ihr gut durch die heißen Tage und die Fußball-Wm kommt.

Es grüßt euch

Euer Gerhard.

Gedenken an die erste Raumstation der Welt


Liebe Leserinnen und Leser,

alle Welt fiebert dem Start von Alexander Gerst entgegen. Das ist wirklich unglaublich, was der für ein Medienstar geworden ist. Gut ist vor allem, dass hier der Sinn einer Raumstation, wie der ISS mal der breiten Öffentlichkeit vermittelt wird.

Auch ich fiebere mit und hoffe inständig, dass alles beim Start klappt. So ein Start ist kein Spaziergang und bleibt immer ein Risiko.

Wie immer, werde ich hier nicht wiederholen, was andere über diese bevorstehende Mission schon geschrieben oder gesagt haben, bzw. noch werden. Ich schreibe dann über die ISS, wenn alle anderen darüber schweigen.

Unser Kontrastprogramm führt uns vierzig Jahre in die Vergangenheit. Zu dieser Zeit befand sich auch eine Raumstation im All. Es war die erste überhaupt. Um sie, soll es heute mal gehen.

Die Quellen, aus denen ich hierzu schöpfe, sind Wikipedia, mein eigenes Buch und das Buch „Die Sonne, der Stern von dem wir leben – den Geheimnissen der Sonne auf der Spur“ von Prof. Rudolf Kippenhahn.

Wie ich die Mission als Kind erlebte:

Im Gegensatz zur Mondlandung, war ich zu dieser Zeit schon auf der Welt, und habe vor allem den medienwirksamen Absturz der Skylab, so war ihr Name, erlebt.

Kurz bevor Skylab, die erste Raumstation der Welt, am 11. Juli 1979 nach sechs Jahren im Weltall wieder in die Erdatmosphäre eintrat und abstürzte, war es nachts möglich, sie bei guten Bedingungen zu sehen. Meine Mutter, von Beruf Hausfrau, bemühte sich sehr, eine solche Nacht nicht zu verpassen, und erzählte mir davon. Sie hatte ein natürliches, angeborenes Interesse an derlei Vorkommnissen. Sie arbeitete sich rasch in neue Technologien ein, war dafür begeisterungsfähig und hätte, wenn sie noch leben würde, sicherlich auch am Internet und Smartphone ihre Freude. (Siehe Blind zu den Sternen, Astronomische Erlebnisse, S. 24)
In der Zeit des bevorstehenden Absturzes der Raumstation bekam ich deutlich mit, dass dieses Ereignis immer wieder im Radio angesprochen wurde. Es schien wirklich wichtig zu sein. Auch im Pausenhof und Internat war das Thema stets präsent.

So intensiv erlebte ich dieses bevorstehende Ereignis, dass es dem nahe kam, wie intensiv ich die Entführung von Hans-Martin Schleyer erlebte. Ich weiß, das ist irgendwie ein komischer Vergleich, aber als Kind unterscheidet man da vielleicht nicht so.

Planung und Bau

Lasst uns nun auch dieser ersten Raumstation gedenken. Sie wurde alleine von den USA betrieben und bestand quasi aus dem Rest, was von den Apollo-Missionen zum Mond übrig geblieben war.

Die ersten Ideen zu einer Raumstation gehen bis 1965 zurück. Dort wurde sogar ein Saturn-Apollo-Office der NASA gegründet.

Man wollte damit weitere Anwendungsgebiete für die Apollo-Hardware, wie z. B. Raketen, Raumkapsel etc. finden, um das Knowhow der Ingeniere zu erhalten.

Heute nennt man so etwas Nachhaltigkeit.

Ja, die Apollo-Raketen waren schon eine extreme Materialschlacht. Somit kam man auf die Idee, eine dritte Brennstufe einer Saturn-V-Rakete quasi auszuhölen, um darin eine Raumstation einzurichten. Dort, wo sich normalerweise der Wasserstoff- und der Sauerstofftank befanden, arbeiteten, wohnten und schliefen nun die Astronauten.
In die Raketenwand wurden Fenster eingesetzt, so dass man auch nach draußen sehen konnte.
Die Skylab war für drei Astronauten ausgelegt, wobei auf der ISS sieben gleichzeitig leben können. Dies ist der Tatsache geschuldet, dass zur Rückkehr die Apollo-Kapseln verwendet wurden, die ebenfalls nur drei Astronauten aufnehmen konnten.
So entschloss man sich schließlich 1965 für den Plan, die Raumstation zu bauen und dann, wie eine normale Apollo-Mission zu starten. Allerdings trugen hier nur die beiden unteren Brennstufen zum Antrieb bei, weil ja in der dritten Brennstufe die Raumstation und kaum Treibstoff war.
Es wurden zwei Versionen der Skylab hergestellt. Eine blieb als Trainings-Simulator auf der Erde.

Aufbau der Station:

Ich schrieb schon, dass der Behälter für das Raumlabor aus einer ausgebeinten dritten Brennstufe einer Saturn-Rakete bestand.
Die Besatzung wohnte und arbeitete im Wasserstofftank mit einem nutzbaren Innenvolumen von 275 m³. Der Sauerstofftank wurde mit einer Schleuse ausgestattet und als Abfallgrube genutzt. Im hinteren Teil der Brennstufe befanden sich die Ausrüstung, alle Essensvorräte, die gesamten Wasservorräte und die Drucktanks für den Treibstoff zur Lageregelung. Neben den Wohn-, Schlaf- und Sanitätsräumen wurden dort auch Experimente durchgeführt, vor allem Erdbeobachtung durch ein Fenster und medizinische Untersuchungen. Es gab auch zwei kleine Schleusen für Experimente auf der der Sonne zu- und abgewandten Seite der Station; erstere wurde für die Reparatur des Thermalschutzes dauerhaft belegt. Das bewohnbare Volumen war mehrfach in Ess- und Ruhezonen sowie individuelle Schlafkabinen unterteilt, insbesondere mit gitterartigen Fußböden, in die sich die Astronauten mit speziellen Schuhen einhaken konnten. Durch den großen Durchmesser war ein Volumen von 280 m³ bewohnbar. Dieses Volumen wurde erst von der Mir in ihrer Endausbaustufe übertroffen.

Also die hatten dort richtig viel Platz. An den Arbeitsraum schloss sich der Instrumentenring der Brennstufe an. Den brauchte man, um den Start zu kontrollieren. Später übernahmen dann die Computer im Inneren der Station.
Nach diesem Teil folgte die 22 t schwere Luftschleuse, das Airlock Module (AM). Sie enthielt eine Luftschleuse zum Ausstieg, riegelte den Wohn- und Arbeitsraum vom Docking-Adapter ab, enthielt die Steuerung der Teleskope und alle Gase für die Station in Drucktanks. Ihre Breite ging von 6,7 auf 3,04 m zurück. Sie hatte eine Länge von 5,2 m und ein Innenvolumen von 17,4 m³.
Es folgte der zylinderförmige Multiple Docking Adapter (MDA). Er war 3,04 m breit, 5,2 m lang und hatte eine Masse von 6260 kg. Er hatte zwei Andockstellen für Apollo-Kommandokapseln: eine seitlich und eine in der Verlängerung der Längsachse. Die seitliche Andockstelle war für eine Notkapsel vorgesehen, die dann gestartet werden sollte, wenn eine Rückkehr mit der ersten Kapsel nicht möglich gewesen wäre,
Zur Sonnenbeobachtung, die ein wichtiges Ziel von Skylab war, verfügte die Raumstation zudem über ein Observatorium, das Apollo Telescope Mount (ATM), das nach dem Erreichen des Orbit in eine Position seitwärts ausgefahren wurde. Es wog 11.066 kg, war 6 m breit und 4,4 m hoch. Seine Sonnenteleskope konnten auf 2,5 Bogensekunden genau ausgerichtet werden. Die Filme für die Kameras, mussten im Rahmen eines Außenbordmanövers (EVA) gewechselt werden.
Die Energieversorgung war mit vier Solarmodulen und zwei weiteren am Hauptmodul geplant. Alleine die Solarpanele des ATM hatten eine Spannweite von 31 m. Das ATM benutzte Komponenten der Mondlandefähre und richtete mit seinen Drallrädern auch die gesamte Station aus.
Drallräder sind Schwungräder. Die sorgen dafür, dass die Raumstation gut ausgerichtet blieb. Viele Raumsonden verfügen bis heute über Drallräder. Wie diese genau funktionieren, sollte ich mal in einem gesonderten Artikel beschreiben. Viele werden noch den Versuch in der Schule kennen, wo man ein Rad eines Fahrrades beschleunigt, und es dann an den Achsen haltend versucht, zu kippen. Es geht nur schwer. Wer das moderne Spielzeug Fidgetspinner kennt, kann das auch ausprobieren. Es ist schwer, das Ding auszulenken, wenn es sich schnell dreht.

Zuletzt gab es noch das angekoppelte Apollo-Raumschiff als Command and Service Module (CSM). Das CSM übernahm die gesamte Kommunikation mit der Erde, da Skylab, abgesehen von seiner Bordtelemetrie, keinen eigenen Sender hatte. Weiterhin mussten die Lebenserhaltungssysteme des CSM einmal pro Monat die Gasreinigung übernehmen, wenn die Molekularsiebe von Skylab ausgeheizt wurden. Das CSM war daher integraler Bestandteil der Station. Das CSM war das, was bei den Apollo-Missionen dann letztlich mit den drei Astronauten wohlbehalten ins Wasser fiel.

Die Masse der Station betrug über 90 Tonnen. Insgesamt war Skylab wesentlich größer als die sowjetische Raumstation Saljut 1, die im April 1971 gestartet worden war. Bei günstigem Sonnenstand war das Skylab mit bloßem Auge als leuchtender Punkt auch am Taghimmel zu beobachten.

Ich muss ganz ehrlich sagen, dass ich mir ohne Modell nicht ganz vorstellen kann, wie hier alles zusammengesetzt ist. Einen Teil kenne ich von meiner Mondrakete, Siehe „Einmal mit Lego auf den Mond und zurück“ in diesem Blog.
Vielleicht wird manches klarer, wenn mein Apollo-Artikel mal fertig ist.

Startund Probleme

Der Start von Skylab erfolgte planmäßig am 14. Mai 1973 vom Startkomplex 39-A in Cape Canaveral.
Die Saturn V SA-513, die für Skylab 1 verwendet wurde, war etwas kürzer als die Modelle, die für die Mondflüge verwendet worden waren. Sie hatte keine Rettungsrakete, kein Apollo-Raumschiff und keinen Adapter für die Mondlandefähre. Außerdem nutzte diese Rakete nur zwei Stufen. An Stelle der dritten Stufe transportierte sie die Raumstation mit einer kegelförmigen Verkleidung an der Spitze.
Auch hier sei nochmal auf den Lego-Artikel verwiesen, dann kann man sich das ganze vielleicht etwas besser vorstellen.

