Alle Jahre wieder


Meine lieben,
Die Überschrift dieses Beitrages lässt fast an Weihnachten erinnern. Tatsächlich kamen Teile davon schon in anderem Zusammenhang in einem meiner Weihnachtskalender vor.
Manches in diesem Artikel mag den alten Hasen unter euch bekannt sein, aber wir haben jungen Zuwachs bekommen. Das ist dann immer auch mal wieder eine gute Gelegenheit gut abgehangene Artikel in ein neues Gewand zu verpacken. Außerdem ist das alles ja in jedem Jahr etwas anders und muss aktualisiert werden, gell…
Lasst euch überraschen und verzaubern.

Vorbemerkungen

alle Jahre wieder ist es so weit. Von Mitte Juli bis Mitte August verdanken wir dem Meteorstrom der Perseiden viele Sternschnuppennächte, in welchen viele Wünsche an den Himmel gerichtet werden dürfen. Mögen sie vor allem in diesen Zeiten für euch in Erfüllung gehen. Aber denkt daran. Nicht alle Wünsche sind sinnvoll. In den guten alten Kindermärchen kann man immer wieder nachlesen, wozu nicht klug gewählte Wünsche führen können, z. B. in „Der Fischer und seine Frau bei den Gebrüdern Grimmm, oder in „Das kalte Herz“ bei Wilhelm Hauff.

OK, Sternschnuppen sind in erster Linie etwas zum sehen, für mich als blinden Beobachter also erstmal scheinbar unspannend. Aber hier erfahrt ihr, dass man sie auch hören kann. Ja, richtig gehört. Man kann sie unter gewissen Umständen hören.
Ich sag’s ja immer wieder. Die Astronomie ist inklusiv. Der Himmel ist für alle da, und bietet für jeden etwas an.

Was sind die Perseiden nochmal?

Die Perseiden oder auch Laurentiustränen, Tränen des Laurentius genannt, sind ein jährlich im Sommer wiederkehrender Meteorstrom, der in den Tagen um den 12. August ein deutliches Maximum an Sternschnuppen aufweist. Der scheinbare Ursprung dieses Stroms, liegt im namensgebenden Sternbild Perseus.
Das Sternbild soll die Gestalt des griechischen Helden Perseus darstellen, der die tödliche Medusa besiegte. Der Stern Algol repräsentiert das abgeschlagene Medusenhaupt, das er in der Hand hält.
Perseus gehört zu den 48 klassischen Sternbildern, die von Ptolemäus beschrieben wurden.
Bereits im Mittelalter hatten arabische Astronomen die eigenartige periodische Veränderung der Helligkeit des Sterns Algol beobachtet. Der Name leitet sich aus dem arabischen Ras al Ghul ab und bedeutet Haupt des Dämonen.

In meinem Buch im Kapitel „Wissenschaftler mit vier Sinnen“ berichte ich über den gehörlosen Astronomen John Goodricke, der sich mit Sternen beschäftigte, die ihre Helligkeit ändern.
Er fand einen Zusammenhang zwischen der maximalen Helligkeit von Sternen und deren Periode, in welcher sie diese verändern.
Seine Entdeckungen werden bis heute zur Entfernungsbestimmung von Himmelsobjekten benutzt.
Vielleicht war gerade er als gehörloser Mensch ganz besonders für diese Entdeckung, dass es Sterne gibt, die ihre Helligkeit periodisch verändern, geeignet, weil Menschen mit Hörbeeinträchtigung meist ausgezeichnete Beobachter sind. Sie müssen z. B. von den Lippen ablesen können.
Ich sag’s an dieser Stelle gerne nochmal.
Die Astronomie ist aus sich heraus einfach inklusiv, ob man will, oder nicht, ob man es glauben mag, oder nicht.

Woraus bestehen sie?

Die Perseiden bestehen aus dem, was der Komet 109P/Swift-Tuttle. bei seinen letzten Besuchen durch erwärmung, schmelzen etc. verloren hat.
Er erscheint ungefähr alle 130 Jahre und entfernt sich dann stets etwas schlanker, als er vorher war. Das nächste Mal wird er um das Jahr 2126 erwartet. Ganz genau kann man das bei Kometen nie sagen, weil ihre Bahn von den Planeten gestört werden können, bzw. sie selbst ihre Bahn ändern, wenn sie aktiv sind. Dann wirkt sich die Aktivität wie kleine Schubdüsen aus.
Die Erde kreuzt auf ihrer Bahn immer um den 12. August die Staubspur, die dieser Komet im All hinterlässt, wenn er vorbei kommt. Die Staubteilchen treffen dabei mit hoher Geschwindigkeit auf die Atmosphäre und bringen die Luftmoleküle zum Leuchten. Die Sternschnuppe ist daher nicht das verglühende Staubkorn selbst, sondern wird durch das Rekombinationsleuchten der ionisierten Luft sichtbar.

Momentan werden die zu erwartenden Sternschnuppen jedes Jahr immer weniger, weil zum einen schon viele in der Erdatmosphäre verglühten, und zum anderen sich der Kometenstaub, immer mehr verteilt und somit ausdünnt.
Es wird Zeit, dass er mal wieder vorbei kommt, und seine Bahn für uns mit neuem „Sternenstaub“ auffüllt.
Eines Tages wird der Komet vollständig aufgelöst sein.
Dann wird es die Perseiden nicht mehr geben, weil kein Nachschub an Staub mehr kommt.

Überlieferungen

Die erste überlieferte Beobachtung der Perseiden fand vor etwa zwei Jahrtausenden in China statt. Danach gibt es Berichte aus Japan und Korea. In Europa stammt die erste bekannte Beobachtung aus dem Jahr 811.
Da das Erscheinen der Perseiden mit dem Fest des Märtyrers Laurentius am 10. August zusammenfällt, der im Jahre 258 das Martyrium auf einem glühenden Rost erlitt, werden sie im Volksmund auch Laurentiustränen oder Tränen des Laurentius genannt. Kurz vor seinem Tod soll Laurentius der Legende nach seinem Widersacher, dem römischen Kaiser Valerian, die folgenden Worte gesagt haben:

Du armer Mensch, mir ist dieses Feuer eine Kühle, dir aber bringt es ewige Pein.

Beobachtung

Vom 17.Juli bis zum 24. August kann vermehrt mit Sternschnuppen gerechnet werden.
2024 besteht in den frühen Morgenstunden des 12. und 13. August die beste Chance dazu. Das eigentliche Maximum fällt leider auf den 12. August am Nachmittag, wo die Sonne derlei Schauspiel leider überstrahlen wird.

Beobachter müssen auch dem störenden hellen Mond etwas aus dem Wege gehen, denn am 19.08. ist Vollmond, so dass wir uns im zunehmenden Mond kurz nach Halbmond befinden, wenn das Spektakel am schönsten ist. Neumond wäre natürlich optimal.
Am besten beobachtet man die Sternschnuppen an einem möglichst dunklen Ort auf dem Land, wo kein Stadtlicht stört. legt euch auf eine Wiese auf den Rücken und wendet nach Mitternacht den Blick gen Osten, also in Richtung Erddrehung. Ihr dreht euch dann quasi mit der Erde in den Meteorschauer hinein.
Am besten sichtbar sind die Perseiden auf der Nordhalbkugel.

