Wie schnell sind wir?


Meine lieben,
schon länger hatte ich mit Freunden eine Diskussion darüber, wie schnell wir uns eigentlich durch den Weltall bewegen.
Gerne teile ich meine Gedanken darüber mit euch und wünsche viel Freude beim lesen.
Damit die Mail nicht zu lange wird, befassen wir uns heute mit dem Phänomen der Geschwindigkeit allgemein und werden dann in einer weiteren Folge der Frage nachgehen, wie man Geschwindigkeiten messen kann.
Tja, wie schnell sind wir?

Diese Frage ist gar nicht so einfach zu beantworten.
Geschwindigkeit ist irgendwie relativ. Man kann nur eine Geschwindigkeit relativ zu etwas anderem haben.
Wenn wir schreiben, dass wir 100 km/H schnell auf der Autobahn fahren, dann gehen wir stillschweigend davon aus, dass die Erde ruht.
Geschwindigkeit gibt es nur dort, wo wir uns auf ein anderes System, z. B. auf die ruhende Straße, die Bahngleise etc. beziehen können.
Haben wir kein weiteres System, z. B. unsere Sonne, die uns Tag und Nacht, also die Erddrehung anzeigt, können wir nicht sagen, wie schnell das von uns aus gesehene ruhende System selbst ist.
Tatsächlich scheint es Ruhe im engeren Sinne in unserem Universum überhaupt nicht zu geben.
Wir wissen nicht, mit welcher Geschwindigkeit sich unser Universum bewegt, weil wir kein anderes haben, mit welchem wir vergleichen könnten.

Diese Bewegung, das sich umeinander drehen, das Fallen etc. wird metaphysisch oft mit dem kosmischen Tanz verglichen.

Aber alles der Reihe nach.

Nun liegt der größte Teil des Äquators im Meer, aber bei Schiffen, deren Geschwindigkeiten in Knoten angegeben wurden oder noch werden, was ich momentan nicht genau weiß, denken wir auch das Meer wäre in Ruhe.
Welch eine Wohltat für all jene, die gerne mal seekrank werden, zu denen ich leider auch gehöre.
Warum spreche ich vom Äquator?

Die Erde dreht sich in 24 Stunden einmal um sich selbst.
Das bedeutet, dass wir diese Drehung mitmachen müssen, ob wir wollen, oder nicht.
Wer am Äquator wohnt, bewegt sich am schnellsten, nämlich ungefähr 40.000 (vierzigtausend) Kilometer in 24 Stunden = ein Tag.
Die 40.000 Km sind der Erdumfang.

Wer am geographischen, nicht am magnetischen Nordpol oder Südpol wohnt, dreht sich um sich selbst, ohne dass ihm schwindelig wird.
Physikalisch gesehen, gibt es an den Achsenpunkten einer sich drehenden Kugel überhaupt keine Geschwindigkeit auf einem unendlich kleinen Punkt.
Da aber alles eine gewisse Ausdehnung hat…

Die Erde dreht sich links herum von West nach Ost.
Unser gedachter Äquatorianer bewegt sich somit immer mit einer Geschwindigkeit von ungefähr 1660 km/H in Richtung Ost.
Fährt er gerade auf einem Highway, der gerade am Äquator verläuft mit 150 Km in Richtung osten, dann addieren sich die beiden Geschwindigkeiten. Im andern Fall subtrahieren sie sich.
Denken wir uns nun um einen der beiden geographischen Pole einen Kreis mit einem Durchmesser von einem Kilometer, so wird ein Bewohner auf dessen Rand in einem Tag nur ungefähr 3,14 km/Tag =3,14 km /24 H ungefähr 0,130 km/h Das sind keine 200 m Pro Stunde sich bewegen.
Und trotzdem überholt der Äquatorianer den Polaner nicht, weil sie durch die gemeinsame Erdkugel quasi starr miteinander verbunden sind.
Denkt man sich nun die Erde in ein Netz gepackt, wie die Kartographen das taten, indem sie die Erde in Längen- und Breitengrade einteilten, dann bewegen sich alle Objekte desselben Breitengrades mit der selben Geschwindigkeit, die am Äquator die größte und an den Polen die niedrigste ist, und alle Objekte auf einem Längengrad zumindest vom Pol bis zum Äquator und vom Äquator bis zum anderen Pol mit einer anderen Geschwindigkeit, ohne sich zu überholen.
Somit gibt es zu jedem Punkt auf der Nordhalbkugel einen zweiten auf der Südhalbkugel, der sich mit derselben Geschwindigkeit bewegt.
Ich deutete oben schon an, dass sich Geschwindigkeiten immer auf ein Bezugssystem beziehen und sich in gleicher Richtung addieren und in Gegenrichtung subtrahieren. Mit einfachen mathematischen Formeln aus der Geometrie lassen sich auch die resultierenden Geschwindigkeiten für alle anderen Winkel ausrechnen.
Das ersparen wir uns jetzt, denn ich will, dass auch diejenigen hier weiterlesen, die eher mit der Mathematik und der Geometrie auf dem Kriegsfuß stehen. Lassen wir diese unangenehmen Schulerinnerungen also ruhn.

Wir spüren nichts von dieser Geschwindigkeit, die aus der Erddrehung resultiert, weil sich alle Gegenstände um uns herum auch mit dieser Geschwindigkeit bewegen.
Geschwindigkeit nehmen wir nur dann wahr, wenn sie nicht gleichförmig ist. Es drückt uns in den Sitz, wenn wir im Sportwagen aufs Gas treten, weil die Geschwindigkeit pro Zeiteinheit zunimmt. Ebenso haut es uns nach vorne, wenn wir scharf abbremsen müssen. Diese zeitliche Veränderung der Geschwindigkeit nennen die Physiker Beschleunigung. In diesem Sinne ist Bremsen dann eine negative Beschleunigung. Dieses wird bildlich oft im Leben Entschleunigung genannt.
Dass es uns in den Sitz drückt, bzw. nach vorne haut, liegt daran, dass unser Körper sich eigentlich mit der zuvor eingenommenen Geschwindigkeit weiterbewegen möchte. Diesen Willen nennt man Trägheit. Er hat mit der Masse des Körpers zu tun. Obwohl sich die Masse eines Gegenstandes hier auf Erden durch das Gewicht des Gegenstandes bemerkbar macht, wäre es falsch, wenn ich hier Gewicht anstelle von Masse schreiben würde, denn das mit der Beschleunigung funktioniert auch im Weltall, wo kein Schwerefeld herrscht.
Aber auch hier nehme ich auf diejenigen Rücksicht, die es nicht so mit der Physik haben, und gehe nicht weiter darauf ein.

Das ist aber nicht die einzige Geschwindigkeit, der wir ausgesetzt sind.
Die Erde ist ungefähr 150 Mio Kilometer von der Sonne entfernt.
Diese denken wir uns jetzt mal als Punkt, denn mir ist nicht klar, ob hier der Rand der Sonne, bzw. deren Mittelpunkt gemeint ist.
Da die Sonne ein Gasball ist, dürfte es nicht ganz leicht sein, genau zu definieren, wo sie exakt ihre Oberfläche hat.
Man könnte die Oberfläche von Gas-Körpern dort definieren, wo ihr Gasdruck dem hier auf der Erde entspricht.
Für uns sind nur die 150 Mio Kilometer wichtig.
Uns soll im folgenden auch nicht stören, dass die Erde, wie alle anderen Himmelskörper auch, sich in einer elyptischen Bahn und nicht auf einer Kreisbahn um die Sonne oder ihre Muttersterne bewegen.
Der Kreis ist sozusagen eine Ausnahme unter den Elypsen, bei der die beiden Brennpunkte auf dem gemeinsamen Mittelpunkt liegen.
Was viertausend Jahre gut und billig war, kann uns hier nur recht sein.
Die Erde dreht sich nahezu auf einer Kreisbahn um die Sonne. Der Kreis hat einen Durchmesser von ungefähr 150 Mio Kilometer.
Von der Sonne aus gesehen dreht sich die Erde links um sie herum.
Das kann man sehen, wie sie durch die Sternbilder zieht.
Somit legt die Erde mit allem drum und dran, sogar mit dem Mond pro Jahr eine Strecke von ungefähr einer Milliarde Kilometern pro Jahr zurück.
1.000.000.000 km /365 Tage /24 Stunden ist dann das ganze in km/h. Wer mag, darf das selbst ausrechnen.

Betrachten wir nun diese beiden Geschwindigkeiten, die der Erddrehung und die des Jahreslaufes, dann können wir uns überlegen, ob es eine resultierende Geschwindigkeit der beiden gibt.
Es gibt zu jedem Zeitpunkt der Messung eine, aber die ist leider nicht konstant, da es sich um Kreisbahnen handelt von denen die eine nichteinmal innerhalb der anderen verläuft.
Denken wir uns die Richtung der Erddrehung als Pfeil.
Dann kommt es vor, dass sich ein Punkt quasi von hinten vor bewegt. Dann zeigt dieser Pfeil ungefähr in die Richtung, in welcher auch die Erde um die Sonne läuft.
Ist unser Pfeil nun im Begriffe, sich wieder hinter der Erde zu verstecken, dann zeigen die beiden Pfeile sogar in Gegenrichtung.
Auch alle Zwischenrichtungen kommen hier vor. Das bedeutet, dass die Absolutgeschwindigkeit bezogen auf Erddrehung und Jahreslauf sich jeden Tag einmal adieren und einmal subtrahieren.