Es gab bei Skylab einige Probleme, so dass ihr Start durchaus unglücklich verlief.
Bereits 63 Sekunden nach dem Start empfing die Bodenstation alarmierende Telemetriesignale. Beim Durchbrechen der Schallgrenze riss innerhalb von nur drei Sekunden der gesamte Mikrometeoritenschutzschild ab, wodurch auch zwei Solarmodulträger beschädigt wurden. Spätere Untersuchungen zeigten, dass der Fehler durch mangelnde Koordination der Konstruktionsabteilungen entstanden war. Die Raumstation erreichte zwar die geplante Umlaufbahn, war aber nicht funktionsfähig. Zwar gelang es der Flugleitung, die vier Solarmodule des Solarobservatoriums auszufahren, doch schien es Probleme mit den beiden anderen Modulen zu geben, so dass insgesamt nur etwa die halbe elektrische Leistung zur Verfügung stand. Der fehlende Meteoritenschutzschild hätte auch als Wärmeschutz dienen sollen, weshalb in der Station die Temperatur stark anstieg, so dass befürchtet werden musste, dass Lebensmittel, Medikamente und Filme verdorben sein würden.
Da man die Station zunächst ohne Mannschaft startete, musste man jetzt die ersten beiden Flüge zur Station so umgestalten, dass die Reparaturen durchgeführt werden konnten.
So führte die hohe Temperatur im inneren der Station
dazu, dass Instrumente, die aus dem Lager geholt wurden, nicht mehr in die dafür vorgesehenen Halterungen passten. Sie mussten erst abkühlen. So mussten spezielle Reparaturpläne, Werkzeuge und vieles mehr entwickelt werden. Die Astronauten mussten lernen, damit umzugehen, was sie im Wassertank simulierten.
Es gelang den Mannschaften während der Missionen Skylab 2 und Skylab 3, die Schäden zu reparieren. Die Station war anschließend voll funktionsfähig.

Ziele der Mission:

Die ersten beiden bemannten Flüge zur Station wurden zur Reparatur der Raumstation benutzt. Danach, als die Station voll einsatzfähig war, kann man die wissenschaftlichen Ziele so zusammenfassen.

Sonnenbeobachtung über das Apollo Telescope Mount (ATM) und Erdbeobachtung sowie Erkenntnisgewinn in den Bereichen Raumphysik, Werkstoffforschung und Biomedizin.
Diese Themen treiben die Forscher auch heute noch um und werden mittels Experimente auf der ISS erkundet.

Nutzung der Station

Drei Besatzungen aus jeweils drei Astronauten verbrachten insgesamt 513 Manntage im All. Da der Start von Skylab als Mission 1 gezählt wurde, beginnen die bemannten Missionen mit der Nummer 2.
Hier ein kurzer Überblick über die Besatzungen und die Dauer der verschiedenen Missionen:
• Skylab 2:
• 25. Mai 1973 – 22. Juni 1973
• Besatzung: Charles Conrad, Paul J. Weitz, Dr. Joseph P. Kerwin
• Skylab 3:
• 28. Juli 1973 – 25. September 1973
• Besatzung: Alan L. Bean, Dr. Owen K. Garriott, Jack R. Lousma
• Skylab 4:
• 16. November 1973 – 8. Februar 1974
• Besatzung: Gerald P. Carr, Dr. Edward G. Gibson, William R. Pogue

Aufgabe und kontrollierter Absturz

Nachdem die Station, wie man oben leicht sehen kann, mehrere Jahre quasi unbeachtet und aufgegeben um die Erde kreiste, weil man wegen der veralteten Technologie keine Verwendung mehr für sie hatte,
Wurde der Kontakt im März 1978 zu Skylab wieder aufgenommen. Offenbar rotierte die Station weitgehend unkontrolliert mit einer Periode von sechs Minuten pro Umdrehung, und die Funkgeräte arbeiteten nur, wenn die Solarmodule im Sonnenlicht waren. Nach einer Woche gelang es, mehrere Batterien ferngesteuert zu laden. Der Zentralcomputer arbeitete noch zufriedenstellend, die Lageregelung war aber durch den Ausfall eines Sternensensors und den Teilausfall eines der drei Drallräder erheblich beeinträchtigt.
Ein Sternsensor ist in der Lage Sternkonstellationen zu erkennen, was die Ausrichtung unterstützt.

Es stellte sich heraus, dass Skylab schneller als berechnet sank. Grund dafür war die durch hohe Sonnenaktivität unerwartet ausgedehnte Hochatmosphäre der Erde und die dadurch erhöhte Abbremsung.
Die Aktivität der Sonne variiert gemeinsam mit dem Auftreten von Sonnenflecken in einem elfjährigen Zyklus. Auch dieses wird mal demnächst behandelt. Es ist längst schon auf meiner Liste, eine Serie über die Sonne zu starten.

Am 19. Dezember 1978 gab die NASA bekannt, dass man Skylab nicht retten könne, man aber alles unternähme, um das Risiko von Absturzschäden zu minimieren. Hierzu arbeitete die NASA eng mit der Überwachungsbehörde North American Aerospace Defense Command (NORAD) zusammen. NASA und NORAD verwendeten unterschiedliche Berechnungsmethoden für den Wiedereintritt und kamen deshalb auf unterschiedliche Ergebnisse für Zeit und Ort des Niedergangs.
Die NASA plante, durch die Ausrichtung der Raumstation die atmosphärische Reibung steuern zu können, um den Absturz zu verzögern oder zu beschleunigen. Durch Fernsteuerung sollte Skylab dann zu einem bestimmten Zeitpunkt in Rotation mit bekannter Aerodynamik versetzt werden. Damit konnte in engen Grenzen die Gefahrenzone verlagert werden.
Der Absturz erfolgte dann am 11. Juli 1979. Der letzte Orbit von Skylab führte größtenteils über Wasserflächen, und die NASA gab das letzte Steuerungskommando, um die Gefahrenzone von Nordamerika weg auf den Atlantik und den Indischen Ozean zu verlagern. Tatsächlich zerbrach die Station erst später als berechnet in mehrere Teile, so dass das Absturzgebiet weiter östlich als geplant lag. Betroffen war die Gegend südöstlich von Perth in West-Australien bei Balladonia, wo Trümmer in den dunklen Morgenstunden niedergingen, ohne jemanden zu verletzen.
Und hier noch eine nette Anekdote dazu:
Die Behörden der australischen Gemeinde Esperance Shire schickten der NASA wegen unerlaubter Abfallentsorgung einen Bußgeldbescheid über 400 Dollar. Die NASA lehnte eine Bezahlung ab; erst 2009 wurde der ausstehende Betrag von einer US-Radiostation beglichen.

Die gesamte Mission kostete etwa 2,6 Milliarden US-Dollar.
Das geht eigentlich, wenn man bedenkt, was mittlerweile das James-Webb-Weltraumteleskop
kosten soll.

Man darf an dieser Stelle gespannt sein, wie man die ISS eines Tages abstürzen lassen möchte. Sie ist deutlich größer und schwerer, als die Skylab. Die bestand im wesentlichen ja nur aus einer Raketenstufe. Die ISS besteht aus vielen dosenförmigen Modulen, die über eine Metallkonstruktion miteinander verbunden sind.
Ich glaube, dass hierzu noch verschiedene Pläne im Rennen sind, wie das ablaufen könnte.

So, das war mal eine Rückbesinnung auf die erste Raumstation der Welt.
Vor uns liegt aber nun der Start von Alexander Gerst und seiner Crew. Ich wünsche Ihnen einen Bilderbuchstart und dass alles glatt gehen möge. Wir dürfen auch gespannt sein, wie Astro-Alex mit seiner fliegenden „Alexa“, dem Roboter Cimon, zurecht kommen wird. Der soll ein richtiges KI-Wunder sein.

Ich beneide all jene, die life beim Start anwesend sein können. Ich freue mich jetzt schon auf die entsprechenden Podcast-Folgen…
Jetzt drücke ich die Daumen und hoffe, dass der Beitrag etwas Freude macht.
Bis zum nächsten Mal grüßt euch
Euer Gerhard.

Parken im All


Liebe Leserinnen und Leser,

Schon mehrfach ist es passiert, dass es bei einer mission heißt, dass die Umlaufbahn leider nicht erreicht wurde. Dann heißt es bei erfolgreicheren Missionen, dass der Einschuss in die vorgesehene Umlaufbahn derart gut gelungen sei, dass die Raumsonde viel Treibstoff sparen konnte, und von daher viele Jahre länger betrieben werden kann. So dürfen wir es vom JWVLT hoffen. Was man hier deutlich sieht, ist, dass es für jede Aufgabe und jede Mission auch mehr oder weniger geeignete Umlaufbahnen und Orte gibt. Darum wird es heute gehen.

Tanz mit der Erde

Bei Aufgaben, wo es wichtig ist, dass man von der Erde aus stehts von der gleichen Stelle aus Sicht auf den Satelliten hat, schickt man sie auf eine geosynchrone Umlaufbahn. Der Satellit umläuft die Erde synchron zur Erddrehung ein mal täglich. Die einfachste Bahn dieser Art ist die geostationäre Umlaufbahn.
Die liegt ungefähr 36.000 Kilometer über dem Äquator. Es gibt noch weitere geosynchrone Bahnen.
Diese Bahnen eignen sich gut für Satelliten zur Kommunikation, Navigation und zur Wetterbeobachtung.

Welch ein Gezerre

Für andere Aufgaben aus Erdnähe wird es dann mit den Bahnen etwas kompliziert.
Ein Hauptproblem ist die Tatsache, dass immer mehrere Körper mit ihren Gravitationskräften an unserer gedachten Raumsonde ziehen.

  • Da zieht die Sonne mit ihrer ungeheuren Masse,
  • die Erde, in deren Nähe sich unsere Sonde befindet,
  • der Mond zieht, wenn er gerade mal vorbei kommt
  • und auch die riesigen Gasplaneten, wie unser Jupiter ziehen an der Sonde.

Dieses Spiel der Kräfte wird dann schnell chaotisch und die Sonde muss mittels Treibstoff ihre Bahn immer wieder korrigieren.
Das ist bei mehr als zwei Körpern, die sich gegenseitig beeinflussen, nicht mehr mit einer geschlossenen Formel, wie den Newtonschen Bewegungsgleichungen oder den Keplerschen Gesetzen zu lösen.
Es gibt jedoch numerische Verfahren, wie man die Bahnen von derartigen Drei-Körper-Systemen, z. B. Erde-Sonne-Raumsonde, Stück für Stück berechnen kann.

Bei einigen Missionsaufgaben lässt sich aber enorm Treibstoff sparen, weil es in einem Drei-Körper-System von denen einer extrem viel leichter ist, als die anderen beiden, Punkte gibt, bei denen man quasi kostenlos mitreisen kann. Treibstoff braucht man dann nur noch, damit man in der Nähe dieser Lagrange-Punkte, benannt nach dem Mathematiker Joseph-Louis Lagrange bleibt. Etwas korrigieren muss man schon, denn zum einen wird unser Drei-Körper-System ja auch von anderen Massen gestört, und zum anderen gibt es an den Lagrange-Punkten nichts, worum man kreisen könnte.
Es sind Punkte, bei denen sich die Zugkräfte auf unsere Sonde der im system befindlichen großen Massen, addieren, subtrahieren oder ergänzen.