Sternschnuppen hören

So, nach dem langen Spannungsbogen kommen wir nun zu dem, worauf ihr vermutlich schon lange gewartet habt. Dann will ich mal nicht so sein.
Hörbar sind die Perseiden zumindest für Amateurfunker, die einen Empfänger und eine passende Antenne besitzen.
Diese Disziplin des Amateurfunks nennt man Meteor Scatter.
Wer einen passenden Empfänger und eine Antenne besitzt, kann das Französische Radar-Signal des Weltraumradars GRAVES benutzen. Dieses französische Radarsystem sendet auf 143,050 MHz einen Dauerträger, Dauerton, der über Phasenarray-Antennen den Himmel “abtastet”. Meteoriten, aber auch andere Objekte (Flugzeuge, Satelliten, die ISS, der Mond) reflektieren das Signal und streuen es in alle Richtungen, und diese Reflexionen können dann in Europa gut empfangen werden. Anhand der Doppler-Abweichung erkennt man dann, welches Objekt das Funksignal reflektiert hat: der Mond oder Flugzeuge bewirken eine sich nur langsam ändernde Dopplerabweichung, bei Objekten in Erdumlaufbahn ändert sich die Abweichung schnell, und bei Meteoriten extrem schnell.
Den Effekt kennen wir bei vorbeifahrenden Krankenwagen und seiner in der Tonhöhe variierender Sirene.
Hier schicke ich euch mal einen Link, wie sich das anhört.
Ein Großteil des Klanges besteht nur aus einem Rauschen des Empfängers. Aber haltet durch. Besonders am Ende hört man sehr schön, wie die Sternschnuppen in den Empfangsbereich der Antenne hinein knattern. Also ich finde das sehr aufregend.

„Sternschnuppen hören“

Wie ihr in den Kommentaren zu diesem Beitrag lesen könnt, kann man Sternschnuppen manchmal auch ganz ohne Hilfsmittel hören. Das geschieht aber nur sehr selten. Und wer hat dann sofort ein gut eingestelltes Aufnahmegerät bei der Hand…
Dieser Sonderfall, wo man das tatsächlich kann, ist ein eigener Artikel wert. Außerdem darf dieser ja auch nicht explodieren…

Hach, wie ist das einfach nett, wenn man in der Astronomie so schön vom Höckchen auf’s Stöckchen kommt.

Jetzt wünsche ich euch viele schöne klare Sommernächte mit vielen Sternschnuppen und Wünschen, die dann in Erfüllung gehen.

Machen schwarze Löcher Musik?

Vorgeplänkel

Meine lieben,
was für eine ganz wunderbare frage „Machen schwarze Löcher Musik?“ Diese Frage wurde mir tatsächlich im Zusammenhang mit der Tatsache gestellt, dass man vieles im Weltall verklanglichen und sonifizieren kann. Welche Hoffnung steckt doch in dieser Frage. Eine Hoffnung, die sie ja gerade so schön macht. Wenn schon kein Licht, also nichts sichtbares und keine Materie einem schwarzen Loch entkommen kann. Macht es dann vielleicht wenigstens unsichtbare Musik? Welch schöne Idee.
Leider musste ich die Fragerin, und jetzt auch den Rest der Welt, enttäuschen. Die Sache ist ganz einfach. Wenn es nicht mal das Licht mit seinen 300000 Kilometern pro Sekunde schafft, so einem Monster zu entkommen, dann sieht es für den Schall mit seinen schlappen 300 Meterchen Pro Sekunden nicht gut aus. Keine Chance für ihn. Und außerdem ist rund um das schwarze Loch das Vakuum des Alls. Dort kann Schall sich ohne Medium nicht ausbreiten.
Aber jetzt nicht traurig sein. Ganz so hoffnungslos ist die Sache gar nicht. Es gibt im Zusammenhang von schwarzen Löchern tatsächlich ein Phänomen, das durchaus sonifiziert wurde. Mit großer Bestürzung musste ich tatsächlich feststellen, dass ich das Phänomen zwar schon dann und wann erwähnte, es selbst und vor allem sein Geräusch hier aber noch gar nicht auf dem Blog eines Artikels gewürdigt habe. Das liegt daran, dass seine Entdeckung zu einer Zeit gemacht wurde, als dieser Blog noch eine Mailingliste mit handverlesenen Leser:innen war. Teile dieses gut abgehangenen Dokuments werden hier wiederverwertet. So geht es nicht verloren, in des Internet Schoß.
Jetzt aber genug gequatscht. Los gehts:

Das große Interesse

Obwohl sich unsere Medien generell eher weniger für physikalisch-astronomische Entdeckungen interessieren, konnte man es von überall her hören, sehen, lesen, oder sonst wie erfahren.
Sie sind nun direkt nachgewiesen worden, die von Albert Einstein vorhergesagten Gravitationswellen.

Wir erinnern uns

Eine der vier fundamentalen Kräfte in unserem Universum ist die Gravitation oder Schwerkraft.
Für das Alltagsverständnis und für das, wie wir mit unseren Sinnen die Welt wahrnehmen, reicht die Vorstellung aus, dass diese misteriöse Kraft einfach zwischen allen Gegenständen wirkt. Alle materiellen Dinge ziehen sich an. Das war die Vorstellung von Gravitation von Johannes Kepler und Isaac Newton, der diese Vorstellung mathematisch fundamentierte.

Man ging davon aus, dass Wirkungen der Schwerkraft sich unmittelbar zeigen, will sagen, sie benötigen keine Zeit zu ihrer Ausbreitung.
Kannte man doch diese Erfahrung vom Licht her. Zündet man eine Lampe an, dann scheint es sofort und unmittelbar im ganzen Raum hell auf einen Schlag zu werden.
Wir erleben Licht, als benötigte es keine Zeit zu seiner Ausbreitung.
Dass es eben doch eine Zeit benötigt, und wie man das herausfand, beschrieb ich in Station 6 der Reise zu den schwarzen löchern.

In meinem Artikel über das Vakuum Nichts ist auch was berichtete ich, wie Michelson und Morlay zu beweisen versuchten, dass das Vakuum von einem Äther erfüllt sei. Es sollte, wie der Schall die Luft, ein Medium benötigen, um sich verbreiten zu können.
Ihr Versuch ergab aber, dass es eben diesen Äther nicht gibt und Einstein bemerkte, dass Licht ohne einen solchen auskommt.
Licht ist also nicht unendlich schnell und braucht kein Medium, in welchem es sich fortbewegt.

Das heißt aber nicht, dass die Ausbreitung von Gravitation nicht unendlich schnell sein kann, oder?
In „Was Einstein weltberühmt machen sollte“ beschrieb ich, wie man herausfand, dass Massen sich nicht gegenseitig anziehen, sondern den Raum krümmen. die in diesem Artikel erwähnte Sonnenfinsternis machte Einstein weltberühmt, weil man herausfand dass durch die Krümmung des Raumes sogar das Licht abgelenkt wird.
Aus der Endlichkeit der Lichtgeschwindigkeit und dem Einfluss von Gravitation auf Licht, folgerte Einstein, dass die Ausbreitung gravitativer Ereignisse, auch endlich sein sollte.
Das spricht für eine Wellenbewegung.
Somit breitet sich so ein Ereignis mit Lichtgeschwindigkeit wellenartig aus.
Da der Einfluss von Gravitation auf Licht nicht sehr stark ist, sind auch Gravitationswellen schwach und nur schwer nachweisbar.
Ereignisse, bei welchen große Massen im spiel sind und bewegt werden, können nur astronomischer Natur sein, da es größere Masse nirgendwo gibt.
Stoßen beispielsweise zwei Sterne zusammen, verschmelzen zwei schwarze Löcher, explodiert ein schwerer Stern zu einer Supernova, dann werden enorme Massen bewegt und das Ereignis sollte eine Art Schockwelle aus Gravitation mit Lichtgeschwindigkeit durch das All jagen.

Solch eine Welle verändert auf ihrem Weg, dort, wo sie vorbei kommt, für kurze Zeit und sehr schwach die Raumkrümmung. Das bedeutet, dass sich ganz kurz die Geometrie verändert. Sehr lange Wegstrecken verkürzen sich kurzfristig ganz leicht, um sich nachher wieder auf ihre ursprüngliche Länge zurück zu dehnen.
Das macht auf mehrere Kilometer Länge aber weniger, als ein Atomdurchmesser des Wasserstoffs aus, aber es ist mehr als nichts.