Somit kann es sein, dass es für einen Beobachter auf einer Kreisbahn so aussieht, dass etwas auf einer anderen Kreisbahn ihn überholt, ein kleines Stückchen Rückwärts läuft, um dann wieder in den normalen Tritt zu kommen.
Dieser perspektivische Effekt bereitete den Griechen in der Berechnung der Planetenbahnen großes Kopfzerbrechen. Das konnte man erst befriedigend dadurch lösen, dass man die Sonne in die Mitte der damals bekannten Himmelskörper setzte.
Dieser Effekt tritt ein, wenn sich zwei Planeten auf ihren Bahnen gegenüber stehen. Im einen Fall können sie auf der gleichen Seite der Sonne gegenüber stehen und im anderen Fall mit der Sonne dazwischen. Das sind dann die verwirrenden Konstellationen, wo man denken könnte, dass alles aus dem Ruder läuft, dass der eine den anderen überholt und dass der eine mit einem mal rückwärts läuft.

Das sind grob die Geschwindigkeiten, die für unser Leben die ausschlaggebensten sind.
Es gibt noch weitere, auf die ich nun aber nicht in der Ausführlichkeit eingehen werde.

Unsere Sonne bewegt sich, wie alle anderen Sterne unserer Galaxis um einen Mittelpunkt, um das Schwarze Loch in ihrem Zentrum,  herum. Weiß man den Durchmesser unserer Galaxis und die Umlaufzeit für eine Umrundung, so kann man näherungsweise wieder mit der Kreisformel berechnen, wie schnell die Sonne mit allem drum und Dran, mit Merkur, Venus, Erde, Mars, Jupiter, Saturn, Uranus, Neptun und allen Monden, dem einen unseren, Deimon und Fobos des Mars, den vier galileischen Monden des Jupiter, und und und, sich um unsere Galaxis bewegt.
Hier wird die Zahl in km/H so unhandlich, dass man sich besser mit einer größeren Maßeinheit behilft.
Das Messen von Geschwindigkeiten soll aber Thema einer nächsten Folge werden.
Was für die Resultierende Geschwindigkeit von Erdentag und Sonnenjahr gilt, muss selbstverständlich auch geometrisch für den Sonnentag (Drehung der Sonne um sich selbst) und das Galaxisjahr (Drehung der Sonne um die Galaxie) gelten.
Unsere Galaxis dreht sich mit einigen anderen Galaxien auch um einen gewissen Schwerpunkt herum. und all diese Systeme bewegen sich momentan, als wären sie in einem Strudel, auf einen Punkt zu, den man den großen Attraktor nennt.
Somit gibt es nichts, was keine Geschwindigkeit hat und auch nichts, das immer eine eindeutige gleichbleibende Geschwindigkeit hat.

Wie oben schon erwähnt, ist Ruhe nur dann Ruhe, solange wir uns auf etwas beziehen, das sich mit derselben Geschwindigkeit bewegt, wie wir.

Das Schauspiel des Himmels im Modell


Liebe Leserinnen und Leser,

ich hoffe, ihr alle hattet ein frohes und schönes Osterfest 2019. Das Wetter war zumindest in Süddeutschland sehr passend.

Ostern ist das Fest der astronomischen Berechnungen. Vom Frühlingsanfang über den Ostervollmond, der Berechnung des Ostersonntags bis hin zur Ausnahme des alle 19 Jahre wiederkehrenden Osterparadox, haben wir alles hier schon behandelt.

Nun ist es aber so, dass der Umgang mit Tabellen und Zahlen nicht eines jeden Menschen Sache ist. Schön wäre doch, wenn man sich das mal vorstellen könnte, wie sich das mit Neumond, Vollmond, Ostersonntag, Finsternissen etc. wirklich plastisch zum Angreifen verhält.
Das haben sich Astronomen, Uhrmacher und sonstig technisch begabte Menschen schon immer überlegt, wie man das Himmelsschauspiel auch in Modellen hier auf Erden abbilden kann.

Über die Geschichte derartiger Modelle des Sonnensystems, auch Orreries gennant, hat ein Freund schon vor einiger Zeit mal etwas geschrieben. Es ist mir eine große Ehre, dass ich das hier veröffentlichen darf, und er fühlt, zumindest hat er mir das so geschrieben, sich geehrt, dass ich das auf meinem Blog veröffentlichen möchte.

Ich werde seinen Text unverändert lassen und kennzeichne, sollte ich etwas meinerseitz ergänzen wollen.
Wie er sich damals als Person vorstellte, passe ich sprachlich etwas an die Gegenwart an.
Eine letzte Vorbemerkung noch: Der Text ist schon etwas älter. Somit kann es sein, dass sich erwähnte Personen nicht mehr mit Orreries beschäftigen, bzw. die Fakten anderweitig nicht mehr ganz passen.
Das soll uns hier nicht stören, da es dem Text und seiner Schönheit nicht abträglich ist.

So, lieber Matthias. Die Bühne gehört jetzt Dir:

Vorstellung:

Liebe Astrofreunde,

Eingeladen hat mich Gerhard Jaworek, auf Blindnerd zu veröffentlichen, den ich in meiner Funktion als 2. Vorsitzender des Kulturvereins Orgelfabrik kennengelernt habe. Wir hatten im Juni 2016 und 2018, ein mobiles Planetarium in die große Halle der Orgelfabrik Durlach gebracht. Im Begleitprogramm hat Gerhard Jaworek am 18.6.2016 einen Vortrag über seine Erfahrungen als blinder Astronom gehalten.

Anmerkung von mir: 2017 durfte ich selbigen Vortrag im gleichen Planetarium halten, als es in Sarlouis, seinem Heimathafen im Theater am Ring, gastierte. 2020 wird es dann wieder in der Orgelfabrik Durlach zu Gast sein. Ihr werdet davon hören. So, bitte Matthias:

Wenn ich mal nicht die Sterne nach Durlach hole bin ich Journalist mit eigenem Magazin (Inch by Inch– INCH, ein Sprachlernmagazin für technisches Englisch). Als Astronomiebegeisterter muss ich mich immer beherrschen, nicht allzu viele „Weltraumgeschichten“ ins Heft zu nehmen.

„Die Himmelsmechaniker“ ist die deutsche Fassung eines Artikels über Orreries, also mechanischer Modelle des Planetensystems, der damals auch in „Astronomie Heute“ erschienen ist.

Wie ihr seht, habe ich es eher mit den Planeten und der Technik als mit den Sternen an sich. Falls mir hier mal wieder was Spannendes unter die Feder kommt, werde ich euch auf dem Laufenden halten.

Die Himmelsmechaniker

Per Kurbelantrieb zu den Planeten – nur noch zwei Orrery-Macher verstehen sich auf die jahrhundertealte Kunst, mechanische Modelle des Sonnensystems zu bauen.
Der Weg zu den Sternen ist beschwerlich. Steinig, schmal und zugewachsen. Er führt zu einem kleinen, einsamen Cottage nahe Hebden Bridge im Norden Englands. Durch eine niedrige, mit Efeu überwucherte Tür und über eine schmale Treppe gelangt man in die Werkstatt von John Gleave, Ausgangspunkt für eine Reise durchs Sonnensystem. Mit nur wenigen Handbewegungen schickt Gleave seine Gäste von den sanften, grünen Hügeln draußen vor dem Fenster hin zu Merkur und Venus. Kurzes Verweilen, ein genauer Blick auf unsere Erde und den Mond und schon geht es locker aus dem Handgelenk weiter zu Mars, Jupiter und Saturn. Das Spiel der Planeten ist Gleaves Leidenschaft, die Himmelmechanik ihm so vertraut wie das Innere einer Uhr. Dabei ist der scheue, jung gebliebene 60jährige weder Astronom noch Raketeningenieur. Ein Blick in seine Werkstatt verrät, woraus sein Universum gemacht ist: Drehbank, Fräsmaschine und Teilscheibe. Uhrmacherwerkzeuge, Lupe und Mikrometerschraube. Feine Messingzahnräder, Scheiben mit eingravierten Sternzeichen, handbemalte Kugeln und poliertes Holz. John ist Gleave Orrery-Macher – einer der letzten, die heute noch ihren Lebensunterhalt mit dieser alten Kunst verdienen.