Eine Sonde im Sonne-Erde-System

Hier betrachten wir stets die Sonne, die von der Erde umkreist wird. Als dritter Körper nehmen wir eine Raumsonde, die unterschiedliche Aufgaben, je nach dem, wo wir sie parken, wahrnehmen kann.

Der Platz an der Sonne

Bei Sonnen-Missionen ist man natürlich daran interessiert, möglichst viele Sonnenstunden zu haben, am bessten immer. Kein Tag-Nacht-Rhythmus oder ein Mondschatten soll die Beobachtung stören, und wenig Treibstoff soll die Sonde natürlich auch verbrauchen, denn wir wollen sie ja lange nutzen.
Der beste Parkplatz für so eine Sonde ist der Lagrange-Punkt eins. Er liegt zwischen Erde und Sonne.
An diesem Punkt ziehen Erde und Sonne gleich stark von gegenüberliegenden Seiten an der Sonde, und halten sie auf diesem Punkt fest. Da die Erde deutlich weniger Masse als die Sonne besitzt, liegt dieser Punkt näher an der Erde.
Er liegt ungefähr 1,5 Mio Kilometer von der Erde aus gesehen in Richtung Sonne. Das ist gerade mal ein Prozent der ganzen Strecke Erde-Sonne.
Und was an dem Punkt noch praktisch ist, die Erde zieht unsere Raumsonde mit sich auf ihrer Umlaufbahn um die Sonne. Somit hat die Sonde den Stern stets im Blick und die Antenne für die Daten zeigt immer brav in Richtung Erde. Klar, die Erde dreht sich natürlich einmal täglich unter der Sonde hindurch, das stört aber nicht, weil es Empfangsantennen für die Daten um den ganzen Erdball verteilt gibt, oder man speichert die Daten und schickt sie dann zur Erde, wenn sich die Heimat-Antenne unter der Sonde vorbei bewegt. Und wenn nicht gerade eine Sonnenfinsternis stattfindet, dürfte nicht mal der Mond mit seinem Schatten störend durch den Datenstrahl zur Erde laufen. Wir merken also: Der LagrangePunkt L1 Erde-Sonne ist ein idealer Parkplatz für Beobachtungen unseres Sterns, des Sterns von dem wir leben.

Im Schatten

Wer wünscht sich im Sommer keinen Parkplatz unter einem schattigen Baum.
Bei vielen Missionen ist es auch so, dass gerade die Sonne mit ihrer Wärme und ihrem Licht stört. Aus diesem Grunde parkte man die beiden WeltraumteleskopeHerschel und Planck, die u. A. Beobachtungen im Infrarot-Bereich, also Wärme, machen sollten, in L2(Erde-Sonne). Dieser liegt von der Sonne aus gesehen 1,5 Mio Kilometer hinter der Erde auf einer Linie mit Erde, L1 und der Sonne.
Aktuell befindet sich dort Das Weltraumteleskop Gaia, das im Schatten der Erde Sterne zählt und katalogisiert.
Das astronomisch teure und viel verspätete Teleskop, James Webb, ist ebenfals in diesem schattigen Platz geparkt. Punkt
Das benötigt trotz Erdschatten noch einen Wärmeschutz, der größer als ein Tennis-Feld ist und Instumente müssen noch aktiv gekühlt werden, damit die Instrumente für das infrarote Licht, die Wärmestrahlung, empfindlich werden. Die Bahnen, welche diese L2-Missionen um diesen Punkt beschreiben, sind so gewählt, dass zumindest ihre Sonnensegel aus dem Erdschatten in die Sonne ragen, um Strom zu ernten.
Was verleiht aber nun diesem Punkt so interessante Eigenschaften?
Nach den Keplerschen Gesetzen und der Newtonschen Mechanik ist es so, dass ein Planet um so länger braucht, um seinen Stern zu umrunden, desto weiter er von ihm entfernt ist. Länger braucht er nicht nur deswegen, weil er mit zunehmender Entfernung eine weitere Strecke zurück legen muss, sondern weil er sich tatsächlich auch langsamer auf seiner Umlaufbahn bewegt. Das kann man leicht nachvollziehen, wenn man sich die Umlaufzeiten, die Entfernungen und die Bahnlängen unserer Planeten um die Sonne betrachtet. Dabei kann man ruhig mal kreisförmige Bahnen annehmen. Befindet sich unsere Sonde in L2, dann addieren sich die Massen von Sonne und Erde so günstig, dass die Sonde die selbe Umlaufgeschwindigkeit als die Erde um die Sonne hat. Die hätte sie auch dann, wenn die Erde nicht da wäre, und die Sonne selbst um das Gewicht der Erde schwerer wäre. Somit wird es möglich, dass die Sonde ohne viel zu tun, einfach mit der Erde mitreisen kann. Der Antrieb wird dann nur dazu benötigt, um sie in der Nähe des Punktes zu halten, denn durch äußere Einflüsse anderer Himmelskörper würde sie diesen mit der Zeit verlieren, und entweder zurück auf die Erde fallen, oder ins Weltall verschwinden.

Wo liegt die „Gegenerde“?

Im Fall Sonne-Erde liegt der dritte Lagrange-Punkt auf der uns gegenüberliegenden Seite der Sonne, knapp 190 km weiter weg von der Sonne als die Erde. In diesem Punkt bewirken die (gleichgerichteten) kombinierten Anziehungskräfte von Erde und Sonne wieder eine Umlaufdauer, die gleich der der Erde ist.
Schwurbler vermuten hier eine „Gegenerde“ die man nie zu sehen bekommt.
Meines Wissens kann man mit diesem Punkt in der Raumfahrt nicht viel anfangen, weil kein Funkkontakt zur Erde möglich wäre. Die risige Sonne mit ihrem eigenen Radio-Programm wäre immer störend im Wege.

Trojaner und blinde Passagiere

L4 und L5 solcher Systeme sind für Asteroiden-Forscher interessant.
Sie bilden jeweils ein Dreieck mit den beiden massereichen Körpern eines derartigen Systems. Beim System Erde-Sonne läge dann die Sonne auf einer, die Erde auf der zweiten und die Sonde auf der dritten Ecke dieses Dreiecks.
Im Falle Erde-Sonne liegt in Bewegungsrichtung der Erde um die Sonne gedacht, L4 60 Grad vor und L5 60 Grad hinter der Erde.Diese beiden Punkte sind sogar relativ stabil, weil die Sonde von den Anziehungskräften von Erde und Sonne quasi in der Zange gehalten wird.
Manchmal kommt es vor, dass sich ein kleiner Asteroid als blinder Passagier in L4 oder L5 eines solchen Systems parkt. Unsere Erde führt einen sog. Trojaner in einem dieser Punkte mit. Auch bei Jupitermonden hat man schon Trojaner gefunden. Die Raumsonde Lucy wird diese Trojaner des Jupiters besuchen.
Für die Sonnenforschung sind L4 und L5 auch spannend, denn von dort aus kann man die Sonne etwas seitlich beobachten. Damit könnte man dann einen Sonnensturm nicht nur frontal betrachten, sondern würde ihn vorbei ziehen sehen.

Zweites Beispiel – Das Erde-Mond-System

Selbstverständlich bildet auch die Erde, der Mond und alles, was dort hin möchte, so ein Drei-Körper-System. Das muss man wissen, und kann es auch geschickt nutzen, wenn wir als Menschheit wieder in Richtung Mond aufbrechen wollen.

Der Punkt ohne Rückkehr

Der Abstand zu L1(Erde-Mond) ist für Mondfahrer interessant. Er liegt etwa 326.000 Kilometer in Richtung Mond. Der Abstand Erde-Mond beträgt im Mittel 384.400 Kilometer. Da der Mond deutlich weniger Masse als die Erde besitzt, liegt dieser L1 natürlich näher bei ihm. Befindet man sich näher als dieser Abstand beim Mond, dann wird man von ihm angezogen. Das bedeutete für die Apollo-Missionen, dass es von da ab nicht mehr möglich war, ohne Triebwerk zur Erde zurück zu fallen (Point of no return).

Die dunkle Seite

L2(Erde-Mond) liegt auf der Rückseite des Mondes, die uns stets abgewandt ist.
Vom Erdmittelpunkt aus gemessen, liegt der Punkt 449 km entfernt knapp hinter dem Mond auf der Verbindungslinie Erde-Mond, auf welcher sich auch L1 dieses Systems befindet. Bis vor kurzem war dieser Punkt für die Raumfahrt nicht sehr spektakulär. Das änderte sich jedoch, seit China einen Rover und eine Sonde auf der Rückseite des Mondes landete.
Der Kommunikationssatellit von Chang’e-4 ist am L2-Punkt geparkt (genauer umkreist L2). Somit stellt er Funkkontakt vom Lander und Rover zur Erde her.

L3 Erde-Mond liegt auf der Verbindungslinie Erde-Mond, etwa 382,500 Kilometer hinter der Erde vom Mond aus betrachtet. Das wäre dann der Platz für einen Gegenmond, den es, wie wir wissen, nicht gibt. Ansonsten hätten wir den schon entdeckt.

Erde und Mond spannen mit der Sonde in L4 und L5 des Systems wieder Dreiecke auf. Vielleicht werden diese Punkte mal für die Kommunikation bei der Erforschung des Mondes wichtig. Trojaner befinden sich dort meines Wissens momentan keine.

Epilog

So, jetzt hoffe ich, dass ich das einigermaßen anschaulich auch ohne Bild beschreiben konnte.
Seit heute, 22.02.2024 besitze ich eine taktile Geburtstagskarte, die die Lagrange-Punkte darstellt. Dank an mein Team für diese Karte. Damit kann ich richtig viel anfangen. Sie hat mir gezeigt, dass ich mit meinen Vorstellungen richtig lag.

Ich kann nicht einfach mal etwas einfach so hin zeichnen. Allerdings tue ich das im Kopf trotzdem.
Ich stelle es mir ungefähr so vor:
Wenn ich über Gaia in L2 erzähle, dann ist es in meiner Vorstellung so, dass ich mit der Sonde fliege, fast, dass ich die Sonde bin.
Ich höre dann quasi hinter mir die Erde mit ihrem Schatten und schaue mit meinem Kopf dorthin, wo gaia hin sehen soll.
Sie beschreibt eine Lissajous-Figur um L2, wofür sie Treibstoff benötigt.
Das mit der Lissajous-Figur ist zwar etwas theoretischer, aber ich weiß, dass Gaia immer so fliegen muss, damit ihre Sonnenpaddel aus dem Erdschatten kommen, um Sonnenenergie zu tanken.
Gaja vollführt noch eine Drehung um sich selbst. Die lassen wir hier mal in der Vorstellung besser weg, um jegliche Raumkrankheit zu vermeiden.