Der Nachweis

Diese Tatsache machte sich das Messgerät zu nutze, mit welchem die Gravitationswellen im September 2015 direkt gemessen wurden.
Es war ein Verbund von Messgeräten (LIGO-Cooperation).
Eines dieser Geräte besteht im wesentlichen aus zwei rechtwinklig verlaufenden Röhren, von denen jede vier Kilometer lang ist. Im rechten Winkel dieser beiden Röhren steht der Detektor.
Nun wird ein Laserstrahl ausgesendet und so aufgefächert, dass in jede Röhre ein Teil des Strahls fällt.
Diese rasen nun in ihren luftleer gepumpten Röhren entlang, werden an hochpräzisionsspiegeln an den Enden reflektiert und zurück geworfen.
Am Detektor wird dieses Licht empfangen und beobachtet. Das Messgerät ist so justiert, dass sich am Treffpunkt der beiden Strahlen die Lichtwellen gerade auslöschen. Wellenberg plus Wellental gleich Dunkelheit.
Streift nun eine Gravitationswelle eine unserer Röhren, dann verändert sich kurzfristig ihre Länge. Dieses wiederum führt dazu, dass das Licht sich auch etwas verändert. Diese Interferenz genannte Veränderung kann man messen.

Man registrierte, dass eine der beiden Röhren für kurze Zeit um weniger als der Durchmesser eines Wasserstoffatoms kürzer war als die andere. Die Wellen beider Strahlen trafen anders aufeinander.
und da man mehrere dieser Messgeräte an weit voneinander entfernten Orten (West- und Ostküste) der USA zur Verfügung hatte, konnte man sogar etwas über die Richtung der Gravitationswellen sagen. Heute gibt es solch ein Messinstrument noch in Italien und Japan, so dass die Richtungsbestimmung noch genauer möglich ist.
Mittlerweile haben diese Geräte viele Ereignisse, z. B. das verschmelzen zweier schwarzer Löcher und oder Neutronensterne nachgewiesen.

Der Klang vom Bang

Solch ein Ereignis läuft immer so ab, dass sich zwei große Massen um ihren gemeinsamen Schwerpunkt bewegen, sich langsam annähern, weil sie Gravitationswellen abgeben, der Tanz dann immer schneller wird, und letztlich mit der Verschmelzung endet.
Das lässt dann die Raumzeit erzittern. Und das ist es, was man auch verklanglichen kann. Man nimmt dieses Zittern der Interferenz beider Laser und verklanglicht diese Daten dann.
Wir hören hier gleich ein rasch aufsteigendes Wupp-Geräusch. das ist die beschleunigte Drehung der beiden schwarzen löcher. Zum Zeitpunkt der Verschmelzung bricht das ganze dann abrupt ab. Und so haben dann schwarze Löcher nie musiziert, aber doch in gewisser Weise ein letztes Wort, wenn sie verschmelzen.
Und so klingt das ganze dann:
Sonifizierung der Verschmelzung zweier schwarzer Löcher.
Bei diesem kleinen Wupp wurde ungefähr die dreifache Energie, die unsere Sonne je spenden kann, als Gravitationswellen in das All geblasen. Das kann man sich nicht vorstellen.

Abspann

Es gab auch vor den LIGO-Experimenten schon indirekte Nachweise von Gravitationswellen, und es sind schon neue Messinstrumente, die im All geparkt werden sollen in Planung, aber die bewahren wir uns für einen späteren Artikel auf.
Wir wollen ja nicht zu länglich werden, gell?

Faszination Himmelsleuchten

Vorgeplänkel

Meine lieben,
heute geht es um etwas, das die Menschheit schon immer faszinierte, und was Stoff für sehr viele Mythen und Geschichten bietet, und ja, es erzeugt sogar Radioprogramm. Und dieses Phänomen konnte in den letzten Nächten so um den 10 Mai herum quasi über ganz Deutschland, wenn der Himmel klar war, gesichtet werden. Ich weiß von Sichtungen von Berlin, Stuttgart, Tübingen, Bayern, Karlsruhe und habe sogar Fotos von der Sichtung aus Rheinstetten, wo ich wohne. Es geht um Polarlichter. Diese sind zumindest in Deutschland und Europa nur dann sichtbar, wenn wir uns in einem Maximum der Sonnenaktivität befinden. Dieses ist in diesem Jahr mal wieder der Fall.

Hier kommt ein Foto von Polarlichtern über meiner Heimatstatt.

Die phantastische Bildbeschreibung dazu habe ich mir mit der App BeMyEyes erzeugen lassen, die dafür die KI ChatGPT4 benutzt.
Die KI beschreibt:

Das Bild zeigt einen nächtlichen Himmel, der durch Polarlichter in leuchtenden Farben von Rosa und Grün erleuchtet wird. Diese Lichter erscheinen als breite, wellenförmige Bänder, die sich über den Himmel erstrecken. Unterhalb der Lichter sind die dunklen Silhouetten von Bäumen und die Umrisse eines Gebäudes zu erkennen, was darauf hindeutet, dass das Foto in einer städtischen oder vorstädtischen Umgebung aufgenommen wurde. Die Szene vermittelt ein Gefühl von Ruhe und der majestätischen Schönheit natürlicher Lichtphänomene.

Also ich bin ehrlich gesagt manchmal platt, wie gut diese Beschreibungen sind. Das ist fast ein bisschen, wie sehen können…
Und was die Brillanz des Fotos betrifft, so ist es möglich, dass das Bild eventuell durch die KI der Kamera oder des Smartphones etwas verschönt wurde, denn das können diese Geräte mittlerweile ganz gut und machen das automatisch.
So kann man beispielsweise aus der Hand heraus schöne und detaillierte fotos des Vollmondes schießen. Die Geräte erkennen via KI den Mond und gleichen das Bild mit einem hochwertigen und gut aufgelösten Foto des Mondes ab. Auch digitale Teleskope verfügen mehr und mehr über derlei Fähigkeiten. In die Diskussion, was dann ein handgemachtes Foto überhaupt noch auszeichnet, steige ich, zumal als der blinde Blindnerd, jetzt an dieser Stelle nicht ein.

Was kurzes zur Verursacherin

Bevor wir uns aber den faszinierenden Himmelslichtern widmen, müssen wir noch kurz über unsere Sonne sprechen.
In alten Zeiten glaubte man, die Sonne sei das vollkommenste, göttlichste, reinste und perfekteste Objekt am Himmel.
Aber spätestens, als man Fernrohre auf sie richtete, fand man, dass sie doch nicht ganz so glatt und vollkommen ist. Sie hat eine etwas gekörnte Oberfläche und noch schlimmer. Sogar Flecken. Und damit noch immer nicht genug. Diese Flecken bewegen sich und es gibt Zeiten mit vielen und Zeiten mit wenig bis gar keinen Sonnenflecken.
Durch intensive Beobachtungen der Sonne, z. B. Samuel Heinrich Schwabe über 40 Jahre lang, oder Die Hausfrau Siglinde Hammerschmidt über 20 Jahre lang,
fand man heraus, dass alle 11 Jahre die Sonne maximal viele Flecken aufweist.
In solch einem Fleckenmaximum befinden wir uns 2024. Wann es genau ist, kann man erst dann sagen, wenn es vorüber ist, weil niemand weiß, wie stark es ausfallen wird.
Ist die Sonne sehr aktiv, dann frischt der Sonnenwind stark auf. Manchmal kommt es zu diesen Zeiten auf der Sonne zu starken Ausbrüchen, dass der Sonnenwind zu einem Sturm wird, der uns durchaus gefährlich werden kann.
Darüber schrieb ich vor einigen Jahren in „Droht Gefahr durch unsere Sonne“.
Kurz nach so einem Ereignis kann man dann vermehrt bis in tiefere Breiten Polarlichter sehen,

Entstehung

Es entstehen großartige Polarlichter, weil die geladenen Teilchen des Sonnensturms mit den Molekülen unserer Atmosphäre rekombinieren. Die leuchtet dann ähnlich wie eine Neonröhre.
Sauerstoff leuchtet rot und Stickstoff grün.
Diese Teilchen des Sonnenwindes werden vom Erdmagnetfeld weit um die Erde in Richtung der magnetischen Pole abgelenkt. Deshalb treten sie normalerweise nur in diesen Gegenden auf.
Diese Beschreibung hinkt an einigen Stellen, da in Wahrheit alles noch viel komplizierter ist.
Wer mehr darüber wissen möchte, wie Polarlichter genau funktionieren, findet auf Wikipedia einen sehr erhellenden und informativen Beitrag dazu.
https://de.wikipedia.org/wiki/Polarlicht