„Orreries sind mechanische, Uhrwerken nicht unähnliche Modelle des Sonnensystems, die die Bewegung der Planeten und ihrer Monde nachbilden,“ erklärt John Gleave. Dazu zählen einfachen Sonne-Erde-Mond-Modelle mit Riementrieb und Handkurbel ebenso wie die so genannten „Grand Orreries“, in denen hoch komplizierte Werke aus Messingzahnrädern mehrere Planeten und sogar jeden einzelnen ihrer Monde getrennt antreiben. Die Bezeichnung Orrery geht dabei zurück auf den vierten Grafen von Orrery, Charles Boyle, der 1712 ein Sonne-Erde-Mond-Modell bei John Rowley, einem Londoner Instrumentenbauer, bestellte.

Ein Graf greift nach den Sternen

Ganz im Gegensatz zur Herkunft ihres Namens liegt der Ursprung der Orreries im Dunkeln. Denn Rowleys Mechanik war nicht die erste ihrer Art. Schon um 200 vor Christus soll Archimedes mit Hilfe seiner „sphera“ die Bahnen von Erde und Mond beschrieben haben. Leider ist von dieser sphera außer einer vagen Beschreibung Ciceros nichts überliefert geblieben. Ganz im Gegensatz zum 2000 Jahre alten Antikythera Mechanismus, dessen Überreste Fischer vor der griechischen Küste entdeckt haben. Das bemerkenswert komplexe Räderwerk gilt vielen als ein antikes Orrery. „Ich glaube jedoch eher, dass es eine Art Kalender war,“ wirft Gleave ein, der neben seinen Orreries schon mehrere Exemplare des Antikythera-Mechanismus rekonstruiert hat. Die den Orreries verwandten astronomischen Uhren waren bereits im 15. und 16. Jahrhundert – und damit lange vor der Bestellung des Grafen von Orrery – hoch entwickelt, wie die Beispiele in Prag und Straßburg zeigen. Älter ist auch das Jovilabium des Dänen Ole Rømers von 1677, ein Mechanismus der seine Bahnbeobachtungen der wichtigsten Jupitermonde veranschaulichen sollte.

Der Prototyp des klassischen Orreries jedoch stammt von George Graham. Neben vielen Instrumenten für die Wissenschaftler der Aufklärung entwarf er zwischen 1704 und 1709 einen Mechanismus, dessen Räderwerk die komplizierte Bewegung des Mondes und der Erde um die Sonne nachbildete. Rowleys Auftragsarbeit für den Earl of Orrery war schlicht eine überarbeitete Version von Grahams Mechanismus.

„Anfangs wurden Orreries ausschließlich für Wissenschaftler, Bildungseinrichtungen oder reiche Sammler angefertigt, wobei Größe und Komplexität immer weiter zunahmen. Erst später kamen dann einfache und billige Geräte auf den Markt, was Orreries in viktorianischer Zeit sehr populär machte. Doch mit der Einführung optischer Planetarien verschwanden deren mechanische Vorfahren fast spurlos,“ fasst Gleave 300 Jahre Orrerybau zusammen. Ein erster Vorbote dieses Niedergangs war wohl Adam Walkers Eidouranion von 1770, eine Art transparentes Orrery mit Projektor. Das Schicksal der mechanischen Orreries besiegelt jedoch Carl Zeiss, als er 1924 mit seinem noch heute in Planetarien verwendeten Projektor die Darstellung der Himmelskörper und ihrer Bewegungen revolutionierte.

Anmerkung von Blindnerd:
Ganz wunderbar ist zum Thema Planetarien die Folge des CRE-Podcast von Tim Pritlove
Zur CRE-Folge
Außerdem vom gleichen Autor
Über das Großplanetarium Berlin

OK, Matthias, bitte weiter im Text

Die Kunst Planeten zu bewegen

Warum wagt es heute noch jemand gegen diese perfekten Lichtschauen mit wenig mehr als ein paar Messingzahnrädchen anzutreten? Warum will jemand ein beinahe ausgestorbenes, weil überflüssig gewordenes Handwerk erlernen? „Vor über 20 Jahren habe ich einen Roman gelesen, in dem es um die Bewegung der Planeten ging,“ erinnert sich Gleave an den Beginn einer Leidenschaft. „Ich wollte verstehen, was da passiert und da ich als Kunstmaler wenig mit Formeln anfangen kann, schien mir ein Orrery der beste Weg, die Kopernikanischen Gesetze zu begreifen. Leider musste ich schnell feststellen, dass Orreries sehr teure Sammlerstücke sind. Da mich aber als Künstler die mechanische Schönheit dieser Stücke fasziniert hat und ich ohnehin einmal mit Metall arbeiten wollte, kam ich auf die Idee, selbst ein Orrery zu bauen. Das erstes Modell hatte anfangs noch eine einfache Riemenübersetzung, die ich jedoch nach einem Uhrmacherkurs durch Zahnräder ersetzt habe. Keine einfache Sache übrigens, irgendwie scheint mein Künstlerhirn nicht dafür gemacht zu sein, Übersetzungsverhältnisse und Getriebefunktionen zu verstehen.“
Ganz offensichtlich hat Gleave inzwischen auch die mechanischen Künste gemeistert: Ungefähr 170 Orreries sind in seiner Werkstatt bisher entstanden, von einfachen Erde-Mond-Modellen bis hin zu aufwendigen Grand Orreries – einschließlich eines Modells mit einem beringten Saturn, dessen größte Monde sich unabhängig voneinander bewegen. Und manchmal übertreibt er es auch ein bisschen. „Mein größtes Orrery hatte einen Durchmesser von 1,6 Metern,“ erinnert er sich. „Leider habe ich zu spät gemerkt, dass es nicht durch die Tür passt. Letztendlich musste ich es wieder komplett auseinander nehmen und die Garage meines Nachbarn als Werkstatt anmieten. Heute baue ich vorzugsweise nur noch Orreries bis 1,2 Meter, der Größe meiner Haustür.“
Das Tischmodell an dem er gerade arbeitet, passt locker durch die Tür. Der goldglänzende Mechanismus reproduziert die Bewegungen des Merkur, der Venus, der Erde und des Monds. Unter einer golfballgroßen Messingsonne dreht sich ein balkenförmiges Gehäuse, vollgestopft mit Zahnrädern. „Die aufwendige Mechanik ist nötig, um den Metonischen Zyklus des Mondes und seine Bahnneigung zu reproduzieren,“ erklärt Gleave den wohl wichtigsten Grund, warum – damals wie heute – Orreries überhaupt gebaut werden.

Meton von Athen entdeckte 432 vor Christus, dass sich die Mondphasen ungefähr alle 19 Jahre am selben Tag des selben Monats wiederholen. Eine Tatsache, die sich beispielsweise in der Berechnung des Osterdatums widerspiegelt. Da sich der Mond nicht nur um die Erde, sondern gleichzeitig mit ihr um die Sonne bewegt, unterscheidet sich der von der Erde aus beobachtete Mondzyklus leicht von der aus dem Weltall betrachteten Dauer einer Erdumkreisung. Zu kompliziert? Wie wär’s dann mit der Tatsache, dass die Bahn des Mondes nicht wie die der meisten anderen Monde in der Äquatorebene ihres Planeten sonder ungefähr fünf Grad geneigt zu der Ebene liegt, die die Erde um die Sonne beschreibt. Was im übrigen der Grund dafür ist, dass es nicht jeden Monat zu einer Mondfinsternis kommt. Komplett verwirrt? Da hilft ein Orrery. Ein paar Drehungen an der Kurbel von Gleaves Kunstwerk und schon ist klar, was so schwer zu erklären ist.

Anmerkung von Blindnerd:
2015 viel der Vollmond direkt auf Heilig Abend, 24.12. Da stellte ich mir natürlich di Frage, wann das denn das nächste mal so sein wird. Ich dachte mir, wenn Finsternisse gewissen Zyklen gehorchen, dann muss es doch mit dem Vollmond ähnlich sein, der auf ein gewisses Datum fällt.
Auch dieser Weihnachtsvollmond gehorcht dem Meto-Zyklus. Und wie Matthias schon erwähnte, spielt er in die Berechnung des Ostertages mit hinein. Gerade dieses Jahr hatten wir das Oster-Paradoxon. Ich schrieb im Artikel Fällt Ostern 2019 aus darüber.

OK, Bitte, Matthias, fahre fort. Entschuldige bitte die Unterbrechung.