Zehn Gründe, als blinder Mensch Astronomie zu treiben


Liebe Leserinnen und Leser,

einer meiner ersten Blogeinträge beschrieb, wie ich zur Astronomie kam.
Für all jene, die vielleicht ungläubig den Kopf schütteln, wenn sie hören, dass ein blinder Mensch sich für Astronomie begeistert und sogar noch Bücher darüber schreibt, habe ich mal kompakt zehn Gründe zusammengestellt, die damit aufräumen sollen, die da wären:

  1. Fragen, wie nach dem Anfang, dem Ende, dem Sinn des Universums gehen uns alle an.
    Das sind angeborene Fragen, mit denen sich jeder umtreibt. „Das ist halt so“, oder „Das hatt gott geschaffen“, reichen als Antwort nicht aus.
    Kannschon sein, dass Gott es gemacht hat. aber wie? Ich will ihm in die Karten schauen.
  2. Mittlerweile spielen sich die meisten Dinge in der Astronomie nicht visuell ab.
    Die Zeiten, wo Astronomen, wie Hubble sich im Winter die Augen an das Teleskop frieren ließen, sind längst vorbei. Teleskope werden über das Internet gesteuert. Ergebnisse sind häufig Tabellen über Strahlungsarten und oder Verteilung. Diese sind mit heutiger Technologie auch blinden Menschen zugänglich und können von uns Interpretiert und verstanden  werden.
    Das Mittel der wahl ist hier Sonifizierung. Das macht die NASA sehr fleißig und erfolgreich. Danke dafür.
  3. Die Sicht auf Sterne ist wegen der nächtlichen Lichtverschmutzung meist unmöglich.
    Im Vergleich, wieviele Sterne es alleine schon in unserer Milchstraße gibt, sind selbst bei bester Sicht die wenigen, die man mit den Augen sehen kann, vernachlässigbar. Dass ein klarer nächtlicher Sternenhimmel eine Augenweide darstellt, ist unbestritten, unter dem Strich aber relativ unwesentlich für die Sache an sich. Mir bereitet es große Freude, wenn ich mit sehenden Sternguckern nachts am Teleskop stehe. Ich liebe es, wenn sie mich in ihre Freude mit hinein nehmen und bin immer ganz aufgeregt, wenn z. B. ein besonders schwer zu schießendes Foto entstehen soll. Die Technik drum herum und, den Ehrgeiz, den manche dann zeigen und der damit verbundene Spieltrieb und die Ideen, sind einfach schön.
  4. Schwarze Löcher sind so schwarz, zumindest, wenn sie gerade hungern, dass man mit den
    besten Augen nichts damit anfangen könnte.
    Alles unsichtbare ist prädestiniert, auch von Blinden erobert zu werden.
    Und nicht nur das. Durch die Entdeckung der Gravitationswellen ist eine ganz neue Astronomie am entstehen. Das Beben der Raumzeit ist, und das wird auch von Astrophysikern so gesehen, eher mit Schall und Hören verbunden, als mit sonstigen elektromagnetischen Wellenphänomenen.
  5. Das Universum besteht nur zu vier Prozent aus dem, was für Augen so vermeindlich interessant ist.
    Tja, da kann man nichts machen. Stell Dir vor, Du sähest nur noch vier Prozent Deines Fernsehbildes. Vermutlich würdest Du dann dieses Abendvergnügen rasch aufgeben…
    Wir Astronomen sind da genügsamer…
  6. Dunkle Energie und dunkle Materie weigern sich strickt, gesehen zu werden.
    Hören lassen sie sich bisher zwar auch noch nicht, somit besteht hier Chancengleichheit, was die Suche danach  angeht.
  7. Mittels heutzutage verfügbarer Technologie können sehr viele Phänomene des Weltalls hörbar gemacht werden, z. B. die Radiosonne, die Interaktion des Sonnenwindes mit dem Magnetfeld der Erde, Polarlichter, Radiopulsare, die kosmische Hintergrundstrahlung und vieles mehr.
    Es gibt Sonifizierungen zu vielen Weltraum-Missionen, z. B. der Juno-Mission, von Cassini-Huygens, Voyager und mehr. Der aktuelle Rover auf dem Mars, ja, der mit dem Hubschrauber, hat sogar ein Mikrofon dabei, mit dessen Aufnahmen man ihn fahren, bzw. den Hubschrauber fliegen hört.
    Joachim-Ernst Behrendt trug in zahlreichen Sendungen sehr viele Materialien hierzu zusammen.
    Schon Johannes Kepler selbst sagte inhaltlich nicht wörtlich:
    Gäbe man dem Himmel Luft, sollte seine Musik erklingen.

    An dieser Stelle muss ich auch J. W. Goethe die ehre geben, der in Faust I im Prolog im Himmel, die Sonne tönen lässt.

    Die Idee, dass da etwas schwingt und klingt, geht bis auf die alten Pytagoräer zurück.

  8. Da blinde Menschen traditionell viel mit Radio zu tun haben, könnten alle Radiogeräusche aus dem All (Sonnenwind, Pulsare, Hintergrundstrahlung) sehr interessant sein. Vor allem unter älteren ist der Amateurfunk mit all seinen technischen Spielereien noch sehr aktuell. Ein Radioteleskop, um die Sonne belauschen zu können, zu konstruieren, ist heutzutage nicht mehr sehr aufwändig und kann mit Standartbauteilen aufgebaut werden.
    Ich kenne blinde Menschen, die dann und wann unter die Oberfläche des weißen Rauschens im Radio hören und dort Veränderungen finden.
    Das ist doch aufregend, dass ein nicht unerheblicher Teil dieses Rauschens aus dem Weltall stammt. Ich erinnere mich daran, wie ich früher, als es noch Mittelwelle, Langwelle und Kurzwelle gab, gerne dem Knacken der Gewitterblitze lauschte. Dann konnte man die Sekunden zählen, bis man den Donner hörte und wusste somit, wie weit das Gewitter entfernt war.
  9. Die Mathematik, die für Astronomie gebraucht wird, ist heutzutage auch Blinden zugänglich.
    Durch Computer, Internet und assistive Technologien können blinde prinzipiell fast uneingeschränkt an Wissenschaft und Forschung teilhaben, außer vielleicht manche gefährlichen chemischen Experimente, die nicht gehen, oder eine gefährliche Expedition auf einen Vulkan. Aber es spricht nichts dagegen, dass ein blinder Mensch bei der Auswertung der Daten mithilft. Vielleicht könnte ja ein geschultes Gehör eines Blinden z. B. Peaks in einem rauschenden Datensalat erhören.
    Ich bin der festen Überzeugung, dass hier längst noch nicht alle beruflichen Chancen und Möglichkeiten für uns  ausgeschöpft sind.
  10. Astronomie kann alle Sinne einschließlich der Seele ansprechen.
    Das tut sie besonders dann, wenn man auch noch die anderen Disziplinen ansieht, die von ihr berührt werden.
    Physik, Chemie, Technik, Philosophie, Religion, Musik und Geschichte sind Themen, die im höchsten Maße astronomischen Bezug haben.

    Sie fördert meiner Meinung nach ein ganzheitliches Denken, ist mit allen Sinnen erfahrbar und hält auch transzendente spirituelle Erfahrungen bereit.

Ein Hobby, das mehr Brücken zwischen Menschen mit und ohne Einschränkungen schlägt, kenne ich nicht. Es ist wirklich sehr inklusiv. Wer darüber mehr wissen möchte, findet vieleicht in „Blind zu den Sternen – mein Weg als Astronom“ eine schöne Wissensquelle. So viel Werbung muss erlaubt sein. Ja, so heißt mein Buch…

Wieso ist Ostern manchmal so früh und manchmal so spät?


Liebe Leserinnen und leser,
Ansatzweise dürften die meisten von euch wissen, wie sich das Osterfest terminiert. Lasst uns trotzdem mal kurz drauf schauen, wie der Kalender an dieser Stelle funktioniert.
Der Ostersonntag ist in der Regel der erste Sonntag nach dem ersten Vollmond nach dem astronomischen Frühlingsanfang, der Tag-Nacht-Gleiche.
Ostern ist das einzige Fest, das noch primär von astronomischen Gegebenheiten abhängt. Fasching, Muttertag, Chr. Himmelfahrt, Fronleichnam und  Pfingsten leiten sich davon ab.
Bis zum Konzil im Jahre 325 n. Chr. feierten verschiedene Gemeinden das Osterfest an unterschiedlichen Tagen. Dort wurde beschlossen, dass ein einheitlicher Termin gefunden werden muss, an dem alle Brüder und Schwestern der Christenheit gemeinsam das Osterfest, die Auferstehung Jesu, begehen und feiern sollen.
Es fällt ungefähr mit dem Jüdischen Pessach-Fest zusammen.
Ostersonntag ist meistens der Sonntag nach dem ersten Vollmond des astronomischen Frühlingsanfang. Somit kann die Auferstehung Jesu frühestens am 22.03. und spätestens am 26.04. stattfinden. Dieses Datum war Papst Gregor in seinem Kalender zu spät. Deshalb führte er eine Regel ein, die den 25.04. als spätesten Termin erlaubt.
In dem seltenen Fall, wird Ostern einfach eine Woche vorgezogen.

Im Volksmund wird als Frühlingsanfang oft der 21.03. angegeben. Das stimmt nicht ganz. Er kann zwischen dem 19.03. und dem 21.03. variieren, abhängig vom Abstand zum letzten Schaltjahr.
Kalendarisch wird aber immer der 21.03. als Rechengrundlage genommen, was manchmal, z. B. in 2019 zum sog. Osterparadox führt. Ich schrieb darüber in
Fällt Ostern 2019 aus?.

Vierzig Tage von Ostern zurück gerechnet, ergibt
Fasching, da von Aschermittwoch bis Ostersonntag gefastet wird. fünfzig Tage vorwärts ergibt Pfingstmontag.
Das sieht man noch im Italienischen Begriff „Pente Coste“.
Früher wurde zwischen Ostern und Pfingsten noch gefastet. Das bedeutete, dass die Sonntage, an denen nicht gefastet wurde, nicht mitgezählt wurden. So mit war man nach heutiger Rechnung mit den Sonntagen erst bei 43 gültigen Zähltagen. Da es sich um sieben nicht gezählte Sonntage handelt, ergänzen sich diese zu einer weiteren Woche. Das bedeutet, dass Pfingsten, als noch gefastet wurde, eine Kalenderwoche später war, als heute, wo auch die Sonntage gezählt werden und nicht mehr nach Ostern gefastet wird.

Es liegt also auf der Hand, dass die Kirche stets daran interessiert war, das Osterfest und die sich daraus ableitenden Festtage pünktlich zu begehen. Dazu gehört auch, dass man es kalendarisch zuverlässig und genau vorausberechnen kann.
Hier liegt aber genau der Hase im Pfeffer.
Einerseits orientiert sich der heute weltweit akzeptierte Gregorianische Kalender am Sonnenjahr mit seinen 365 Tagen, andererseits hängt Ostern vom ersten Frühlingsvollmond ab. Aus diesem Grunde müssen wir immer einen Mondkalender mit durch unseren Kalender laufen lassen.
Der Islam tut dies sehr konsequent. Deshalb läuft die Islamische Fastenzeit, der Ramadan stets durch das ganze Jahr hindurch. Mal ist er im Sommer, was den Muslimen besonders in heißen Ländern viel abverlangt, da man über Tag nichts trinken darf, mal ist er im Winter.
Genau diesen Effekt wollte man beispielsweise bei unserem Weihnachtsfest nicht haben, weshalb es auf ein Datum unabhängig vom Mond terminiert wurde. Somit rollt Heilig Abend nur durch die Wochentage.