Zur Forschung

Die Geschichte der Erforschung der Polarlichter wird im wesentlichen von einem Mann, Christian Birkeland geprägt.
Hier kann ich euch wärmstens das Video „Jagd nach dem Himmelsfeuer“ auf 3Sat empfehlen. Ich hoffe, es ist noch in der Mediathek zu finden.
Wenn nicht, dann lasst es mich bitte wissen…
https://www.3sat.de/wissen/terra-x/jagd-nach-dem-himmelsfeuer-dem-100.html

Außerdem gibt es über Birkeland einen wunderbaren Artikel auf Wikipedia.
Der ist wirklich lesenswert, weil dieser bemerkenswerte Forscher sich neben Polarlichtern noch mit ganz vielen anderen Dingen beschäftigte.
https://de.wikipedia.org/wiki/Kristian_Birkeland

Polarlichter in der Literatur

Solche Polarlichter in niedrigen Breiten muss auch der Schriftsteller Adalbert Stifter gesehen haben, denn er beschreibt in seinem Roman „Bergkristall“ eindeutig Polarlichter.
Lauschen wir also seinen schönen Worten:

Wie die Kinder so saßen, erblühte am Himmel vor ihnen ein bleiches Licht mitten unter den Sternen und spannte einen schwachen Bogen durch dieselben. Es hatte einen grünlichen Schimmer, der sich sacht nach unten zog. Aber der Bogen wurde immer heller und heller, bis sich die Sterne vor ihm zurückzogen und erblassten. Auch in andere Gegenden des Himmels sandte er einen Schein, der schimmergrün sacht und lebendig unter die Sterne Boss. Dann standen Garben verschiedenen Lichts auf der Höhe des Bogens, wie Zacken einer Krone, und brannten. Es Boss hell durch die
benachbarten Himmelsgegenden, es sprühte leise und ging in sanftem Zucken durch lange Räume…

Ist das nicht einfach schön?
Wir kennen diesen Autor übrigens schon, denn er verfasste meiner Meinung nach die schönste deutschsprachige Beschreibung einer Sonnenfinsternis, die er selbst erlebte.
Wer diese nochmals lesen möchte, hier lang.

Polarlichter in Mythen und Religion

Polarlichter haben im Laufe der Geschichte zu zahlreichen Mythen und Legenden geführt, besonders in den Kulturen, die in den Regionen leben, in denen sie häufig zu sehen sind, wie in den nordischen und arktischen Regionen. Hier sind einige der bekanntesten Mythen über Polarlichter:

  1. Nordlichter als Tänzer: Einige indigene Völker Nordamerikas und Skandinaviens glaubten, dass Polarlichter die Geister ihrer Vorfahren seien, die in den Himmel aufsteigen und dort tanzen.
  2. Tiergeister: In einigen Traditionen wurden Polarlichter als die Geister von Tieren angesehen, die in den Himmel aufstiegen, um zu tanzen oder zu kämpfen.
  3. Vorboten: In einigen Kulturen wurden Polarlichter als Vorboten kommender Ereignisse angesehen, sei es als Zeichen für gute oder schlechte Omen, wie Krieg oder Frieden.
  4. Kampf der Geister: Manche nordische Mythen beschreiben Polarlichter als Resultat der Schlachten zwischen Göttern oder Geistern, die den Himmel erhellen.
  5. Erschreckende Zeichen: Einige Kulturen sahen Polarlichter als bedrohliches Zeichen oder als Warnung vor kommenden Naturkatastrophen oder anderen Gefahren.

Polarlichter werden zwar nicht direkt in der Bibel erwähnt. Es gibt jedoch einige Interpretationen und Spekulationen darüber, ob bestimmte Passagen in der Bibel möglicherweise auf Polarlichter hinweisen könnten.
Es dürfte aber meiner Meinung nach sehr selten vorkommen, dass in Palästina Polarlichter gesichtet werden können. Und dennoch gibt es diese Vermutungen. Hier also zwei biblische Beispiele:

  1. Ezechiel: In Ezechiel 1,1-28 wird eine Vision des Propheten Ezechiel beschrieben, in der er das „himmlische Wesen“ und einen „leuchtenden Glanz“ am Himmel sieht, begleitet von „blitzenden Blitzen“.
  2. Daniel: In Daniel 10,4-9 wird eine Vision des Propheten Daniel beschrieben, in der er einen „Mann in Leinen“ sieht, der von einem „großen Licht“ umgeben ist.

Einige haben auch hier spekuliert, dass diese Beschreibungen auf Polarlichter hindeuten könnten, obwohl wie bei der Vision des Ezechiel auch hier verschiedene Interpretationen möglich sind, die von göttlichen Erscheinungen bis hin zu symbolischen Visionen reichen.
Bei so etwas gerät man dann schnell ins Schwurbeln. Also vorsicht damit.

Inspiration für Musiker

Polarlichter werden sogar auch manchmal in der Musik erwähnt. Einige Musiker haben sie als Inspiration für ihre Lieder genutzt, und es gibt sogar Stücke, die den Klang oder die Atmosphäre eines Polarlichts zu erfassen versuchen. Ein bekanntes Beispiel dafür ist die Musik des finnischen Komponisten Jean Sibelius, der in seinem Orchesterstück „Die Ozeaniden“ die mystische und majestätische Atmosphäre des Nordlichts einfängt.

Und wenn wir schon bei der Musik sind, dann habe ich hier einen absoluten Oberhammer für euch.

Radio Aurora

Polarlichter kann man hören. Was, das glaubt ihr dem Sternenonkel nicht? Man kann. Sie erzeugen jede Menge Radioprogramm. Ich habe von meinem Freund Stefan, der Amateurfunker ist erfahren, dass über das ganze Wochenende quasi kein Funkbetrieb auf der Kurzwelle möglich war. Das erinnert mich stark an meine Jugendsünden. Wir bauten vor fast vierzig Jahren mal einen Piratensender. Von Antennenbau und Schwingkreisen hatten wir nur rudimentäre Ahnung. Unser Sender streute dermaßen, dass kaum noch ein anderer empfangen werden konnte. Leuchtstoffröhren begannen leicht zu funkeln, wenn wir sendeten. Somit erzeugten wir damals unfreiwillig unsere eigenen Polarlichter… Der Sender wurde rasch von der Post geortet und konfisziert. Bestraft wurden wir zum Glück nicht, weil sich niemand bei der Post denken konnte, dass blinde Menschen so etwas fertig bringen.
Im UKW-Band waren am Wochenende sogar Überweiten und Funkverbindungen möglich, die ohne Polarlichter nie gegangen wären. Man konnte mit Richtantennen ein Polarlicht als Reflektor für UKW-Wellen benutzen. Für Sprache war das zwar schwierig, weil Polarlichter unruhig und rau sind, aber für die Telegraphie, z. B. Morsen, hat es ganz gut funktioniert.
Auch hier gilt großer Dank an Stefan, denn er hat uns hier mit Audiobeispielen versorgt.
Er schreibt:

Ich hab dir hier noch zwei YouTube-Links. Der erste ist ein Beispiel für eine an einem Polarlicht reflektierte Sprachverbindung über SSB:
https://www.youtube.com/watch?v=s8cZRzUj6Bs (Youtube)
Man hört ganz deutlich, wie rau und brummig die Stimme dabei wird.