Obwohl solche Komplikationen schon von Rowley in seinem Ur-Orrery berücksichtigt wurden, hält Gleave sich nicht allzu sehr an die historische Vorlage. „Im Allgemeinen sind meine Orreries keine exakten Repliken bestehender Geräte. Dazu bin ich wohl noch zu sehr Künstler. Mein Ziel ist es genaue, aber vor allem ästhetisch ansprechende Orreries zu bauen.“

Welten fürs Wohnzimmer

Ein Sinn für Kunst und Ästhetik ist wohl ebenso eine Voraussetzung für den Beruf des Orrery-Machers wie mechanisches Geschick. „Außerdem braucht es die Geduld eines Engels, die Kraft Samsons und das Bankkonto eines Rockefellers,“ beschreibt Brian Greig aus dem australischen Melbourne den Versuch, mit dem Bau von Orreries seinen Lebensunterhalt zu verdienen. Ein sehr erfolgreicher Versuch im Übrigen, zumindest für seine Kunden, die seine Meisterwerke seit Jahren schätzen. Greig begegnete seinem ersten Orrery im Sotheby Katalog seines Onkels, eines Kunstsammlers. Die Schlichtheit dieser mechanischen Universen war es, die seine Liebe entfachte. Eine Liebe, die 1990 mit seinem ersten, selbstgebauten Orrery endlich ihre Erfüllung fand.
Heute ist daraus eine breite Palette geworden, von Kopien der klassischen englischen Modelle Rowleys und Grahams bis hin zu speziellen Orreries: Ein Tellurium etwa, das die Jahreszeiten verdeutlicht, ein Lunarium, das die komplizierte Bewegung unseres Mondes beschreibt und sogar ein Mars Orrery mit den Monden Phobos und Deimos. Dessen Besonderheit sind elliptische Zahnräder, die das zweite Keplersche Gesetz – der Radiusvektor eines Himmelskörpers überstreichen in gleicher Zeit gleiche Flächen – berücksichtigen. Eine von den meisten Orreries stillschweigend vernachlässigte Komplikation; statt astronomisch korrekten Bahnen wird in der Regel nur das Verhältnis der Umlaufzeiten wiedergegeben. „Mein Lieblingsstück jedoch ist eine Replik von Edward Troughtons Orrery von 1800,“ meint Greig und nimmt ein klassisches Modell der inneren Planeten, der Erde und des Mondes aus dem Regal. „Für das Erste habe ich volle drei Jahre gebraucht.“ Einen nicht unwesentlichen Teil davon verbrachte er damit, den Kurator des Science Museum in London zu überreden, Papierabriebe vom Original machen zu dürfen. Nicht ungewöhnlich für Greig: Der Australier ist absolut detailversessen. Stundenlang kann er mit dem Vergrößerungsglas über alten Stichen oder Photos brüten und Zähne zählen. Und es passiert schon mal, dass er von einem Kurator aus dem Museum geworfen wird, weil er eines der wertvollen Originale röntgen lassen wollte.
Ist aber der Plan eines alten Orreries erst einmal rekonstruiert, schließt sich Greig fräsend- und drehenderweise in seiner Werkstatt ein. Die Zahnradherstellung ist aufwendige Handarbeit: Zuerst wird mit der Schlagschere ein Messingblech grob zurechtgeschnitten und in der Drehbank auf den gewünschten Durchmesser gebracht. Mehrere dieser Messingscheiben spannt er anschließend in eine Fräsmaschine mit Teilscheiben ein, mit der er jeden Zahn einzeln, oft sogar in mehreren Durchgängen fräst. Versuche, diese zeitaufwendige Prozedur abzukürzen, sind kläglich gescheitert: „Die Idee, die Zahnräder mit einer modernen Laserschneidmaschine auszuschneiden, haben wir schnell wieder aufgegeben – das stark reflektierende Messing hat beim ersten Versuch den Spiegel zerstört und die Maschine erstmal für einen Monat lahm gelegt.“ So betreibt Greig den Bau von Orreries bis heute noch als echtes Handwerk, das zwar sehr mit der Uhrmacherkunst verwandt ist, schon immer aber eher von Instrumentenbauern denn von Uhrmachern ausgeübt wurde. Eine Tradition der sich auch der 63 jährige Greig verpflichtet fühlt: „Ich hasse Uhrenläden. Das Ticken erinnert mich immer daran, dass meine Zeit abläuft.“
Und davon braucht Greig jede Menge. In einem normalen Orrery stecken drei Monate Arbeit, jährlich verlassen nicht mehr als drei bis vier Stück seine Werkstatt. Wie seit jeher setzt sich seine Kundschaft aus Universitäten, Museen und reichen Sammlern zusammen, die noch ein schmuckes Stück für Ihre Bibliothek suchen. Keine billige Anschaffung, schon ein einfaches Erde-Mond-Orrery kostet um die 3000 Euro. Dennoch sind Greigs Auftragsbücher gut gefüllt. Sicher, ein Besuch im Planetarium ist günstiger und wahrscheinlich lehrreicher und Computerprogramme ermöglichen äußerst realistischere Reisen durch unser Sonnensystem. Dennoch strahlen diese Himmelsmechaniken eine ungebrochene Faszination aus. Wie magisch ziehen sie jeden an, der in ihre Nähe kommt und wecken in ihm fast automatisch den Wunsch, eines dieser Wunderwerke zu besitzen. Vielleicht ist es ja die Wärme von Messing, Emaille und poliertem Holz, die uns die ansonsten so kalten, astronomischen Gleichungen näher bringt. Vielleicht das beruhigende Gefühl, dass die mächtigen Himmelskörper in immer gleichen Bahnen laufen, die wir mit einem Hand gemachten Räderwerk nachbilden können. Oder vielleicht sind Orreries einfach nur deshalb so faszinierend, weil sie dem Traum, per Kurbelantrieb zu den Planeten zu reisen, am nächsten kommen.

Schlussbemerkung von Blindnerd:

So, lieber Matthias. Vielen Dank für diese wunderbaren Ausführungen.
Auch ich besitze ein ganz kleines Modell des Sonnensystems, ein solar betriebenes China Gadget, das ein Bausatz war und kaum zwanzig Euros gekostet hat. Was solls, immerhin.
Tja, ob ich als blinde Person jemals irgendwo ein Orreri anfassen darf, wage ich zu bezweifeln. In dem Fall kann ich es ob der filigranen Verarbeitung, der fragilen Bauweise und des Preises vielleicht sogar traurigen Herzens nachvollziehen und verstehen.
Aber wer weiß. Mich faszinieren Uhren Orreries und solche mechanischen Dinge sehr.
Dir nochmal vielen herzlichen Dank für Deinen Artikel, der zweifellos ein Juvel auf meinem Blog darstellt.

bis zum nächsten mal grüßt euch
Euer gerhard.

Astroplauderei


Seid herzlich gegrüßt,

heute möchte ich euch mal wieder etwas für die Lauscherchen anbieten.
Es hat durchaus mit „Das Ohr am Teleskop“ zu tun.
Und das erwartet euch:

Nach einer kurzen Einführung geht es zu einer Podcast-Folge von Merkst.de, die Stephan Merk, der Macher dieses sehr hörenswerten Podcastes, mit mir aufgenommen hat.
„Vielen Dank, lieber Stephan für diese Ehre. Es hat mir sehr viel Freude bereitet.“
Er ist einer der größten Blogger und Podcaster, der mir in der Blinden- und Sehbehindertenwelt, bekannt ist. Meistens podcastet er über Audio- und andere Technologien, aber nun hat er sich entschlossen, mal einige Interviews mit Menschen aus der Community zu führen, die irgendwie etwas außergewöhnliches machen. Da liegt es natürlich nahe, dass er mal auf mich mit meinem seltsamen Hobby stieß.
Eigentlich gehört hier der Link zu Stephans Projekten hin, aber dann lest ihr vielleicht hier nicht mehr weiter, also später…

Bevor es los geht:
Ich möchte an dieser Stelle für alle, die vielleicht nicht so mit dem Format des Podcasts vertraut sind darauf hinweisen, dass ein Podcast etwas viel freieres, als ein Interview ist.
Das werdet ihr beim Hören merken. Da wird manchmal abgeschweift, man hört Gedankensprünge und manchmal werden Sätze vor Begeisterung und im Überschwang vielleicht nicht ganz zuende gesprochen. Aber das ist eben Podcast. Man ist hier nicht in ein enges Korsett einer Radiosendung zwischen Musik, Werbung und Zeitvorgaben gepackt.
Was Podcasts sind und wieso ich sie so sehr liebe, verlinke ich weiter unten nochmal.
Also trafen wir uns virtuell und plauderten über Astronomie.
Als Einführung und Vorspann, als Vorstellungsrunde sozusagen, hört ihr ein Interview, das Stephan im letzten Frühjahr auf der Sightcity 2018 in Frankfurt mit meinem Arbeitskollegen führte. Der erzählt darüber, was unser Studienzentrum für Sehgeschädigte ist, welche Unterstützung wir anbieten, was bei uns studiert wird, und welche Hilfsmittel und Technologien bei uns eingesetzt werden, um ein Studium in Inklusion zu ermöglichen.
Diese Einführung mit meinem Freund und Kollegen ist mir ganz wichtig, denn ohne das Zentrum, an dem ich seit nun mehr zwanzig Jahren tätig bin, könnte ich meine Vorträge, Seminare und Freizeiten niemals in dieser Qualität anbieten.

„Dank an unser ganzes Team, dass ihr mich mit eurer Kraft und Arbeit hier unterstützt.“

Nach diesem Vorspann, der dauert etwa 13 Minuten, geht es dann ungefähr 90 Minuten auf meine Sternenreise mit Stephan.

Unten in dem Blogbeitrag findet ihr dann noch einige Links die die angesprochenen Themen etwas vertiefen und natürlich auch zu Stephans Projekten führen.