Ostern läuft niemals durch das ganze Jahr, weil seine Berechnungsgrundlage der erste Frühlingsvollmond ist.
Genau hier ist Ostern gefangen. Das Fest hängt am Bendel des Frühlingsanfanges.

Um dieses Problem, der Berechnung des Ostertages zu lösen, gab der Mathematiker und Jesuitenpater Christophorus Clavius im 16. Jahrhundert eine Rechenvorschrift heraus, die allerdings noch sehr unhandlich war.
Der Mathematiker und Astronom Karl-Friedrich Gauß griff diese Rechenvorschrift auf und verfasste im Jahre 1800 eine vereinfachtere Lösung, um den Ostertermin zuverlässig im voraus bestimmen zu können. Es ist ein textlich verfasster Algorithmus und keine geschlossene Formel, wie z. B. R-Quadrat mal Pi ($R^2 \cdot \pi$) die Kreisfläche für einen vorgegebenen Radius R, berechnet.

Für heutige Computer gibt es diese Rechenvorschrift als Programm, so dass sie dieses „verdauen“ können.
Ich erspare uns jetzt, wie dieser Algorithmus genau funktioniert. In Wikipedia ist er schön anschaulich beschrieben.
Beschreibung der Osterformel
Hier nur einige Randbedingungen, die berüchsichtigt werden müssen, um zu veranschaulichen, dass die Sache nicht ganz trivial ist.

  • Ein Mondumlauf benötigt etwas mehr als 29 Tage. Dieser Fehler schaukelt sich auf, wenn man ihn vernachlässigt.
  • Wir haben Monate mit 28, 29, 30 und 31 Tagen. Vor allem das Schaltjahr muss berüchsichtigt werden.
  • Im Gregorianischen Kalender gibt es die Jahrhundert-Regel, so dass nicht alle vollen Hunderter, obwohl durch vier teilbar, Schaltjahre sind.
  • Alle 400 Jahre muss ein weiterer Schalttag eingefügt werden.

Vor Clavius und Gauss musste das Osterfest von Astronomen händisch mittels Tabellen berechnet werden. Das bedeutete, dass man von Mondphase zu Mondphase, von Jahr zu Jahr etc. schritt für schritt springen musste.
Ja, der schlaue Gauß. Diese sog. Osterformel, ist nur ein ganz kleiner Teil, seines Schaffens. Ich denke, er wird mal ein eigener Artikel werden.
Ich erinnere mich noch, dass wir diese Formel mal im Studium in einer Rechnerübung programmieren mussten. Keine Ahnung mehr, ob ich es damals schaffte, aber ich denke schon.

Jetzt wünsche ich euch allen ein frohes und erfülltes Osterfest.

Es grüßt euch ganz herzlich

Euer Blindnerd.

 

Gedenken an Stephen Hawking


seid herzlich gegrüßt,

Endlich ist er fertig, mein Artikel zum Gedenken an

Stephen Hawking.

 

 

Ein großer Astronom ist von uns gegangen. Jeder wird das vernommen haben, dass am 14.03.2018 der große Physiker, Stephen Hawking, verstarb.

Er wurde auf den Tag genau 300 Jahre nach Galileo Galilei geboren. Er bekleidete denselben Professorenstuhl, wie Isaac Newton.

Und sein Todestag fällt mit dem Geburtstag von Albert Einstein zusammen.

 

Für mich stellt sich jetzt als Blogger die Frage, was ich über ihn schreiben möchte, das nicht schon in den letzten Tagen geschrieben wurde.

Sein Lebenslauf und alles ist an anderen Stellen schön nachzulesen. Aus diesem Grunde habe ich mich entschlossen, ganz einfach darüber zu schreiben, wie ich ihn erlebt und wahrgenommen habe und welche astronomische Fragestellung mich bei ihm bis heute fasziniert.

Auf jeden Fall werde ich sicher nicht über seine Einschränkung berichten, denn damit würde ich einen der größten Physiker auf seine Behinderung reduzieren.

Über diese Reduktion, muss ich aber kurz schreiben.

Das erste Mal kam ich mit den Schriften Hawkings 1992 in Berührung. Damals hatte er gerade mit seinem Buch „Eine Kurze Geschichte der Zeit“ einen enormen Durchbruch. Es gab auch einen Kinofilm dazu.

 

Oft wurde ich von verschiedensten Personen gefragt, ob ich Stephen Hawking kenne. Und das war wirklich eine merkwürdige Erfahrung. Ich wurde weniger danach gefragt, weil mich interessieren könnte, was er schreibt, sondern eher, weil er eben diese schwere Einschränkung hatte.

Und das bildete ich mir nicht ein, denn die Frager waren erstaunt, dass ich ihn nicht kenne. Sie gingen davon aus, dass uns alleine schon verbinden sollte, dass wir beide eine Einschränkung haben. Das tut es nicht. Es kennen sich nicht alle Menschen mit Beeinträchtigung untereinander, und wir haben uns auch nicht alle zwangsläufig ganz lieb.

Was er zu tun fähig war, ist so grenzenlos außergewöhnlich, dass er für mich als Mensch mit Beeinträchtigung kein Vorbild sein kann. Das ist auch ohne, Behinderung für fast alle Menschen unerreichbar, was er leistete.

Außerdem sind funktionierende Gliedmaßen keine Grundvoraussetzung, ein guter Physiker zu sein.

Aber es stimmt schon. Wenn er mit seiner Computerstimme sprach, dann klang das schon irgendwie, wie ein Orakel, vor allem, weil Schwarze Löcher etc. für uns etwas ungreifbares vielleicht sogar etwas mysteriöses und jenseitiges sind.

Mit der Sprachausgabe, die er benutzte, Modell Dectalk, , habe ich früher auch gearbeitet. Die konnte man sogar singen lassen.

 

Wie auch immer. Jetzt würdigen wir sein Lebenswerk an einem Beispiel.

Wie gesagt, kam ich in den 1990er Jahren mit seinen Büchern in Kontakt. Es war gar nicht so einfach, sie zu lesen, weil sie noch nicht als Hörbücher verfügbar und die Scanner und Texterkennung auch noch nicht so gut waren.

Ich ging dennoch zur Stadtbücherei und lieh mir das Buch, „Eine Kurze Geschichte der Zeit“, aus. Mit meinen Mitstudenten machten wir eine Art Wettbewerb daraus, wer ehrlich mit Hand auf dem Herzen bis zu welcher Seite kam, bevor das Verständnis abbrach.

Ich meine mich zu erinnern, dass ich im guten Mittelfeld lag. Irgendwann musste ich schon deshalb aussteigen, weil meine Texterkennung mit den wenigen mathematischen Formeln überhaupt nichts anfangen wollte.

 

Sicher. Für Astronomie, Weltraumtechnik und alles, interessierte ich mich schon immer. Aber Hawking war auf jeden Fall ein Türöffner zu den Schwarzen Löchern und dem Urknall für mich, wie Rudolf Kippenhahn und Isaac Asimov ein Zugang zur Funktionsweise von Sternen und zu unserem Sonnensystem waren.

Es gab auch noch weitere Wegbegleiter für mich, die ich mir jetzt erspare, weil heute nur der eine gefeiert wird.

 

Die meisten von euch werden wissen, was ein schwarzes Loch ungefähr ist, weshalb ich mich hier kurzfassen kann.

Der Tod eines Sternes, dessen Verlauf und was er danach ist, hängt im wesentlichen von seiner Masse ab. Ich schrieb schon über die Möglichkeit, des Neutronensterns.

Sie wiegen wenige Sonnenmassen und sind aber so kompakt, dass sie nur vielleicht 15 km Durchmesser besitzen. Ihre Atome sind zerquetscht, so dass sie nur noch fast aus Neutronen bestehen.

Ein Fingerhut voll dieses Materials wiegt milliarden Tonnen.

Der Physiker Oppenheimer und andere stellten sich nun die Frage, was geschieht, wenn Sterne kolabieren, die noch deutlich schwerer sind. Er fand heraus, dass irgendwann der Druck auf das Neutroniun so hoch sein könnte, dass es der Gravitation auch nicht mehr Stand halten würde. Der Kollaps ginge dann weiter und weiter. Die Gravitation nähme immer mehr zu und der Sternrest wird immer kleiner, bis die Gravitation in einem unendlich kleinen Punkt vielleicht unendlich ist.

Dann ist das Schwarze Loch fertig.

 

Jeder Körper, der sich aus dem Gravitationsfeld eines Himmelsobjektes, z. B. Stern, Planet oder Mond bewegen möchte, braucht je nach Masse, des Himmelsobjektes eine Fluchtgeschwindigkeit.

Ich glaube, die eines Raumschiffs, das die Erde verlassen möchte, beträgt 11,2 km/s. Was langsamer ist, bleibt gefangen und schafft es besten Falls in eine stabile Umlaufbahn.

Denkt man sich jetzt immer mehr Gravitation, dann ist die Fluchtgeschwindigkeit irgendwann höher, als die Lichtgeschwindigkeit 300.000 km/s. Das bedeutet, dass in einem so schweren Gebilde, sogar das Licht gefangen bleibt.

Nochmal zur Erinnerung. Das Ding ist vielleicht nur wenige Sonnen schwer, aber es ist sehr klein.

So etwas nennt man dann ein Schwarzes loch, weil es nicht sichtbar ist. Es lässt kein Licht heraus. Es ist ein Loch in der Raumzeit. Es verrät sich nur indirekt, wenn z. B. es von Sternen umkreist wird, oder Materie, die sich aufheizt, in es hinein fällt.

Eigentlich ist das erbärmlich. Obwohl ein Schwarzes Loch ein so seltsames Objekt ist,

können wir, was wir besten Falles von ihm wissen, in drei schlichte Parameter fassen.

seine Masse, seine Drehung und seine Ladung, Und alles drei verrät es uns nur, wenn es gerade aktiv ist, oder von etwas umkreist wird, das sichtbar ist.
Wir wissen einfach nicht, wie es dort drinnen zugeht.

Irgendwann ist die Gravitation so hoch, dass die Einstein-Gleichungen nicht mehr funktionieren.

Diese Schwarzen löcher waren ein Hauptgegenstand der Arbeit von Stephen Hawking.

Lasst mich ein Thema von ihm herausgreifen, das ihn und seine Gegner mehr als vierzig Jahre beschäftigte, und von dem ich glaube, dass ich es einigermaßen erklären kann.

 

Das Informations-Paradochs

EineHauptfrage  von ihm war, was wohl mit der Information dessen geschieht, was in ein schwarzes Loch fällt, also hinter den Ereignishorizont, von dem es kein Zurück mehr gibt. Der Ereignishorizont ist keine Linie, wie zwischen Erde und Himmel, sondern eine Kugelsphäre, die das ganze  schwarze Loch umgibt. Was hier hinein fällt, kann nicht mehr zurück. Welchen Radius der Ereignishorizont eines schwarzen Loches besitzt, hängt von seiner Masse ab. Er wird Schwarzschild-Radius genannt und kann berechnet werden.