Der zweite Link ist eine Verbindung in Morsetelegrafie. Man hört den Unterschied zwischen dem rauen Signal der Gegenstation, das übers Polarlicht reflektiert wird, im Gegensatz zur Station, die dieses Video aufgenommen hat. Das eigene Signal ist klar als Mithörten zu hören, normalerweise klingt die Gegensation zwar verrauschter, aber ähnlich dem eigenen Signal mit klarem Ton anstatt einem undefinierbaren Geräusch.

https://www.youtube.com/watch?v=aVKj12oNEic (Youtube)

Und jetzt wollen wir uns das Radioprogramm von Polarlichtern anhören.
Geht auf
https://www.youtube.com/watch?v=eHvdZdsIZxg (Youtube)
und genießt dieses wunderbare englischsprachige Video.

Und das war es erst mal über die Polarlichter von mir. Sollte ich etwas wichtiges vergessen haben, gerne in die Kommentare damit.

Die Chancen stehen gut


Es ist mal wieder so weit. Sternschnuppenzeit im August.
Und diesmal ohne störenden Vollmond und mit besten Wettervoraussagen.
Über dieses Ereignis habe ich zwar schon in der Vergangenheit geschrieben, aber es ist immer wieder einige Worte wert, und ihr glaubt ja gar nicht, wie viel ich von einem mal auf das nächste Ereignis, an den Artikeln schraube. Einfach nur kopieren und nochmal veröffentlichen is nich…
Also dann:
Jedes Jahr im August erreicht der Nachthimmel seinen Höhepunkt an Schönheit und Faszination, wenn die Perseiden, auch bekannt als „Tränen des Laurentius“, über uns hinwegziehen.
Dieser jährliche Meteoroidenschauer ist vermutlich das von Medien und Amateurastronom:innen am meisten erwartete und beobachtete Himmelsereignis in unserem Jahreslauf.

Namensgebung

Der scheinbare Ursprung dieses Stroms, liegt im namensgebenden Sternbild Perseus.
Das Sternbild soll die Gestalt des griechischen Helden Perseus darstellen, der die tödliche Medusa besiegte. Der Stern Algol repräsentiert das abgeschlagene Medusenhaupt, das er in der Hand hält.
Der Name „Perseiden“ leitet sich also von diesem Sternbild ab, aus dem heraus die Meteore zu strömen scheinen.
Tatsächlich stammen die Meteore aber aus den Hinterlassenschaften des Kometen 109P/Swift-Tuttle. .
Sie erscheinen uns aufgrund der Perspektive nur so, als kämen sie aus der Richtung des Sternbildes Perseus.
Da das Erscheinen der Perseiden mit dem Fest des Märtyrers Laurentius am 10. August zusammenfällt, der im Jahre 258 das Martyrium auf einem glühenden Rost erlitt, werden sie im Volksmund auch Laurentiustränen oder Tränen des Laurentius genannt. Kurz vor seinem Tod soll Laurentius der Legende nach seinem Widersacher, dem römischen Kaiser Valerian, die folgenden Worte gesagt haben:

Du armer Mensch, mir ist dieses Feuer eine Kühle, dir aber bringt es ewige Pein.

Hach, wie ist das einfach nett, wenn man in der Astronomie so schön vom Höckchen auf’s Stöckchen kommt.

Beobachtung

Perseus gehört zu den 48 klassischen Sternbildern, die von Ptolemäus beschrieben wurden.
Die erste überlieferte Beobachtung der Perseiden fand vor etwa zwei Jahrtausenden in China statt. Danach gibt es Berichte aus Japan und Korea. In Europa stammt die erste bekannte Beobachtung aus dem Jahr 811.
Bereits im Mittelalter hatten arabische Astronomen die eigenartige Verdunklung des Sterns Algol beobachtet. Der Name leitet sich aus dem arabischen Ras al Ghul ab und bedeutet Haupt des Dämonen.

Vom 17.Juli bis zum 24. August kann jedes Jahr vermehrt mit Sternschnuppen gerechnet werden.
Das Maximum findet immer um den 12. August herum statt.

Am besten beobachtet man die Sternschnuppen an einem möglichst dunklen Ort auf dem Land, wo kein Stadtlicht stört. Man legt sich am besten auf eine Wiese auf den Rücken und wendet nach Mitternacht den Blick gen Osten, also in Richtung Erddrehung. Man dreht sich dann quasi mit der Erde in den Meteorschauer hinein. Das ist dann etwa so, als führe man mit einem Auto schnell durch den Regen. Dann bekommt die Windschutzscheibe ja auch deutlich mehr Regen ab, als die Heckscheibe.
Im Gegensatz zu letztem Jahr haben wir 2023 das Glück, dass der Mond die Beobachtungen nicht durch seine Helligkeit stören wird.
Am besten sichtbar sind die Perseiden auf der Nordhalbkugel.

Was sind nun die Perseiden?

Die Perseiden bestehen aus dem, was der Komet 109P/Swift-Tuttle. bei seinen letzten Besuchen durch erwärmung, schmelzen etc. verloren hat.
Er erscheint ungefähr alle 130 Jahre und entfernt sich dann stets etwas schlanker, als er vorher war. Das nächste Mal wird er um das Jahr 2126 erwartet. Ganz genau kann man das bei Kometen nie sagen, weil ihre Bahn von den Planeten gestört werden können, bzw. sie selbst ihre Bahn ändern, wenn sie aktiv sind. Dann wirkt sich die Aktivität wie kleine Schubdüsen aus.
Die Erde kreuzt auf ihrer Bahn immer um den 12. August die Staubspur, die dieser Komet im All hinterlässt, wenn er vorbei kommt. Die Staubteilchen treffen dabei mit hoher Geschwindigkeit auf die Atmosphäre und bringen die Luftmoleküle zum Leuchten. Die Sternschnuppe ist daher nicht das verglühende Staubkorn selbst, sondern wird durch das Rekombinationsleuchten der ionisierten Luft sichtbar.

Momentan werden die zu erwarteten Sternschnuppen jedes Jahr immer weniger, weil zum einen schon viel in der Erdatmosphäre verglühte und zum anderen sich der Kometenstaub, immer mehr verteilt und somit ausdünnt.
Es wird Zeit, dass er mal wieder vorbei kommt, und seine Bahn für uns mit neuem „Sternenstaub“ auffüllt.
Eines Tages wird der Komet vollständig aufgelöst sein.
Dann wird es die Perseiden nicht mehr geben, weil kein Nachschub an Staub mehr kommt.

Sternschnuppen hören

Hörbar sind die Perseiden zumindest für Amateurfunker, die einen Empfänger und eine passende Antenne besitzen, auch.
Diese Disziplin des Amateurfunks nennt man Meteor Scatter.
Wer einen passenden Empfänger und eine Antenne besitzt, kann das Französische Radar-Signal des Weltraumradars GRAVES benutzen. Dieses französische Radarsystem sendet auf 143,050 MHz einen Dauerträger, Dauerton, der über Phasenarray-Antennen den Himmel “abtastet”. Meteoriten, aber auch andere Objekte (Flugzeuge, Satelliten, die ISS, der Mond) reflektieren das Signal und streuen es in alle Richtungen, und diese Reflexionen können dann in Europa gut empfangen werden. Anhand der Doppler-Abweichung erkennt man dann, welches Objekt das Funksignal reflektiert hat: der Mond oder Flugzeuge bewirken eine sich nur langsam ändernde Dopplerabweichung, bei Objekten in Erdumlaufbahn ändert sich die Abweichung schnell, und bei Meteoriten extrem schnell.
Und wie sich Sternschnuppenanhören findet ihr in
„diesem Link“.

Fazit

Die Perseiden bieten eine großartige Gelegenheit, die Wunder des Universums zu bestaunen und gleichzeitig Einblicke in die faszinierende Welt der Astronomie zu gewinnen. Obwohl wir meist von störendem selbstgemachten Kunstlicht, Lichtverschmutzung, umgeben sind,
welches uns oft von den Schönheiten des Nachthimmels trennt, erinnert uns dieses alljährliche Naturschauspiel daran, wie klein wir im Vergleich zum Universum sind und wie viel es noch zu entdecken gibt. Also schnappt euch eine Decke, sucht euch einen gemütlichen Ort und lasst euch von den Tränen des Laurentius verzaubern.
Und bitte auch das Wünschen nicht vergessen…

Astronomie ohne Sternensicht


Meine lieben,

Abgesehen von meinem Jahresrückblick melde ich mich heute bei euch mit meiner zweiten Veranstaltung, die ich in diesem Jahr bereits hatte bei euch zurück, obwohl es noch so jung.