Nun Mixe sich wer mag, einen pan galaktischen Donnergurgler, oder auch was anderes,
lehnt euch zurück, klickt auf den Podcast und habt Freude mit dem Interview.
Zur Podcast-Folge auf Merkst.de
Interview als herunterladen.

Zu Stephan und seinen Projekten findet ihr hier.

Link Wieso ich Astronom wurde, erklärte ich euch
in Wieso ich Astronom wurde

Wer sich für mein Buch interessiert, hier in Kürze die wichtigsten Daten.
Titel:
„Blind zu den Sternen – Mein Weg als Astronom“

Autor: Gerhard Jaworek
Erschienen im Aquensis-Verlag Baden-Baden unter der Rubrik Menschen am 01. Oktober 2015
ISBN: ISBN: 978-3-95457-134-5

Buchrückseite:
Wie kann ein blinder Mensch eine Liebe zur Astronomie entwickeln, ohne je einen Stern gesehen zu haben? Gerhard Jaworek, Diplom-Informatiker am Karlsruhe Institut für Technologie (KIT), gilt medizinisch als vollblind.
Trotzdem ist Astronomie seine Leidenschaft. In diesem Buch beschreibt er lebendig und anschaulich, wie sein naturwissenschaftliches Interesse und seine Neugierde schon im Kindesalter geweckt wurden, wie er sich diese Welt mit seiner Blindheit erobern konnte und welche Chancen die Astronomie für gelebte Inklusion bietet.

Das Buch ist im Handel für 14 Euro erhältlich es gibt es als Papier-Version, als Ebook und für mitglieder der Blindenhörbüchereien wurde es in Marburg aufgelesen.

„Mit dem Ohr am Teleskop“ heißt eine Serie auf meinem Blog die Astronomie unter dem Höraspekt betrachtet.
Mit Mit dem Ohr am Teleskop führte ich allgemein in das Thema ein.

Im Artikel Klingende Planetenbahnen könnt ihr hören, was ich mit dem Klang der Planetenbahnen meinte.

Nun hoffe ich, dass ihr nicht völlig erschlagen seid von dieser Fülle an Informationen.

Alles gute und bis zum nächsten mal grüßt euch
euer Gerhard.

Fällt Ostern 2019 aus?


Um die Antwort gleich vorweg zu nehmen; nein, Ostern fällt in 2019 natürlich nicht aus, aber hat sich nicht jemand von euch auch schon gefragt, wieso man nicht am heutigen Sonntag, 24.03.2019, Ostereier suchen darf? Astronomisch betrachtet, sollte es der Datenlage nach, eigentlich so sein.

Ehrlich gesagt quälte ich mich auch schon einige Tage mit der Tatsache, dass wir astronomisch betrachtet schon heute Ostern haben sollten, und nicht erst einen Vollmond später, also in vier Wochen.
In meinen mindestens dreißig Jahren, in denen ich Astronomie treibe, ist mir das Oster-Paradox nie aufgefallen.
Der astronomische Frühlingsbeginn war am 20.03. kurz vor 23:00 Uhr.
Knapp vier Stunden später, gegen drei Uhr morgens, des 21.03.2019 war der astronomische Moment des Vollmondes.
Kalendarisch fühlt es sich für uns immer so an, als währte der Vollmond einen ganzen Tag einschl. der Nacht. Dem ist astronomisch betrachtet, durchaus nicht so. Der Vollmond verharrt in seiner Fülle nicht auf seiner Bahn um die Erde, um sich von uns in voller Pracht feiern zu lassen. Kaum voll, beginnt er auch schon wieder abzunehmen.
Und dieser Unterschied zwischen kalendarischem – und astronomischem Vollmond führt uns direkt und unweigerlich zum Oster-Paradox, das wir in diesem Jahr und ansonsten alle neunzehn Jahre haben.
Dann will ich, mal versuchen zu erklären, wie das funktioniert:

„Ostern wird immer am ersten Sonntag nach dem ersten Frühjahrsvollmond gefeiert.“ So steht es in vielen Lexika und so lernt man es in der Schule.
Kalender und astronomische Berechnung fallen aber diesmal auseinander. So kommt es zum „Oster-Paradoxon“, das nur höchst selten auftritt. Das nächste Mal gibt es wieder ein Paradoxon im Jahr 2038. Dass die Sache so kompliziert ist, liegt auch daran, dass die wissenschaftlichen Möglichkeiten zur Berechnung von Frühlingsanfang und Vollmond zur Zeit des frühen Christentums technisch noch nicht so möglich waren, wie heutzutage mit unseren modernen Teleskopen und Messmethoden.

Die Definition des Osterdatums geht nämlich auf das Konzil zurück, das Kaiser Konstantin im Jahr 325 in der kleinen Stadt Nicäa, heute Yznik in der Türkei, einberufen hatte. Dort beendeten die Theologen einen lange schwelenden Streit über die von den frühen Christen sehr wichtig genommene Frage, wann Ostern zu begehen sei. Das Fest wurde vom jüdischen Passahfest abgeleitet, das am ersten Frühlingsvollmond beginnt. Jesus wurde nach den Berichten der Evangelien nach dem Passahmahl verhaftet und hingerichtet.
Die eindeutig klingende Lösung, auf die sich das Konzil von Nicäa verständigte: „Das Osterfest findet am ersten Sonntag nach dem Vollmond statt, der dem Frühlingsanfang folgt“. Demnach sind der 22. März und der 25. April die frühest- und spätestmöglichen Daten, auf die Ostern theoretisch fallen kann.

Allerdings: Die Tag- und Nachtgleiche, die den Frühlingsbeginn astronomisch definiert, kann zwischen dem 19. März vormittags und dem 21. März abends stattfinden. Der Vollmond lässt sich exakt berechnen. Offen ist bei der Festlegung dieser beiden Zeitpunkte jedoch der Ort, auf den sie sich beziehen. Wählt man Greenwich wegen des Nullmeridian, oder Jerusalem wegen religiöser Gründe aus, macht das wegen der Zeitzonen einen Unterschied von immerhin drei Stunden aus. Für das Osterdatum kann das entscheidend sein.
Um diesen Problemen zu entgehen, gab der Mathematiker und Jesuitenpater Christophorus Clavius im 16. Jahrhundert eine Rechenvorschrift heraus, die allerdings noch sehr unhandlich war. Ein wirklich praktisches Verfahren machte daraus im Jahr 1800 der Mathematiker Carl Friedrich Gauß. Seine Osterformel wird in leicht abgewandelter Form noch heute angewendet. Darin wird der Frühlingsanfang unabhängig von den astronomischen Werten einfach prinzipiell auf den 21. März festgelegt, auch die Mondphasen werden nach einer einfachen Formel berechnet. Das Modell ist eindeutig, führt aber gelegentlich dazu, dass das kalendarische Ostern von den astronomischen Vorgaben abweicht.
So wie in diesem Jahr: Weil der Vollmond am Morgen des 21. März noch als Wintervollmond gewertet wird, erscheint der erste Frühlings-Vollmond erst im April und so wird Ostern am 21. April gefeiert.

Das ist das Oster-Paradox, das alle 19 Jahre auftritt.
Wer übrigens nochmal nachlesen möchte, wie sich das alles mit den Frühlingsanfängen verhält, kann das hier tun.
Und wer nochmal genau wissen möchte, wie man das Osterfest berechnet, findet hier das gewünschte.
Es grüßt euch bis zum nächsten mal
Euer Gerhard.

Große Frauen in Astronomie und Wissenschaft, zum Frauentag am 08.03.2019


Liebe Leserinnen und Leser,

auch in diesem Jahr möchte ich meiner Tradition treu bleiben und zum Weltfrauentag eine der zahlreichen Vorkämpferinnen in Astronomie und Naturwissenschaften würdigen.
Bis heute sind Frauen in naturwissenschaftlich-technischen Berufen leider noch immer unterrepräsentiert. Die Statistiken sprechen hier eine sehr deutliche Sprache. Trotz Frauenbewegung, Emanzipation, Erziehungsurlaub auch für Männer, gesetzliche Gleichberechtigung und dafür aufgeschlossene Männern, ist es noch nicht gelungen, diesen Missstand in den Griff zu bekommen.
Dennoch hat es immer wieder Frauen gegeben, die trotz Benachteiligung, Unterdrückung, Bildungsverbot und Leben in einer streng patriarchaisch dominierten Gesellschaft, großartiges in Wissenschaft, z. B. der Astronomie, geleistet haben. Sie setzten sich in einer harten Männerwelt durch und waren vielleicht sogar öfter, als man denkt, die schlaueren Köpfe. Zumindest zeugen einige Dokumente davon, dass viele starke kluge Frauen die Fäden ihrer Professoren-Männer in Händen hielten…
Bis in biblische Zeiten hinein, kann man diese Phänomene beobachten. Somit scheint der Satz “Der Mann kann noch so viele Dinge bauen – Es steht und fällt ein Volk mit seinen Frauen” mehr Wahrheitsgehalt zu haben, als manchen lieb ist.
So lasst uns den Weltfrauentag 08.03.2019 damit begehen, indem wir die Person und das Lebenswerk von
Maria Mitchell betrachten und würdigen.