 

Mit Information ist hier gemeint, ob man etwas aus einem schwarzen loch theoretisch wieder retten könnte, oder nicht. Man kann sich das vorstellen, wie wenn man einen Würfelzucker in den Kaffee wirft. Der Zucker löst sich auf und vermischt sich gleichmäßig mit dem Kaffee. Dass wir den Zucker nicht mehr herausholen können, liegt nur daran, dass wir nicht wissen, wie es geht. Aber grundsätzlich ist der Zucker mit allem, was zu seiner Information gehört, Geschmack, Klebrigkeit, Farbe und chemie, noch da.

Das ist eine Grundfeste der Physik, der Termodynamik, dass Information niemals verloren gehen darf. Jede Mischung strebt dem maximalen Durcheinander, also der besten Durchdringung, entgegen.

Ein Maß für das Durcheinander in der Physik ist die Entropie.

 

Das ganze hat dann auch mit Temperatur zu tun. Schüttet man warmes und kaltes Wasser zusammen, dann durchdringt es sich so lange, bis alle Moleküle, die beider Wässer, dieselbe Temperatur haben.

Daraus folgt dann, dass, wo die Information absolut verloren geht, da gibt es dann auch keine Temperatur mehr. Das ist aber physikalisch unmöglich.

Stephen Hawking vertrat über Jahrzehnte die Meinung, dass schwarze Löcher mit dem es umgebenden Vakuum über virtuelle Teilchen interagieren können und langsam verdampfen (Hawkingstrahlung) würde, und dass die Information verloren ginge, weil diese Strahlung rein termischer Natur sei, und daher keine Information transportiere, die etwas über die Entstehungsgeschichte des Loches erzählen könnte. Würde die Strahlung die Information dessen, was dereinst hinein fiel, enthalten, dann liefe die Entstehungsgeschichte des Loches rückwärts ab.

Sein härtester Gegner dürfte der Physiker Leonard Susskind gewesen sein. Er entwickelte eine Theorie, die den Informationsgehalt von allem, was in das schwarze Loch fällt, an den Rand, den Ereignishorizont projeziert, ähnlich, wie ein Projektor ein Dia an eine Leinwand.

Er hat ein Buch über diesen Disput mit Hawking geschrieben. Außerdem war Hawking auch jemand, der gerne mal wettete. Es lief wohl eine Wette darüber, wer diesen „War of Black Wholes“ gewinnen würde.

2004 kapitulierte Hawking, indem er einräumte, dass Information vielleicht doch nicht verloren geht im schwarzen Loch.

Er lies seine damalige Zuhörerschaft, wenn mich nicht alles täuscht, mit einem „aber“ zurück, weil er eine Theorie mit Wurmlöchern und weißen Löchern in anderen Universen postulierte. Durch die Wurmlöcher diffundiert die Information des schwarzen Lochs und kommt am anderen Ende, in einem anderen Universum aus einem weißen Loch wieder zum Vorschein. Ob es weitere Universen gibt, ist zwar wahrscheinlich, aber durchaus nicht sicher. Das und die weißen Löcher lässt sich vermutlich nie oder nur schwer beweisen.

 

Ich hoffe, dass meine Ausführungen jetzt nicht zu populärwissenschaftlich formuliert waren, dass sie falsch sind.

Die Sprache, in der man sich normalerweise über derlei unterhält, heißt Mathematik, und die kann ich nicht.

Ich denke, dieses Beispiel ist eine schöne Würdigung seines Lebenswerkes und hoffe, dass ihr das auch so seht.

 

Bis zum nächsten Mal grüßt euch

euer Gerhard.

 

Zum Weltfrauentag, 08.03.2018- Große Frauen in Astronomie und Wissenschafft


Seid herzlich gegrüßt,

Morgen ist der 08.03., Welt-Frauentag. Was liegt näher, so einen Tag zu begehen, als dass ich mir Gedanken über große Frauen in Astronomie und Wissenschaft mache.

Bis heute sind Frauen in naturwissenschaftlich-technischen Berufen leider noch immer unterrepräsentiert. Die Statistiken sprechen hier eine sehr deutliche Sprache. Trotz Frauenbewegung, Emanzipation, Erziehungsurlaub auch für Männer, gesetzliche Gleichberechtigung und dafür aufgeschlossene Männern, ist es noch nicht gelungen, diesen Missstand in den Griff zu bekommen.

Dennoch hat es immer wieder Frauen gegeben, die trotz Benachteiligung, Unterdrückung, Bildungsverbot und Leben in einer streng patriarchaisch dominierten Gesellschaft, großartiges in Wissenschaft, z. B. der Astronomie, geleistet haben. Sie setzten sich in einer harten Männerwelt durch und waren vielleicht sogar öfter, als man denkt, die schlaueren Köpfe. Zumindest zeugen einige Dokumente davon, dass viele starke kluge Frauen die Fäden ihrer Professoren-Männer in Händen hielten…

Bis in biblische Zeiten hinein, kann man diese Phänomene beobachten. Somit scheint der Satz „Der Mann kann noch so viele Dinge bauen – Es steht und fällt ein Volk mit seinen Frauen“ mehr Wahrheitsgehalt zu haben, als manchen lieb ist.

So lasst uns den Weltfrauentag 2018 damit begehen, indem wir die Person und das Lebenswerk von Caroline Lucretia Herschel würdigen. Die Daten zu diesem Artikel habe ich von Wikipedia und dem Buch Die Planeten von  Dava Sobel und Thorsten Schmidt, ISBN: 9783827002679.

 

Caroline Lucretia Herschel wurde am 16. März 1750 in Hannover geboren.
und verstarb am 9. Januar 1848 ebenda.
Sie war eine deutsche Astronomin.
Zu Beginn ihrer wissenschaftlichen Karriere unterstützte sie ihren Bruder Wilhelm Herschel bei seinen Forschungen, glänzte aber bald durch ihre eigenen astronomischen Erfolge. Ihre wichtigsten Beiträge zur Astronomie waren die Entdeckung mehrerer Kometen, die Berechnung genauer astronomischer Reduktionen und der Zonenkatalog hunderter Sternhaufen und Nebel.

Sie wuchs mit vier Brüdern und einer Schwester, die allerdings schon als Kind verstarb, im Hause des Militärmusikers Isaak Herschel und seiner Frau Anna Ilse Herschel in Hannover auf. Als Musiker wollte der Vater seinen Kindern eine musikalische Ausbildung ermöglichen. Bei den Herschels wurde nicht nur viel musiziert, sondern auch philosophiert und Astronomie getrieben. Neben Wilhelm war auch ihr Bruder Alexander als Musiker und Astronom tätig.

Caroline schrieb darüber:
„Mein Vater war ein großer Bewunderer der Astronomie und besaß einige Kenntnisse in der Wissenschaft. Ich erinnere mich, dass er mich in einer kalten Nacht auf die Straße führte, um mich mit einigen unserer schönsten Sternbilder bekannt zu machen, nachdem wir vorher einen Kometen, der eben sichtbar war, beobachtet hatten.“

Man stelle sich vor. Da geht ein Vater mit seiner Tochter einfach vor die Tür, um Sterne zu schauen. Undenkbar, bei unseren heute so lichtverschmutzten Städten.

 

Sie hatte, was für ein Mädchen durchaus nicht üblich war, die möglichkeit, gemeinsam mit ihren Brüdern die Garnisonsschule täglich für einige Stunden zu besuchen.

Viele Stunden des Tages verbrachte sie jedoch gegen ihren Willen mit Stricken, Sticken und allerlei Haushaltstätigkeiten. Die Mutter meinte, dass sie ein „roher Klotz sein und bleiben sollte, allerdings ein nützlicher“.
Sie wollte ein Leben führen, das auch geistige Anforderungen bereit hielt. Daher folgte sie dem Wunsch des Vaters, und ließ sich zur Konzertsängerin ausbilden.

1772 folgte sie als 22-Jährige ihrem zwölf Jahre älteren Bruder Friedrich Wilhelm Herschel nach England, der als Organist und Konzertleiter im vornehmen Bath tätig war. Er brauchte sie als Haushälterin, wollte ihr aber auch Gelegenheit geben, sich musikalisch weiterzubilden und als Solistin in seinen Konzerten mitzuwirken. Schon bald stieg sie zur ersten Sängerin bei den von ihrem Bruder aufgeführten Oratorien auf, erreichte dadurch einen gewissen Ruf und übernahm Leitungsfunktionen im Chor.

 

Caroline widmete sich nun neben dem Haushalt und ihren Auftritten auch der Astronomie. Zum Beispiel half sie Wilhelm beim Anfertigen von Spiegelteleskopen. Ihre Hauptaufgabe bestand darin, die Spiegel zu polieren und zu schleifen. Bei dieser Tätigkeit kam es auf absolute Genauigkeit an. Daneben befasste sie sich mit astronomischer Theorie. Sie erlernte die mathematischen Formeln für Berechnungen und Reduktionen als Grundlage für das Beobachten und Durchmustern des Himmels.

Im Jahr 1781 entdeckte Wilhelm den Planeten Uranus, was ihn über die Landesgrenzen hinaus bekannt machte. Neben zahlreichen Ehrungen bekam er eine Stelle in der Stadt Slough als Astronom von König Georg III. angeboten, die er dankbar annahm. Nun konnte er sich ganz seiner wahren Leidenschaft widmen.

Sie musste sich entscheiden, als Sängerin in Bath ihre erfolgreiche Karriere fortzusetzen oder ihrem Bruder als wissenschaftliche Assistentin zu folgen. Sie entschied sich für letzteres und bekam vom Hof eine Anstellung als Gehilfin ihres Bruders mit einem Gehalt von 50 Pfund im Jahr. Nun begann Caroline mit der eigenen Erforschung des Sternenhimmels. Sie widmete sich mit einem kleinen Spiegelteleskop der Kometensuche. Dabei entdeckte sie 1783 drei bemerkenswerte Nebel und zwischen 1786 und 1797 acht Kometen, darunter den Enckeschen Kometen.

Nächte lang verbrachten die beiden am Teleskop, wo sie die Sternpositionen notierte,
die er ihr vom anderen Ende des von ihnen selbst gebauten riesigen Fernrohrs zurief, wertete die nächtlichen Aufzeichnungen aus und rechnete sie nach, schrieb Abhandlungen für die Philosophical Transactions, entdeckte vierzehn Nebel, berechnete Hunderte von ihnen und begann einen Katalog für Sternhaufen und Nebelflecke, die heute Deep-Sky-Objekte genannt werden, anzufertigen. Des Weiteren verfasste sie einen Ergänzungskatalog zu Flamsteeds Sternenatlas, der 561 Sterne umfasste, sowie ein Gesamtregister dazu.
Für diese Arbeit wurde ihr allerhöchste Anerkennung zuteil, unter anderem von Carl Friedrich Gauß und Johann Franz Encke. Trotzdem blieb sie die bescheidene Frau, die sie immer gewesen war. Ihre Biographin Renate Feyl bemerkt dazu:
„Bis an das Ende ihres Lebens versucht sie jeglichen Hinweis auf eine eigene Leistung lediglich als das Verdienst ihres berühmten Bruders herauszustellen. Sie wagt zu wissen, will aber dieses Wagnis nicht öffentlich eingestehen. Immer wieder betont sie, wie nichtsnutzig, wie unfähig, wie untauglich sie sei. Dies ist ihre lebenslängliche Demutsgeste und Entschuldigung dafür, dass sie sich erkühnt, leise, aber nachhaltig auf ihre Weise zu nehmen, was einem menschlichen Wesen zusteht: das Recht auf Erkenntnis.“
1822 starb ihr geliebter Bruder Wilhelm. Nun hielt sie nichts mehr in England. Wenige Wochen nach seinem Tod zog sie wieder in ihre Heimatstadt Hannover, die sie fast fünfzig Jahre zuvor als junge Frau verlassen hatte. Hier setzte sie ihre astronomischen Studien fort und ordnete die Aufzeichnungen, welche sie beide anfertigten und die Hinterlassenschafft ihres Bruders.