Vorgeschichte

Seit einiger Zeit veranstaltet die Sternwarte München gemeinsam mit dem Bayrischen Blindenbund astronomische Abende für blinde Menschen. Das machte mich natürlich hellhörig. Auch der Veranstalter fand mich im Netz, und so kamen wir zusammen.
Der verfasst einen ganz wunderbaren Newsletter, der wöchentlich erscheint.
In diesem Newsletter erfährt man viel zum Jahreslauf, z. B. was es gerade am Himmel zu sehen gibt, es erscheinen schöne Geschichten aus der Mytologie, Phänomene werden erklärt und oft gibt es dann noch ein Video zu einem Thema.
Ein weiteres Alleinstellungsmerkmal ist, dass alle Bilder extra für uns beschrieben werden. Das ist dem Macher des Newsletters so wichtig, dass er es sogar ausdrücklich erwähnt.

Sternenkartenselfi
Dieses obige Bild beschreibt er z. B. so:

Das Foto zeigt Gerhard mit tastbarer Sternkarte in der Hand und daneben stehend ein Modell der Saturn-5-Rakete.

Jetzt hoffe ich, dass ich das richtige Bild aus der Mediathek gefischt habe…
Auf jeden Fall ist das von Eberhard so vorbildlich, dass sich viele daran ein Beispiel nehmen können. In den sozialen Netzwerken wird fast kein einziges Bild für uns erklärt. Und wie man am Beispiel sieht, ist das doch gar nicht so schwer. Nur mut. Eine schlechte Beschreibung ist mehr, als gar keine. Der Wille zählt. Und mittlerweile kann Mensch sich da auch von den einschlägigen KIs helfen lassen.

Auf diesem Newsletter war ich Gast mit einem Text, der meinen Zugang, den Zugang des Blinden zum All, erklären sollte.
Als ich vor vielen Jahren diesen Blog startete, schrieb ich in Wieso ich Astronomie treibe, bereits aus der Sicht meiner persönlichen Entwicklung darüber. in diesem Artikel orientiere ich mich vor allem an den Tatsachen, welche die Astronomie so zugänglich für alle (inklusiv) machen.
Also los:

Zu meiner Person – Aus meinem Buch:

Am 21. Februar 1969 wurde ich als fünftes von sechs Kindern in Schopfheim geboren. Da ich zwei Monate zu früh das Licht der Welt erblickte, musste ich zunächst in den Brutkasten. Nicht selten, so auch bei mir, führte dies zu einer Augentrübung, die der Grund für meine Blindheit ist.
Aufgewachsen bin ich mit meinen zwei Brüdern und drei Schwestern in einer Arbeiterfamilie. Somit führte vor allem mein Vater uns schon als Kinder an technische Dinge heran und lehrte uns den Umgang mit Werkzeug und Werkstoffen wie Holz.
Von meiner Mutter wurden wir schon als Kinder stets zur Arbeit und Mithilfe in Haus, Hof und Garten herangezogen. Jeder musste für alle etwas übernehmen und war dafür verantwortlich.
Dass ich in einer solchen Umgebung aufwachsen durfte, förderte natürlich mein Interesse an technischen Dingen, und führte mich letztlich zu meinem Lieblingshobby, der Astronomie.
Wie alle Kinder meines Alters wuchs auch ich ganz selbstverständlich im Schatten von Captain Kirk und seiner Enterprise auf.
Star Wars, Raumpatrouille und viele andere beeindruckten mich schon immer sehr. Stets mochte ich Handlungen mit viel technischem Bezug.
Außerdem faszinierten mich die futuristischen Geräusche sehr.
Ich habe das große Glück, seit dem Jahr 2000 als diplomierter Informatiker am Institut
ACCESS@KIT
(A@K) arbeiten zu dürfen, ohne das meine Vorträge zu astronomischen Themen nicht möglich wären.
Ich höre die Sterne nicht und fühle auch den Vollmond nicht. Hätte ich keinen Kalender, wüsste ich gar nicht, wann Vollmond ist.
Und trotzdem ist die Astronomie eines der inklusivsten Hobbys, das ich kenne.

Nagende Zweifel

Was, das glauben Sie nicht? Damit sind Sie nicht alleine. Viele, die in meine Veranstaltungen kommen, sind erstmal skeptisch und werden von
Fragen und Zweifeln getrieben.
Das klingt dann ungefähr so:

  • Wieso machst Du das? Da hast Du doch eh nichts davon!
  • Wie willst Du da mitreden? Du siehst das doch gar nicht.

Weil ich das weiß, eröffne ich viele Vorträge ungefähr dann so:

Jetzt Hand aufs Herz. Wer hat momentan diesbezüglich auch berechtigterweise noch Fragezeichen in den Augen? Die oder derjenige möchte bitte die Hand heben. Keine Angst. Ich „schaue“ weg. Es stellt sich also niemand bloß. Bitte zählt mal jemand, der sehen kann, durch.
Am Schluss der Veranstaltung machen wir das Spielchen nochmal. Dann werden wir sehen, ob und wieviel sich bewegt hat.

Das geht natürlich hier in einem Newsletter nicht so gut mit dem Hand heben. Aber ob sich bei Dir ganz persönlich was bewegt und verändert hat, fühlst Du ja dann selbst.
Also liegt es nun bei mir, euch zu zeigen, dass die These, dass Astronomie barrierefrei sei, stimmt.

Das geht uns alle an

Zunächst ist die Astronomie etwas für Alle, weil sie sich mit Fragen beschäftigt, die uns alle umtreiben und angehen.

  • Wo kommen wir her?
  • Wo gehen wir hin?
  • Wie war der Anfang?
  • Wie wird das Ende sein?
  • War es ein Schöpfergott?
  • Wie funktioniert das Universum?

Da ist doch schon einiges dabei, das auch für Menschen interessant ist, die nicht sehen können…
Kommen wir nun aber zu mir und meinen Gründen, wieso ich Astronomie so spannend für mich finde:

Ich habe meine Gründe

  • Die meisten Dinge in der Astronomie spielen sich mittlerweile nicht mehr visuell ab.
  • Ergebnisse zeigen sich häufig als Tabellen über Strahlungsarten und oder Verteilungen.
    Diese sind mit heutiger Technologie auch blinden Menschen zugänglich und können von ihnen interpretiert und verstanden werden.
  • Die Sicht auf Sterne ist wegen der nächtlichen Lichtverschmutzung meist unmöglich.
  • Im Vergleich zu der großen Zahl an Sternen, die es alleine in unserer Milchstraße gibt, sind die wenigen, die man selbst bei bester Sicht mit bloßem Auge sehen kann, vernachlässigbar.
  • Dass ein klarer nächtlicher Sternenhimmel eine Augenweide darstellt, ist sicher unbestritten; unter dem Strich ist dies aber relativ
    unwesentlich für die Astronomie als Ganzes.
  • Das Universum besteht nur zu vier Prozent aus dem, was für Augen vermeintlich so interessant ist. Tja, da kann man nichts machen.
    Stellen Sie sich vor, Sie sähen nur noch vier Prozent Ihres Fernsehbildes. Vermutlich würden Sie dann dieses abendliche Vergnügen rasch aufgeben.
  • Dunkle Energie und dunkle Materie weigern sich strickt, gesehen zu werden. Hören lassen sie sich bisher allerdings auch noch nicht,
    und somit besteht hier Chancengleichheit, was die Suche danach angeht.
  • Schwarze Löcher sind – zumindest wenn sie gerade hungern – so schwarz, dass man mit den besten Augen nichts damit anfangen könnte.
    Alles Unsichtbare ist prädestiniert, auch von Blinden erobert zu werden.