Maria Mitchell (* 1. August 1818 in Nantucket, Massachusetts; † 28. Juni 1889 in Lynn, Massachusetts) war eine US-amerikanische Astronomin und Vorkämpferin für die Frauenrechte.

Ich kam auf Maria Mitchell, weil sie mir in der Adventszeit großes Kopfzerbrechen bereitete, denn sie war in einem Weihnachtsrätsel der @Weltraumreporter so gut versteckt, dass sogar Google zumindest am Anfang völlig nutzlos war. Ich fand sie dann im Buch „Die Planeten“ von Dava Sobel. In diesem Buch ist ein ganzes Kapitel ihr und Frau Herschel gewidmet, die zum Frauentag 2018 hier geehrt wurde.
Wer das nochmal nachlesen möchte, kann dies hier gerne tun.
Das Kapitel in Dava Sobels Buch ist in einen wunderschönen Briefwechsel zwischen den beiden Astronominnen eingebettet. Leider konnte ich nicht recherchieren, ob es diesen Briefwechsel tatsächlich gab, oder ob es künstlerische Freiheit der Autorin war. Auf jeden Fall ist es ein sehr gelungenes Kapitel.

Also, wer war nun Maria Mitchel.
Maria Mitchell gehörte zu den Frauen, bei denen viele positive Faktoren zusammen kamen, so dass sie zu den wurde, was sie war, und das sie erreichte, was Frauen in der damaligen Zeit eher unzugänglich war.
Eine der ersten Grundvoraussetzungen, die ihr ihre Laufbahn ermöglichten war, dass ihre Eltern Quäker waren.
Diese Religionsgemeinschaft vertritt, dass Frauen dasselbe Recht auf Bildung haben, als Männer.
Ihr Vater, William Mitchell, war Lehrer und Hobbyastronom. Bald schon bemerkte er die naturwissenschaftliche Begabung seiner Tochter und unterrichtete sie in Astronomie und Mathematik.
Er ermunterte sie auch, eigene Untersuchungen anzustellen.
Normalerweise wurden Töchter aus derlei Elternhäusern höchstens in hauswirtschaftlichen Dingen oder den schönen Künsten, wie Musik, unterrichtet.
Somit stellte Maria Mitschel schon bald eine Ausnahme dar.

Ein weiterer Umstand, der sie quasi zwangsläufig zur Astronomie brachte war, dass ihr Wohnort astronomischer nicht sein konnte.
Sie wurde 1818 auf Nantucket geboren, einer kleinen von Seefahrt geprägten und rund 50 Meilen vor der Küste Massachusetts gelegenen Insel. Hier ankerte die weltweit größte Walfangflotte und von hier aus stachen Seefahrer in See, deren Wissen um den Sternenhimmel als Navigationshilfe unabdingbar war.
Somit gab es in allen Haushalten astronomische Instrumente, wie Sextanden, Efimeriden (Sternkarten), Teleskope und Schiffsuhren.
Letztere durfte sie schon mit vierzehn Jahren eichen. Es ist unglaublich wichtig, dass diese Uhren genau geeicht waren, denn man brauchte sie zur Bestimmung des Längengrades auf hoher See. Alleine mit der Geschichte über diese Uhren, könnte man irgendwann mal einen eigenen Artikel verfassen.

Man kann davon ausgehen, dass die Bedingungen der Sternbeobachtung von dieser Insel aus all nächtlich prächtig gewesen sein sollte. Die Insel war weit genug vom Festland entfernt, so dass keinerlei Lichtverschmutzung vorhanden gewesen sein dürfte.
Der Name der Insel, Nantucket,bedeutet weit entferntes Land. Klarer, schwarzer stockfinsterer Sternenhimmel also.

Bald schon war Maria in der Bedienung nautischer Instrumente besser, als so mancher Seebär.
Aber auch sonst verlief ihr Leben ereignisreich und sehr ungewöhnlich.

Schon mit 14 Jahren kalibrierte sie Chronometer für Seefahrer oder unterwies sie im Gebrauch von Sextanten. Mit 17 Jahren gründete Maria Mitchell auf Nantucket eine Mädchenschule und unterrichtete Mathematik. Mit 18 Jahren wurde sie zur Leiterin der Bibliothek von Nantucket ernannt. Hier liegt auch die Wiege ihrer Bildung. Fast täglich hielt sie sich in dieser Bibliothek auf, in der auch Frauen willkommen waren – anders als in den meisten anderen Bibliotheken der USA.

Berühmt wurde Maria Mitchell mit 29 Jahren durch die Entdeckung eines Kometen:
Am 01. Oktober 1847 entdeckte sie vom Observatorium ihres Elternhauses aus den später nach ihr benannten Mitchell-Kometen.
Bereits ein Jahr später, 1848, wurde sie als erste Frau in die American Academy of Arts and Sciences aufgenommen sowie 1850 in die American Association for the Advancement of Science.

Sie leitete die Bibliothek von Nantucket, bildete sich mit Hilfe der ihr anvertrauten Bücher weiter, arbeitete gemeinsam mit ihrem Vater an astronomischen Fragestellungen und unterhielt umfangreiche wissenschaftliche Korrespondenz mit den großen amerikanischen Universitäten. Maria Mitchell las Deutsch und Französisch im Original und war der Überzeugung, dass der Zugang zur Astronomie durch Mathematik erfolgt.[2] Sie wurde als Rednerin zu vielen Vorträgen und Konferenzen eingeladen und

1865 eröffnete mit dem Vassar College in Poughkeepsie, New York, eine der ersten amerikanischen Frauen-Universitäten. Maria Mitchell erhielt den Ruf und wurde mit 47 Jahren die erste Astronomieprofessorin Amerikas – ohne jemals selbst eine Universität besucht zu haben.

Sie setzte sich dafür ein, dass Frauen die gleichen Rechte erhielten, wie sie die Männer an den Universitäten Yale und Harvardinne hatten und dass die Frauen auch fachlich gleich zogen.

So verteidigte sie ihre Studentinnen gegen herrschende Konventionen, die beispielsweise Frauen untersagten, nach 22 Uhr vom Observatorium aus zu beobachten.

1873 gründete sie die American Association for the Advancement of Women und wurde zwei Jahre später deren Präsidentin. Nicht nur in Vorträgen, sondern in der täglichen Arbeit als Professorin und Direktorin des Vassar-College-Observatoriums setzte sie sich beständig für die Gleichberechtigung von Frauen ein.

Ein Kredo von ihr war:
„We especially need imagination in science. It is not all mathematics, nor all logic, but is somewhat beauty and poetry.
In der Wissenschaft brauchen wir vor allem Fantasie. Es geht nicht nur um Mathematik oder um Logik, sondern auch ein wenig um Schönheit und Poesie“
Es braucht nicht viel Interpretationsgabe, um das Kredo auch so zu lesen“In der Wissenschaft braucht es auch weibliche Faktoren“.

Mitchell war eine der berühmtesten Wissenschaftlerinnen (Männer und Frauen) in den USA des 19. Jahrhunderts.
Mitchell galt als ausgezeichnete Professorin, die sich für ihre Studentinnen einsetzte und sie dabei unterstützte, wirklich gute Wissenschaftlerinnen zu werden, obwohl sie „nur“ Frauen waren.

Praxiserfahrung war ihr ganz wichtig. Mit der Frage „Did you learn that from a book or did you observe it yourself?“, ging sie in die Analen der amerikanischen Wissenschaft ein.

Maria Mitchell beschäftigte sich auch mit grundlegenden mathematischen Fragen, etwa mit dem ´Großen Fermatschen Satz`. Eine harte Nuss, die im 17. Jahrhundert von Pierre de Fermat formuliert, aber erst 1994 von dem britischen Mathematiker Andrew Wiles bewiesen wurde.

Hier noch einige Ehrungen zum Schluss:
Für die Entdeckung des Mitchell-Kometen wurde sie vom König von Dänemark mit einem Orden ausgezeichnet.

1905 wurde sie in die Hall of Fame for Great Americans aufgenommen.

Nach ihrem Tod wurde zu Ehren Maria Mitchells die Maria Mitchell Astronomical Society gegründet.

Der Hauptgürtelasteroid (1455) Mitchella, den der Heidelberger Astronom Alfred Bohrmann (1904-2000) am 5. Juni 1937 entdeckte, ist nach ihr benannt.

Auch auf dem Mond erhielt sie einen Platz.
Schon im Amateurteleskop kann man auf dem Mond den an den Krater Aristoteles grenzenden Einschlagkrater Mitchell erkennen, der 1935 von der Internationalen Astronomischen Union nach der großen Forscherin und Frauenrechtlerin benannt wurde. Sein Durchmesser beträgt etwa 30 Kilometer. Er zeigt deutliche Erosionsspuren und sein Ringwall ist vom später entstandenen, etwa 80 Kilometer großen Krater Aristoteles teilweise überdeckt.