 

So ermöglichte sie auch ihrem Neffen John Herschel, die Arbeit seines Vaters systematisch fortzusetzen und auf den südlichen Sternenhimmel auszudehnen.

Die bedeutendsten Gelehrten suchten sie in ihrem einfachen Haus in der Marktstraße auf, um sie ihrer Gunst und Wertschätzung zu versichern. Selbst zum königlichen Hof hatte sie Kontakt. Zahlreiche Auszeichnungen wurden ihr verliehen – 1828 unter anderem die Goldmedaille der Royal Astronomical Society, zu deren Ehrenmitglied sie 1835 ernannt wurde. Sie war die erste Frau, der Anerkennungen dieser Art zuteilwurden. Anlass dazu war ihr sogenannter Zonenkatalog, den sie zum Andenken an ihren Bruder erstellt hatte. Er enthielt die reduzierten Beobachtungen sämtlicher von Wilhelm Herschel entdeckten Nebel und Sternhaufen. 1838 ernannte die Königliche Irische Akademie der Wissenschaften in Dublin die 88-jährige Caroline Herschel zu ihrem Mitglied. 1846 erhielt sie im Alter von 96 Jahren im Auftrag des Königs von Preußen die goldene Medaille der Preußischen Akademie der Wissenschaften.
Noch an ihrem 97. Geburtstag wurde sie vom Kronprinzenpaar empfangen, unterhielt sich einige Stunden lebhaft mit ihnen und sang ihnen abschließend ein Lied vor, das ihr Bruder siebzig Jahre zuvor komponiert hatte. Caroline Herschel starb am 9. Januar 1848. Sie erreichte das hohe Alter von 97 Jahren und wurde auf dem Gartenfriedhof in Hannover beerdigt, wo sich ihr Grab auch jetzt noch befindet.

 

So viele Dinge wurden nach ihr benannt, dass der Name jedem Menschen irgendwann mal begegnet ist, bzw. wird.
Der Komet 35P/Herschel-Rigollet, der Mondkrater C. Herschel im Sinus Iridum (Regenbogenbucht) und der Planetoid (281) Lucretia, aus dem Sonnensystem.
In Braunschweig, Bremen, Darmstadt, Lübeck, München, Ottobrunn, Peine und Wennigsen sind Straßen, nach ihr benannt.

in Berlin-Friedrichshain der Caroline-Herschel-Platz, In Hannover die Volkssternwarte Hannover e.V. Geschwister Herschel, benannt.

Schulen, Schwimmbäder und andere Einrichtungen, tragen ihren Namen.

Sogar in die bildende Kunst des 20. Jahrhunderts fand sie Eingang. Die feministische Künstlerin Judy Chicago widmete ihr in ihrer Arbeit The Dinner Party eines der 39 Gedecke am Tisch.
Inhaltlich zurecht, trägt Ein Programm der Gottfried Wilhelm Leibniz Universität Hannover zur Förderung des weiblichen wissenschaftlichen Nachwuchses, ihren Namen.

Google veröffentlichte anlässlich ihres 266. Geburtstages am 16. März 2016 ein Google Doodle.
Sir John Franklin benannte eine Insel in der Nordwestpassage nach den Geschwistern Herschel.

Nicht zuletzt ist 2012 eine Mission zuende gegangen, deren eine Raumsonde Herschel und die andere nach Max Plank benannt wurde.

Nun hoffe ich, dass euch diese schöne Geschichte einer großartigen Frau und deren Lebenswerk, etwas gefallen hat.
Bleibt weiterhin astronomisch.

Bis zum nächsten mal,

Euer Gerhard.

Welcher Frühlingsbeginn ist der richtige?


Meine lieben,

Nach dem letzten schwer verdaulichen Artikel über das Vakuum und die Quantenphysik, möchte ich mich mit einem bodenständigen und greifbaren thema wieder bei euch gut stellen…

wer am 01.03., eine Zeitung, fast egal, welche aufschlägt, trifft sicher irgendwo auf den Hinweis, dass meteorologischer Frühlingsanfang sei. Schon immer wollte ich mal wissen, was das überhaupt sein soll.
Für mich war bis da hin nur der astronomische Frühlingsanfang die ganze Wahrheit.
Meteorologen teilen das Jahr in vier genau definierte Quartale ein:

  1. Frühling: 1. März – 31. Mai
  2. Sommer: 1. Juni – 31. August
  3. Herbst: 1. September – 30. November
  4. Winter: 1. Dezember – 28./29. Februar

Diese Einteilung ist eine Vereinfachung für Wetteraufzeichnungen und Klimadaten, da sie auf vollen Monaten basiert und sich besser für statistische Vergleiche eignet.

Der Astronomische Frühlingsanfang findet stets am 20.03. oder 21.03. eines jeden Jahres statt. Das hängt davon ab, wo wir gerade im Schaltzyklus stecken.
Diesen Frühlingsanfang bezeichnet man auch als Tag-Nacht-Gleiche. Der Tag ist ebenso lang, wie die Nacht. Das hat mit der Neigung der Erdachse zu tun. Von da an sind dann die Tage bis zur Sommersonnenwende im Juni stets länger, als die Nächte. Das kehrt sich dann bis zum Gegenstück im Herbst, der anderen Tag-Nacht-Gleiche wieder um. Von da an sind dann bis zum nächsten Frühlingsanfang, dem Astronomischen natürlich, die Tage kürzer, als die Nächte. Dazwischen liegt die Wintersonnenwende mit dem kürzesten Tag. So definiert man zuverlässig Jahreszeiten… Es gibt auch noch eine dritte Art des Frühlingsanfangs. Der nennt sich phäntologischer Frühlingsbegin. Er definiert den Frühling an dem, wie weit sich bestimmte Pflanzen entwickelt haben.
Es gibt sog. Anzeigerpflanzen, z. B. die Schneeglöckchen oder gar die Apfelblühte.
Dieser Frühlingsbeginn mag für Biologen interessant sein, ist aber für Kalender eher unpraktisch, weil er von der Witterung und dem jeweiligen Standort abhängt, und sich daher nicht auf ein Datum legen lässt.
Wie auch immer.
Lasst uns einfach die Tatsache genießen, dass die Tage bereits wieder länger werden, und der für mich einzig wahre Frühlingsanfang nicht mehr fern ist.
Bis zum nächsten mal
euer Gerhard.

Die Leere füllt sich wieder – Das Vakuum, Teil II


Liebe Leserinnen und Leser,

sowohl hier, als auch in meiner historischen Astro-Mailingliste, schrieb ich über das, woraus das Universum im wesentlichen besteht, dem Vakuum.

Wir streiften die alten Griechen, z. B. Demokrit, der das Vakuum für seine Atom-Theorie brauchte, Aristoteles, der ein Vakuum ablehnte, erlebten den Niedergang des Gedankens, es könne einen Äther geben, der den Raum erfüllt, sprachen davon, dass im Vakuum alle Gegenstände mit gleicher Geschwindigkeit fallen und erfuhren, dass sich das Licht unabhängig der Richtung mit konstanter Geschwindigkeit bewegt.

Kurz gesagt. Das Vakuum wurde in diesem Artikel, der geschichtlich ungefähr einen Zeitraum von 2400 Jahren abdeckt, immer leerer.

Heute wird es ziemlich abstrus,denn das Vakuum wurde ab dem 19. Jahrhundert durch die Quantenphysik wieder voller. Wer zur Wiederholung den ersten Teil meiner Abhandlungen über das Vakuum nochmal lesen möchte, findet den Text auf https://blindnerd.wordpress.com.

Und es geht los:

Schuld daran, dass sich das Vakuum Anfang des 20 Jahrhunderts langsam wieder zu füllen begann, war die Quantentheorie. Mit ihr können Phänomene beschrieben werden, z. B. das spontane Entstehen und Vergehen von Teilchen, die man sich ansonsten nicht erklären könnte.

Schon sehr bald, wurde diese Theorie auf das Vakuum angewendet.

In den 30er und 40er Jahren des 20. Jahrhundert arbeiteten Wissenschafftler, wie Richard Feynman ein Konzept eines dynamischen Vakuums aus.

Diesem werden wir uns langsam nähern,

denn es könnte etwas verwirrend sein. Aber bitte, bleibt bei mir und lasst mich nicht alleine mit diesem komplizierten Thema.

Ein Grundpfeiler dieses Konzeptes ist die Annahme, dass das Vakuum obwohl es scheinbar keine Materie enthält, voller Energie und verborgener Aktivität ist.

im Grunde genommen, ist das moderne Bild vom Vakuum ein Kompromiss zwischen der Auffassung des
Demokrit und der des Aristoteles:

Der erste hatte insofern recht, als die
Welt aus Atomen und dem Leeren besteht, und der zweite insofern, als
er behauptete, daß es keinen wirklich und absolut leeren Raum gäbe.
Die beiden neuen Eigenschaften, mit denen die Quantenmechanik
das Vakuum ausstattete, sind Vakuumfluktuationen und Vakuumpolarisation. Beide Termini machen deutlich, dass das dynamische Vakuum etwas Neues ist: Wirkliches Nichts kann weder fluktuieren noch
Polarität zeigen. Beide Phänomene beruhen letztlich auf der Unschärferelation, dem zentralen Dogma der Quantenmechanik, nach dem es unmöglich ist, gleichzeitig und mit Gewissheit den Ort und die Geschwindigkeit eines Teilchens zu bestimmen.
Eine Folge der Unschärferelation ist die sogenannte Nullpunktenergie mechanischer Systeme. Wenn sich beispielsweise zwei Atome so zusammenfügen, dass sie ein Molekül bilden, welches einer straff gespannten Feder mit einem Gewicht an jedem Ende ähnelt, werden sie
von sich aus entlang ihrer gemeinsamen Achse schwingen. Die Schwingung lässt sich nie ganz eliminieren. Stets bleibt ein letztes nicht zu unterdrückendes Zittern, die sogenannte Nullpunktbewegung, ein Beben

Nach der Theorie der Elektrizität und des Elektromagnetismus, ist Licht nichts anderes, als schwingende magnetische Felder. Diese unterliegen dann natürlich auch diesem Nullpunkt-Zittern und werden davon beeinflusst.

Der Forscher, dessen Name an dieser Stelle genannt werden muss, ist auf jeden Fall james Clerk Maxwell, der diese Theorie im 19. Jahrhundert wesentlich entwickelte.