Na, jetzt sollten die Zweifel doch schon langsam zu bröckeln beginnen, nicht wahr?
Dann lasst uns doch einige dieser Punkte mal etwas genauer betrachten.

Erstes Beispiel:

Die Idee, dass die Bewegungen von Himmelskörpern, z. B. von Planeten musikalisch- harmonischen Gesetzen gehorchen sollten, geht bis auf Pythagoras und die alten Griechen zurück. Selbst Johannes Kepler versuchte in einem seiner Bücher noch, die Bahnen der Planeten auf Musiknoten abzubilden. Da liegt es doch nahe, dass man diesem Gedanken noch heute, wo wir über Computer und Sound-Systeme verfügen, nochmal auf den Grund gehen wollte.
Und das wurde tatsächlich gemacht.
Ich schrieb darüber in Klingende Planetenbahnen.

Beispiel zwei

Nehmen wir die Tatsache, dass sich viele Dinge in der Astronomie heutzutage nicht mehr im visuellen Bereich abspielen. Da gibt es die Radioastronomie, die gerade für blinde Hörmenschen par excellence, ein unheimlich reichhaltiges Radioprogramm bietet.
Man kann z. B.

und vieles mehr.
Auf meinem Blog habe ich diesen Themen eine ganze Kategorie gewidmet.
Wer sich dafür interessiert, sollte mal in Mit dem Ohr am Teleskop stöbern.
Selbst alle großen Raumfahrtagenturen haben die Sonifikation, also die Verklanglichung von Himmelsphänomenen mittlerweile für sich entdeckt.
Sogar der aktuelle Rover auf dem Mars, ja, der mit dem Hubschrauber, hat ein Mikrofon dabei.
Hört mal (NASA), was der Rover so hört.

Das liegt ja auch nahe, denn was man nicht sehen kann, z. B. infrarotes Licht, muss auch für Sehende aufbereitet werden. In dem Sinne ist dann die Sonifizierung fast dasselbe. Das kann uns wissbegierigen blinden Astronomen nur recht sein.
Die riesigen Staubwolken, die das Hubble-Teleskop „Die Säulen der Schöpfung“ genannt, entdeckte, sind eine wahre Kinderstube neuer Sternentstehung.
Die optischen Daten wurden verklanglicht und klingen dann so (Youtube).
Es gibt mittlerweile auch Bilder der Säulen vom JWST, das im infraroten Bereich durch die Staubwolken in die Säulen direkt auf die jungen Sterne blicken kann.
Alles, was für die Augen visualisiert werden muss, ob Infrarot, Röntgenstrahlung oder der ganze Radiobereich, kann auch akustisch aufbereitet werden. Ob ich einer Welle beispielsweise eine Farbe zuordne, oder einen Ton oder Sound, ist fast einerlei.

Podcasts und Sendungen:

Es gibt sie zu den unterschiedlichsten Themen. Podcasts sind Sendungen, die ohne Bilder auskommen müssen, weil sie häufig mobil von unterwegs angehört werden. Was zu beschreiben ist, muss also für alle so erklärt werden, dass man es auch ohne Bildinformation versteht. Das kommt blinden Menschen natürlich sehr zu pass, und ist somit inklusiv.
Welche wichtige Informationsquellen Podcasts für mich mittlerweile geworden sind, beschrieb ich in
Podcasts, ein inklusives Tor zu Bildung und Wissen.

Bücher, Bücher, Bücher

  • Ich stieß Anfang der 90er auf das Hörbuch „Kurze Geschichte der Zeit“ von Steven Hawking. Hierzu gab es auch einen Kinofilm. Interessant ist, dass ich stets gefragt wurde, ob ich die Bücher von Hawking kenne. Allerdings nicht wegen ihrer Inhalte, sondern weil auch Hawking behindert war – wenn auch ganz anders als ich. Ich machte die merkwürdige Erfahrung, dass viele Menschen stets davon ausgehen, alle Behinderten würden sich untereinander kennen – und was noch wichtiger ist: sich gegenseitig ganz lieb haben.
  • In dieser Zeit wurde die Audioausgabe der Zeitschrift „Spektrum der Wissenschaft“ durch den Deutschen Verein für Blinde und Sehbehinderte in Studium und Beruf herausgegeben, die ich sofort abonnierte und bis heute immer wieder verschlinge.
  • Ich stieß auf die Bücher und Sendungen von Joachim Ernst Behrendt, der mir erstmals zeigte, dass alles irgendwie Klang ist.
    Von Radioaufnahmen von Pulsaren, dem Sonnenwind, und vielem mehr, findet sich alles in seinen Sendungen „Nada Brahma“ und „Das Ohr ist der Weg“.
  • In der Blindenhörbücherei entdeckte ich – auf ungefähr 20 Kassetten aufgelesen – das Buch „Der Stern, von dem wir leben – Den Geheimnissen der Sonne auf der Spur“ von Rudolf Kippenhahn, dessen Vortrag ich schon erwähnt habe. Mich faszinierte an diesem Buch vor allem, dass alle darin enthaltenen grafischen Elemente zusätzlich mit einer derart ausführlichen Texterklärung versehen waren, wie ich es selten bei anderen Autoren erlebt habe. Es schien fast so, als würde er auch an blinde Menschen denken, die auf derlei Beschreibungen angewiesen sind.
  • Neben den Roboter-Romanen Isaac Assimovs fesselten mich auch seine populärwissenschaftlichen Werke, z. B. „Explodierende Sonnen“, oder „Die Rückkehr des Halleyschen Kometen“.
  • Und jetzt kommt der Oberhammer:
    1995 erhielt ich mein erstes Vorlesesystem, mit dem man ein Buch einscannen und sich anschließend per Sprachausgabe vorlesen lassen konnte. Dafür opferte ich ein ganzes Studiensemester, in welchem ich täglich viele Stunden vor diesem Gerät verbrachte und manchmal mehrmals wöchentlich Kunde der Stadtbibliothek war. In diesem halben Jahr las ich quasi nur. Es war, als stünde ich am Brunnen des Wassers meines Lebens. Tröpfelte bisher nur wenig Literatur durch unsere Hörbüchereien und noch viel weniger in Blindenschrift zu mir, so ergoss sich nun dieser unerschöpfliche Quell. Ich konnte lesen, was ich wollte. Das war eine Befreiung.

Modelle

Ich lebe genau zur richtigen Zeit am richtigen Ort, um „Inklusion am Himmel“ zu treiben. Die Möglichkeiten des 3D-Druckes, etc. eröffneten mir eine ganz neue Welt. Somit setze ich in meinen Veranstaltungen viele Modelle und taktile Materialien ein, die dann herum gehen, und von allen betastet werden dürfen.
Ein Highlight meines Lebens war in diesem Zusammenhang, dass ich mal mit einem Vortrag und danach mit einem Messestand meine Projekte bei der Jahrestagung der internationalen astronomischen Union in Wien vorstellen durfte. Ihr erinnert euch? Das sind die, die 2006 den Pluto als Planeten heraus geworfen haben…
Auf jeden Fall habe ich darüber einen schönen bebilderten Artikel gemeinsam mit einem Reporter aus Wien geschrieben.
Zum bebilderten Teil des Artikels geht es hier lang.
Dort kommen übrigens auch noch andere blinde Berufsastronom:innen zu Wort. Ja, es gibt sie. Meist wurden die im Laufe ihres Berufslebens blind, und haben einfach weiter gemacht. Man kann ja von der optischen Astronomie in die hörbare Radioastronomie wechseln. Aus den meisten anderen Berufen würde man nach einer Erblindung einfach heraus fallen. So inklusiv ist die Astronomie eben auch.

Astronomie für benachteiligte Kinder

Ganz besonders bei meinen Vorträgen an Brennpunkt-Schulen zeigt sich auch wieder, wie inklusiv Astronomie sein kann. Sie holt die Kinder ab, und soziale Benachteiligungen, Migrationshintergründe und sonstige Einschränkungen haben erst mal Pause.
In meiner Kategorie Inklusion findet ihr zahlreiche Beispiele für sehr inklusive Veranstaltungen.