Sie war eine großartige Wissenschaftlerin und Vordenkerin für Frauenrechte. Einige ihrer Themen sind bis heute Aktuell.
Gerade in der heutigen Zeit, wo Raubbau an Natur, Mensch und sozialen Errungenschaften im Namen des Fortschritts getrieben wird, sollten wir uns derer erinnern, die VorkämpferInnen und VorReiterinnen für viele Menschenrechte waren.

Quellen:
Wikipedia
Die Planeten von Dagmar Sobel
Weihnachtsrätsel 2018 der @Weltraumreporter

Parken im All


Liebe Leserinnen und Leser,

Schon mehrfach ist es passiert, dass es bei einer mission heißt, dass die Umlaufbahn leider nicht erreicht wurde. Dann heißt es bei erfolgreicheren Missionen, dass der Einschuss in die vorgesehene Umlaufbahn derart gut gelungen sei, dass die Raumsonde viel Treibstoff sparen konnte, und von daher viele Jahre länger betrieben werden kann. So dürfen wir es vom JWVLT hoffen. Was man hier deutlich sieht, ist, dass es für jede Aufgabe und jede Mission auch mehr oder weniger geeignete Umlaufbahnen und Orte gibt. Darum wird es heute gehen.

Tanz mit der Erde

Bei Aufgaben, wo es wichtig ist, dass man von der Erde aus stehts von der gleichen Stelle aus Sicht auf den Satelliten hat, schickt man sie auf eine geosynchrone Umlaufbahn. Der Satellit umläuft die Erde synchron zur Erddrehung ein mal täglich. Die einfachste Bahn dieser Art ist die geostationäre Umlaufbahn.
Die liegt ungefähr 36.000 Kilometer über dem Äquator. Es gibt noch weitere geosynchrone Bahnen.
Diese Bahnen eignen sich gut für Satelliten zur Kommunikation, Navigation und zur Wetterbeobachtung.

Welch ein Gezerre

Für andere Aufgaben aus Erdnähe wird es dann mit den Bahnen etwas kompliziert.
Ein Hauptproblem ist die Tatsache, dass immer mehrere Körper mit ihren Gravitationskräften an unserer gedachten Raumsonde ziehen.

  • Da zieht die Sonne mit ihrer ungeheuren Masse,
  • die Erde, in deren Nähe sich unsere Sonde befindet,
  • der Mond zieht, wenn er gerade mal vorbei kommt
  • und auch die riesigen Gasplaneten, wie unser Jupiter ziehen an der Sonde.

Dieses Spiel der Kräfte wird dann schnell chaotisch und die Sonde muss mittels Treibstoff ihre Bahn immer wieder korrigieren.
Das ist bei mehr als zwei Körpern, die sich gegenseitig beeinflussen, nicht mehr mit einer geschlossenen Formel, wie den Newtonschen Bewegungsgleichungen oder den Keplerschen Gesetzen zu lösen.
Es gibt jedoch numerische Verfahren, wie man die Bahnen von derartigen Drei-Körper-Systemen, z. B. Erde-Sonne-Raumsonde, Stück für Stück berechnen kann.

Bei einigen Missionsaufgaben lässt sich aber enorm Treibstoff sparen, weil es in einem Drei-Körper-System von denen einer extrem viel leichter ist, als die anderen beiden, Punkte gibt, bei denen man quasi kostenlos mitreisen kann. Treibstoff braucht man dann nur noch, damit man in der Nähe dieser Lagrange-Punkte, benannt nach dem Mathematiker Joseph-Louis Lagrange bleibt. Etwas korrigieren muss man schon, denn zum einen wird unser Drei-Körper-System ja auch von anderen Massen gestört, und zum anderen gibt es an den Lagrange-Punkten nichts, worum man kreisen könnte.
Es sind Punkte, bei denen sich die Zugkräfte auf unsere Sonde der im system befindlichen großen Massen, addieren, subtrahieren oder ergänzen.

Eine Sonde im Sonne-Erde-System

Hier betrachten wir stets die Sonne, die von der Erde umkreist wird. Als dritter Körper nehmen wir eine Raumsonde, die unterschiedliche Aufgaben, je nach dem, wo wir sie parken, wahrnehmen kann.

Der Platz an der Sonne

Bei Sonnen-Missionen ist man natürlich daran interessiert, möglichst viele Sonnenstunden zu haben, am bessten immer. Kein Tag-Nacht-Rhythmus oder ein Mondschatten soll die Beobachtung stören, und wenig Treibstoff soll die Sonde natürlich auch verbrauchen, denn wir wollen sie ja lange nutzen.
Der beste Parkplatz für so eine Sonde ist der Lagrange-Punkt eins. Er liegt zwischen Erde und Sonne.
An diesem Punkt ziehen Erde und Sonne gleich stark von gegenüberliegenden Seiten an der Sonde, und halten sie auf diesem Punkt fest. Da die Erde deutlich weniger Masse als die Sonne besitzt, liegt dieser Punkt näher an der Erde.
Er liegt ungefähr 1,5 Mio Kilometer von der Erde aus gesehen in Richtung Sonne. Das ist gerade mal ein Prozent der ganzen Strecke Erde-Sonne.
Und was an dem Punkt noch praktisch ist, die Erde zieht unsere Raumsonde mit sich auf ihrer Umlaufbahn um die Sonne. Somit hat die Sonde den Stern stets im Blick und die Antenne für die Daten zeigt immer brav in Richtung Erde. Klar, die Erde dreht sich natürlich einmal täglich unter der Sonde hindurch, das stört aber nicht, weil es Empfangsantennen für die Daten um den ganzen Erdball verteilt gibt, oder man speichert die Daten und schickt sie dann zur Erde, wenn sich die Heimat-Antenne unter der Sonde vorbei bewegt. Und wenn nicht gerade eine Sonnenfinsternis stattfindet, dürfte nicht mal der Mond mit seinem Schatten störend durch den Datenstrahl zur Erde laufen. Wir merken also: Der LagrangePunkt L1 Erde-Sonne ist ein idealer Parkplatz für Beobachtungen unseres Sterns, des Sterns von dem wir leben.

Im Schatten

Wer wünscht sich im Sommer keinen Parkplatz unter einem schattigen Baum.
Bei vielen Missionen ist es auch so, dass gerade die Sonne mit ihrer Wärme und ihrem Licht stört. Aus diesem Grunde parkte man die beiden WeltraumteleskopeHerschel und Planck, die u. A. Beobachtungen im Infrarot-Bereich, also Wärme, machen sollten, in L2(Erde-Sonne). Dieser liegt von der Sonne aus gesehen 1,5 Mio Kilometer hinter der Erde auf einer Linie mit Erde, L1 und der Sonne.
Aktuell befindet sich dort Das Weltraumteleskop Gaia, das im Schatten der Erde Sterne zählt und katalogisiert.
Das astronomisch teure und viel verspätete Teleskop, James Webb, ist ebenfals in diesem schattigen Platz geparkt. Punkt
Das benötigt trotz Erdschatten noch einen Wärmeschutz, der größer als ein Tennis-Feld ist und Instumente müssen noch aktiv gekühlt werden, damit die Instrumente für das infrarote Licht, die Wärmestrahlung, empfindlich werden. Die Bahnen, welche diese L2-Missionen um diesen Punkt beschreiben, sind so gewählt, dass zumindest ihre Sonnensegel aus dem Erdschatten in die Sonne ragen, um Strom zu ernten.
Was verleiht aber nun diesem Punkt so interessante Eigenschaften?
Nach den Keplerschen Gesetzen und der Newtonschen Mechanik ist es so, dass ein Planet um so länger braucht, um seinen Stern zu umrunden, desto weiter er von ihm entfernt ist. Länger braucht er nicht nur deswegen, weil er mit zunehmender Entfernung eine weitere Strecke zurück legen muss, sondern weil er sich tatsächlich auch langsamer auf seiner Umlaufbahn bewegt. Das kann man leicht nachvollziehen, wenn man sich die Umlaufzeiten, die Entfernungen und die Bahnlängen unserer Planeten um die Sonne betrachtet. Dabei kann man ruhig mal kreisförmige Bahnen annehmen. Befindet sich unsere Sonde in L2, dann addieren sich die Massen von Sonne und Erde so günstig, dass die Sonde die selbe Umlaufgeschwindigkeit als die Erde um die Sonne hat. Die hätte sie auch dann, wenn die Erde nicht da wäre, und die Sonne selbst um das Gewicht der Erde schwerer wäre. Somit wird es möglich, dass die Sonde ohne viel zu tun, einfach mit der Erde mitreisen kann. Der Antrieb wird dann nur dazu benötigt, um sie in der Nähe des Punktes zu halten, denn durch äußere Einflüsse anderer Himmelskörper würde sie diesen mit der Zeit verlieren, und entweder zurück auf die Erde fallen, oder ins Weltall verschwinden.