Die Quantentheorie besagt also, dass es nirgends, noch nicht einmal in einem
vollständig dunklen Vakuum, eine gänzliche Abwesenheit des elektromagnetischen Feldes gibt. Stets finden sich in einem solchen Raum zufällige elektromagnetische Felder, die schwach fluktuieren, und jede Fluktuation trägt ihre eigene Nullpunktenergie.

Das nächste seltsame Ding, das die Quantentheorie voraussagt, ist die Vakuumpolarisation.

Es kommt gelegentlich vor, das so eine elektromagnetische Fluktuation über genügend Energie verfügt, um spontan ein Teilchenpaar auszubilden. Ohne eine sonstige Außenwirkung verwandelt sich somit Energie in Masse, genauer gesagt in ein Elektron und sein Gegenteil, ein Positron. Der Prozess kann auch umgekehrt ablaufen. Dann werden die beiden kleinen Massen wieder zur Fluktuationsenergie. Diese Tatsache, dass sich Energie in Masse und umgekehrt verwandeln können, ist die Grundlage von Einsteins Relativitätstheorie. Die Formel E=MC^2 hat sicher jeder schon mal gehört.

Ist in der Nähe des Entstehungsortes eines Elektron-Positron-Paares zufälligerweise eine positive Ladung, dann wird das negativ geladene Elektron zu ihr hin gezogen und das Positron abgestoßen. Das Paar richtet sich ähnlich, wie eine Kompassnadel aus. Somit wird das Vakuum vorübergehend polarisiert.

Das dynamische Vakuum ist wie ein stiller See in einer Sommernacht. Seine Oberfläche wellt sich unter dem Einfluß schwacher Fluktuationen, während überall Elektron-Positron-Paare aufleuchten und
verlöschen wie Glühwürmchen. Der Ort ist lebendiger und freundlicher als die lebensfeindliche Leere des Demokrit und der eisige Äther des Aristoteles. Seine ruhelose Aktivität ist höchst faszinierend für Physiker und verführt zu Spekulationen über seine Beschaffenheit und sogar seinen potentiellen Nutzen. Als theoretisches Konzept ist das dynamische Vakuum sehr interessant, doch ob es physikalisch gültig ist, ließ
sich nur im Labor entscheiden.

 

Die experimentelle Erforschung des Vakuums lässt sich in drei Phasen gliedern.

Als erstes stellten Theoretiker wie Richard Feynman, als sie aus den geheimen Bombenlaboren
des Zweiten Weltkriegs zurückkehrten, um ihre Arbeit in der Grundlagenforschung fortzusetzen, erfreut fest, dass sich das mikroskopische Vakuum im Innern des Atoms bei Experimenten als so dynamisch erwies, wie sie angenommen hatten. Nur ein paar Monate später entdeckte ein holländischer Physiker, der in der Industrie tätig war, quantenmechanische Effekte im gewöhnlichen makroskopischen Vakuum eines leeren Gefäßes. In jüngster Zeit hat schließlich die experimentelle Forschung ans Licht gebracht,
wie das dynamische Vakuum mit einzelnen Atomen wechselwirkt. Das
Nichts bildet eine unteilbare Einheit mit der Materie.

 

Der zweite Akt des Dramas, das vom dynamischen Vakuum handelt, befasst sich mit der Frage,
wie sich elektrisch neutrale Materieteilchen, die in einer Flüssigkeit schweben, gegenseitig beeinflussen.
Mit Hilfe der Quantentheorie und der bekannten Gesetze des Elektromagnetismus errechnete der Forscher Hendrik Casimir sorgfältig den mathematischen Ausdruck für die Anziehungskraft zwischen zwei neutralen Atomen –
eine sehr schwache Kraft, die das Gesamtergebnis der gegenseitigen
Abstoßungen und Anziehungen ihrer elektrisch geladenen Bestandteile, ist.

Die Konsequenz dieser Kraft ist, dass sich zwei sehr große parallel zueinander aufgestellten Metallplatten ganz schwach anziehen.

 

Ende des letzten Jahrhunderts, hat sich der Vorhang zum dritten Akt gehoben.
Die Geschichte des Vakuums ist hiermit in eine neue Phase eingetreten. Die Entwicklungen in der Vergangenheit, betrafen das Verhalten einzelner Atome in einem Vakuum zwischen Platten und verbanden
damit Eigenschaften des mikroskopischen Vakuums von Atomen mit denen des makroskopischen

 

Hier noch etwas zum praktischen Nutzen des gesagten:

Das Vakuum beeinflußt die Strahlungsemission und Absorption von Atomen. Ein Elektron, das einen bestimmten Energiebetrag absorbiert hat, weil es Wärme, Licht oder einem elektrischen
Funken ausgesetzt war, fällt bald wieder in seine ursprüngliche niedrigere Position auf der Energietreppe zurück. Die damit verbundene Licht- oder Radiowellenstrahlung nennt man spontane Emission und
hielt sie für eine Grundeigenschaft des Atoms,

Doch wo bleibt die von einem Atom emittierte Strahlung? Offensichtlich entweicht sie in das umgebende Vakuum, es sei denn, dieses Vakuum wäre nicht in der Lage, sie aufzunehmen.

Sperrt man ein Vakuum in einen Raum ein, der zu einer emitierten Welle passt, dann kann das Vakuum die Energie aufnehmen. Wie das genau funktioniert, führt aber hier zu weit.

Auf jeden Fall ist dies der springende Punkt bei der technischen Nutzung des dynamischen Vakuums. Die spontane Emission ist keine intrinsische Eigenschaft eines isolierten Atoms, sondern resultiert aus der Wechselwirkung zwischen dem Atom und dem Vakuum.

der Tatsache, dass sich das Verhalten des Vakuums durch seine Geometrie verändern lässt, verdanken wir beispielsweise hoch präzise Laser.

So, ich denke, jetzt habe ich genügend Verwirrung gestiftet. Wir haben die Materie wirklich nur angekratzt. Aber, wenn man viel tiefer hinein geht, benötigt man Mathematik. Dann fängt’s rasch an, weh zu tun…

Ich hoffe natürlich, dass dieses etwas verwirrende Thema, doch auch bei dem ein oder anderen Leser-in, etwas Anklang gefunden hat. Ich meine, für Verblüffung reicht es auf jeden Fall.

Es grüßt euch ganz herzlich bis zum nächsten Mal

Euer Gerhard.

 

Sonnen- und Mondfinsternisse 2018


Liebe Leserinnen und Leser,

 

aus aktuellem Anlass, kann ich mit dem Blog schlecht bis Sonntag warten.

heute Abend, 15.02.2018,  findet zwischen ungefähr 20:00 Uhr und 0:00 Uhr eine partielle Sonnenfinsternis in der Antarktis statt. Die Sonnenscheibe wird während der maximalen Bedeckung zu ungefähr 60 % unter der Mondscheibe verschwinden.

Ihr wundert euch jetzt vielleicht, dass das Ereignis Stunden dauert. Meist wird, zumindest bei einer totalen Finsternis nur die eigentliche Totalität betrachtet. Das sind dann nur wenige Minuten. Das ganze beginnt aber schon viel früher. Von links schiebt sich die Mondscheibe langsam über die Sonne und gibt sie dann nach der Totalen Bedeckung langsam wieder frei.Wie gesagt. Das heute ist keine totale Sofi, sondern nur eine partielle.

Die Forscher auf der Neumayer-III-Station können das beobachten. Immerhin beginnt die Wahrnehmung der Verdunkelung ungefähr bei einer Bedeckung von 50 %.

Vielleicht sehen es auch noch einige wenige Menschen in Chile oder Uruguay. Möglicherweise wundern sich auch noch die Pinguine darüber, Deren Augen sind besser an die gleißende Helle von Sonne, Schnee und Eis adaptiert, so dass sie eventuell ohne Schutzfolie hineinsehen könnten.

Die Sonne geht sogar noch leicht verfinstert unter.

Ansonsten brauchen keine Lehrer Schüler einsperren, oder gar vor giftigen Strahlen schützen, wie das bei der Sonnenfinsternis vom 20.03.2015 leider geschehen ist. Diese war in Norddeutschland zu über 80 % bedeckung sichtbar. Bei uns hier in Süddeutschland immerhin noch zu um 60 %. Ich tat damals meinen Unmut darüber kund, dass Kindern dieses Schauspiel vorenthalten wurde.Es wurde auch auf einem Workshop der Deutschen Astronomischen Gesellschaft, wo ich Mitglied bin, diskutiert.

 

Jetzt aber zurück nach 2018.

Ihr erinnert euch. Der zweite, blaue Supervollmond im Januar, war eine Mondfinsternis, von der wir aber leider nichts hatten, weil es bei uns gerade Mittag war.

Der Vollmond (Ostervollmond am Ostersamstag, 31.03. wird auch ein Blauer Mond sein, aber keine Mofi.

Und das ist noch längst nicht alles. Am Freitag, den 13. Juli werden wir wieder eine partielle Sonnenfinsternis haben. Auch diese wird weitgehend ins Wasser fallen, zwischen Australien und die Antarktis.

Genau an dem Tag, wo ich in Urlaub nach Österreich fahren werde, dem 27.07. werden wir unsere diesjährige Mondfinsternis haben. Die wird gut beobachtbar sein. Darüber schreibe ich aber extra.

Am 11.08. findet eine partielle Sonnenfinsternis über der Arktis und Nordeuropa statt. Wir werden viel davon sehen.

Also für Finsternissüchtige, auch Eclipse Chasers genannt, ist das kein gutes Jahr. Zum einen finden die Sofis dort statt, wo man schlecht bis gar nicht hinkommen kann, und zum anderen sind sie dann für denjenigen, der alle Strapazen und Mühen auf sich nimmt, um zur Stelle zu sein, nicht mal total.

Das bedeutet, man wird keine Korona, keine Perlenschnur, keine Protuberanzen und auch keine Sterne am Tageshimmel sehen.

 

Apropos 11. August und Finsternis. Klingelt es da bei jemandem?

Am 11.08.1999 hatten wir eine in Deutschland gut sichtbare totale Sonnenfinsternis. Die nächste wird erst wieder 2081 zu sehen sein. Zu weit weg für mich. Ich muss Glück haben, wenn ich den Halleyschen Kometen nochmal erleben darf.

Und so viel Werbung muss erlaubt sein:

Schön nachzulesen ist sowohl diese Finsternis vom 11.08.1999, als auch der Halleysche Komet (Giotto-Mission 1986) in „Blind zu den Sternen“ von mir.

Mit seinem Buch „Schwarze Sonne, roter Mond“ bereitete Prof. Dr. Rudolf Kippenhahn, mittlerweile 92 Jahre alt, uns hervorragend auf dieses Ereignis vor.

 

Dann hoffen wir mal, dass die Seeleute, die sich heute Abend um das Kap Hoorn herum befinden, sich nicht zu sehr mit dem Wetter herumplagen müssen. Die alten Segler, hätten mit dem Ereignis vermutlich etwas abergläubisches verbunden.

Und euch wünsche ich, dass euch der Beitrag gefallen hat.

Es grüßt euch

euer Gerhard.