Wo liegt die „Gegenerde“?

Im Fall Sonne-Erde liegt der dritte Lagrange-Punkt auf der uns gegenüberliegenden Seite der Sonne, knapp 190 km weiter weg von der Sonne als die Erde. In diesem Punkt bewirken die (gleichgerichteten) kombinierten Anziehungskräfte von Erde und Sonne wieder eine Umlaufdauer, die gleich der der Erde ist.
Schwurbler vermuten hier eine „Gegenerde“ die man nie zu sehen bekommt.
Meines Wissens kann man mit diesem Punkt in der Raumfahrt nicht viel anfangen, weil kein Funkkontakt zur Erde möglich wäre. Die risige Sonne mit ihrem eigenen Radio-Programm wäre immer störend im Wege.

Trojaner und blinde Passagiere

L4 und L5 solcher Systeme sind für Asteroiden-Forscher interessant.
Sie bilden jeweils ein Dreieck mit den beiden massereichen Körpern eines derartigen Systems. Beim System Erde-Sonne läge dann die Sonne auf einer, die Erde auf der zweiten und die Sonde auf der dritten Ecke dieses Dreiecks.
Im Falle Erde-Sonne liegt in Bewegungsrichtung der Erde um die Sonne gedacht, L4 60 Grad vor und L5 60 Grad hinter der Erde.Diese beiden Punkte sind sogar relativ stabil, weil die Sonde von den Anziehungskräften von Erde und Sonne quasi in der Zange gehalten wird.
Manchmal kommt es vor, dass sich ein kleiner Asteroid als blinder Passagier in L4 oder L5 eines solchen Systems parkt. Unsere Erde führt einen sog. Trojaner in einem dieser Punkte mit. Auch bei Jupitermonden hat man schon Trojaner gefunden. Die Raumsonde Lucy wird diese Trojaner des Jupiters besuchen.
Für die Sonnenforschung sind L4 und L5 auch spannend, denn von dort aus kann man die Sonne etwas seitlich beobachten. Damit könnte man dann einen Sonnensturm nicht nur frontal betrachten, sondern würde ihn vorbei ziehen sehen.

Zweites Beispiel – Das Erde-Mond-System

Selbstverständlich bildet auch die Erde, der Mond und alles, was dort hin möchte, so ein Drei-Körper-System. Das muss man wissen, und kann es auch geschickt nutzen, wenn wir als Menschheit wieder in Richtung Mond aufbrechen wollen.

Der Punkt ohne Rückkehr

Der Abstand zu L1(Erde-Mond) ist für Mondfahrer interessant. Er liegt etwa 326.000 Kilometer in Richtung Mond. Der Abstand Erde-Mond beträgt im Mittel 384.400 Kilometer. Da der Mond deutlich weniger Masse als die Erde besitzt, liegt dieser L1 natürlich näher bei ihm. Befindet man sich näher als dieser Abstand beim Mond, dann wird man von ihm angezogen. Das bedeutete für die Apollo-Missionen, dass es von da ab nicht mehr möglich war, ohne Triebwerk zur Erde zurück zu fallen (Point of no return).

Die dunkle Seite

L2(Erde-Mond) liegt auf der Rückseite des Mondes, die uns stets abgewandt ist.
Vom Erdmittelpunkt aus gemessen, liegt der Punkt 449 km entfernt knapp hinter dem Mond auf der Verbindungslinie Erde-Mond, auf welcher sich auch L1 dieses Systems befindet. Bis vor kurzem war dieser Punkt für die Raumfahrt nicht sehr spektakulär. Das änderte sich jedoch, seit China einen Rover und eine Sonde auf der Rückseite des Mondes landete.
Der Kommunikationssatellit von Chang’e-4 ist am L2-Punkt geparkt (genauer umkreist L2). Somit stellt er Funkkontakt vom Lander und Rover zur Erde her.

L3 Erde-Mond liegt auf der Verbindungslinie Erde-Mond, etwa 382,500 Kilometer hinter der Erde vom Mond aus betrachtet. Das wäre dann der Platz für einen Gegenmond, den es, wie wir wissen, nicht gibt. Ansonsten hätten wir den schon entdeckt.

Erde und Mond spannen mit der Sonde in L4 und L5 des Systems wieder Dreiecke auf. Vielleicht werden diese Punkte mal für die Kommunikation bei der Erforschung des Mondes wichtig. Trojaner befinden sich dort meines Wissens momentan keine.

Epilog

So, jetzt hoffe ich, dass ich das einigermaßen anschaulich auch ohne Bild beschreiben konnte.
Seit heute, 22.02.2024 besitze ich eine taktile Geburtstagskarte, die die Lagrange-Punkte darstellt. Dank an mein Team für diese Karte. Damit kann ich richtig viel anfangen. Sie hat mir gezeigt, dass ich mit meinen Vorstellungen richtig lag.

Ich kann nicht einfach mal etwas einfach so hin zeichnen. Allerdings tue ich das im Kopf trotzdem.
Ich stelle es mir ungefähr so vor:
Wenn ich über Gaia in L2 erzähle, dann ist es in meiner Vorstellung so, dass ich mit der Sonde fliege, fast, dass ich die Sonde bin.
Ich höre dann quasi hinter mir die Erde mit ihrem Schatten und schaue mit meinem Kopf dorthin, wo gaia hin sehen soll.
Sie beschreibt eine Lissajous-Figur um L2, wofür sie Treibstoff benötigt.
Das mit der Lissajous-Figur ist zwar etwas theoretischer, aber ich weiß, dass Gaia immer so fliegen muss, damit ihre Sonnenpaddel aus dem Erdschatten kommen, um Sonnenenergie zu tanken.
Gaja vollführt noch eine Drehung um sich selbst. Die lassen wir hier mal in der Vorstellung besser weg, um jegliche Raumkrankheit zu vermeiden.

Willkommen auf Blindnerd.de


Herzlich willkommen auf meinem Blog Blindnerd.de.
Die Adresse dieses Blogs drückt aus, was ich bin. Ich bin tatsächlich ein von geburt an zu 100 % blinder nerd. Wer sich für Wissenschaft und Technik, vor allem für die Astronomie und das Weltall interessiert, ist hier genau richtig.
Nur einen Unterschied gibt es. Die Themen werden stets aus der „Sicht“ eines Menschen mit Blindheit, betrachtet. Ich möchte hier mit euch teilen, was mich in meinem Leben fasziniert, wofür ich mich begeistere und wie gerne ich mich derartigen Themen nähere und austausche.
Der Blog mag für viele eine neue Leseerfahrung sein, denn ich versuche weitgehend ohne Bilder auszukommen, und bemühe mich, genau immer die eintausend Worte zu finden, die ein Bild angeblich sagt…
Ein großes Anliegen ist mir aufzuzeigen, dass gerade in der Astronomie sich ein unglaublich großes Potential für Inklusion bietet. Darüber schrieb ich das Buch „Blind zu den Sternen – Mein Weg als Astronom“.
Alles zum Buch und meiner Person
findet ihr in der Menüleiste unter dem Punkt „Zu meinem Buch“.

Ganz wichtig ist mir auch, dass die Wissenschaft nicht trocken, langweilig und kompliziert sein muss. Somit findet sich in meinen Artikel kaum Mathematik, die keiner versteht. Viele Beiträge enthalten interessante Geschichten und Anekdoten über Wissenschaftler:innen, ihre Entdeckungen und sonstige Bezüge in alle Lebensbereiche hinein.
Frauen in Natur- und Technikwissenschaften sind nach wie vor unterrepräsentiert. Grund genug, solche starke Wissenschaftlerinnen in einer eigenen Kategorie zu versammeln und zu würdigen. Auch das ist Inklusion.

Man kann mich auch gerne für einen Vortrag oder Workshop buchen.
Ich darf auf weit über 150 Veranstaltungen für alle Altersgruppen und Schichten für Menschen mit und ohne Einschränkungen blicken, die ich an unterschiedlichsten Orten durchführen durfte. Was hier möglich ist, findet sich leicht in meinen Jahresrückblicken in den Kategorien Inklusion und Jahreslauf.

13 Kategorien und eine Volltextsuche helfen, sich in den mittlerweile schon fast dreihundert Artikeln zurecht zu finden. Für Nutzer:innen von Hilfstechnologie, z. B. Screenreader gibt es im Menü einen Punkt zur Barrierefreiheit, wo alle zahlreichen Navigations- und Suchmöglichkeiten erklärt werden.

Selbstverständlich kann Mensch mir auf dem Blog auch via Mail oder RSS-Feed folgen, worüber ich mich sehr freue. Dann verpassen sie und ihr nichts mehr.
Und wer den Kontakt zu mir sucht, kann das sehr gerne über das Kontaktformular tun.
Jetzt lade ich alle ganz herzlich ein, auf dem Blog zu stöbern. Für Rückmeldungen Themenvorschläge, und Kritik, bin ich immer sehr dankbar.

Herzlich grüßt
der Blindnerd.