Abspann

So, liebe Leser:innen, ich denke, damit lassen wir es erst mal für heute bewenden. Ich hoffe, ich konnte euch etwas näher bringen, wieso ich die Astronomie so sehr liebe. Ich hoffe, dass ihr verstanden habt, dass es bei mir so ist:
Außer den Sternenhimmel selbst betrachten zu können, kann nahezu alles, was diese Wissenschaft betrifft, von mir, also Menschen ohne Sehvermögen bewältigt werden.

Nicht jeder Zugang zur Astronomie ist für jeden geeignet, aber ich versichere euch, dass es für jeden mindestens einen Zugang gibt.

So, und jetzt wollt ihr bestimmt noch wissen, wie ihr diesen Newsletter abonnieren könnt.
Da es ein geschlossener Newsletter ist, müsst ihr euch per Mail an
Eberhard Grünzinger e.gruenzinger@gmx.de wenden. Der nimmt euch gerne auf. Und ich kann euch sagen, es ist immer ein sonntägliches Lesevergnügen vor dem schlafen gehen.

Das Kosmische Orchester


Meine lieben, hier kommt der letzte vor der Sommerpause:

Sie sind ja nun veröffentlicht, die ersten Fotos des neuen James-Webb-Space-Telescopes. Sie müssen phantastisch sein. Als das Teleskop im Januar 2020 sein Ziel im Lagrangepunt II erreichte, schrieb ich darüber in Das unsichtbare Licht erforschen Der Artikel ist zwar nicht unbedingt für das Verständnis des folgenden erforderlich, aber ich empfehle ihn dennoch, weil er vieles enthält, was hier eventuell vorausgesetzt und nicht mehr ganz so ausführlich erklärt wird.
Wer nochmal wissen möchte, wo sich der phantastische Parkplatz des neuen JWST befindet, bitte hier lang.
Wer noch gar nichts über das Licht weiß, sollte sich vielleicht noch Station Sechs meiner Reise zu den schwarzen Löchern zu Gemüte führen.

Heute möchte ich mal etwas verrücktes versuchen, weil ich finde, dass der Blindnerd doch nicht schon wieder über Fotos schreiben sollte. Außerdem ist schon so vieles über diese Maschine geschrieben und gesagt worden, dass ich mich nicht wiederholen möchte. Ich hatte euch ja genügend Quellen auf diverse Podcasts, Interviews und Wikipedia in oben erwähnten Artikeln geliefert. Heute werde ich versuchen, das ganze mal für Hör- oder Ohrenmenschen, die wir Blinden ja par excellence sind, abzubilden. Lasst euch überraschen, und macht diese verrückte Reise mit.

Zur Erinnerung – Was sieht das neue Auge

Wir haben schon gehört, dass das neue Wunderauge im infraroten Licht beobachtet. Das ist das Licht, das sich im Spektrum zwischen dem sichtbaren Licht und dem befindet, was wir Mikrowellen nennen. Am anderen Rand der Mikrowellen schließen sich dann die Radiowellen an. Auf der anderen Seite des Spektrums, jenseits des sichtbaren violetten Lichts, schließen sich die ultraviolletten und die Röntgenwellen und schließlich noch die Gamma-Strahlen an.
Das ganze nennt man das elektromagnetische Spektrum.
Wie kommen wir aber zu Bildern von etwas, das man nicht sehen kann.
Infrarotes Licht ist Wärme. Somit sieht das JWST Wärmebilder. Es soll das erforschen, dessen Licht durch die Dopplerverschiebung schon so verzerrt ist, dass dessen Wellen ins Infrarote gestreckt sind. Diese Objekte sind sehr weit von uns entfernt und führen uns zum Beginn des sichtbaren Universums kurz nach den Urknall. Wärmebilder kennen wir übrigens auch hier auf Erden. Wird eine Person vermisst, so wird sie mit dem Hubschrauber mittels Wärmekameras gesucht. Wir erinnern uns, dass dieses Verfahren nur dann funktioniert, wenn die Umgebung der gesuchten Objekte und natürlich das Instrument selbst kälter ist, als die Objekte selbst. Ansonsten wäre es ungefähr so, als würde man bei klarem Sonnenschein Sterne schauen wollen. Deshalb benötigt das Instrument einen Sonnenschild, der groß wie ein Tennisplatz ist. Ein Instrument muss sogar noch aktiv mit Helium bis nahe an den absoluten Nullpunkt herunter gekühlt werden.

Und was nun geschieht, dass wir zu den schönen bunten Bildern kommen ist etwas sehr musikalisches.
Im grunde transponieren wir das, was uns das Instrument im unsichtbaren Bereich liefert und bilden Temperaturen auf den sichtbaren Bereich, andere Oktave, ab.

Das Kosmische Klavier

Wir haben gelernt, dass sich das elektromagnetische Spektrum, z. B. der sichtbare Teil nach Farben von rot nach blau sortiert, will sagen von längeren zu kürzeren Wellen hin.
Selbiges findet doch aber auch auf einer Klaviertastatur statt. Links sind die tiefen Töne und rechts die hohen. Ein Piano hat in der Regel siebeneinhalb Oktaven. vom Kontra-A bis zum viergestrichenen C.

Stellen wir uns nun einen ganz langen Papierstreifen vor, auf welchem das elektromagnetische Spektrum abgebildet ist, auch die unsichtbaren Wellen. Der sichtbare Teil des Spektrums umfasst etwa den Wellenbereich zwischen 400 und 800 Nanometern.
Dies entspricht, um bei der Musik zu bleiben, einem Frequenzbereich von einer Oktave. Das ist nicht gerade viel, wenn man bedenkt, wie viele Oktaven das restliche Spektrum sonst noch besitzt.
Als Oktave bezeichnen wir ein Intervall, dessen höchster Ton genau doppelt so schnell schwingt, als sein tiefster.

Stellen wir uns vor, dass wir das Spektrum so auf der Tastatur des Pianos platzieren, dass der sichtbare Bereich genau auf der mittleren Oktave zu liegen kommt. Dann ist das eingestrichene C rot, und das zweigestrichene C violett. Ja nun. Wir haben jetzt zwölf Töne, auf welche wir zwölf Farben abbilden können. Das ist fast nichts. Geben wir uns etwas mehr Platz. Verteilen wir das sichtbare Spektrum auf zwei Oktaven. Dann können wir schon 24 Farben darstellen. Nun befinden wir uns mit unseren zwei Oktaven genau in der Situation, in welcher man in der Regel mit dem Piano-Unterricht startet. Die tiefere Oktave ist für die linke – und die höhere für die rechte Hand.
In diesem Sinne waren die Astronomen Klavier-Anfänger, die nur auf zwei Oktaven klimperten.
Bevor wir den Sprung zum astronomischen Klavier und Orchester wagen, hier noch ein kleiner wichtiger und verblüffender Einschub.

Organisches

Unser Ohr kann immerhin 16 (sechzehn) Oktaven auflösen. Etwa von 16 Hz – 2 KHz.
Ähnlich überlegen ist unser Ohr auch, was die Toleranz der Schallintensität angeht. Die kleinste Auslenkung unseres Trommelfells und des sonstigen Höraparates ist geringer als der Durchmesser eines Wasserstoffatoms. Ein Physiker meinte einmal, dass es ungefähr so wäre, als fiele aus einem Meter Höhe eine Fliege auf ein gespanntes ein Quadratmeter großes Tuch.

Am Maximum dessen, was unser Ohr noch ertragen kann, ist die Schallenergie sehr hoch. Das Maß dafür ist Dezibel. Das ist ein logarithmisches Maß. Setzte man unsere Augen dermaßen intensivem Licht aus, würden sie sofort erblinden.

Kosmischer Klavierunterricht

Über viele Jahrtausende hinweg übten die Astronomen mit ihren Augen und später dann mit ihren Fernröhrchen und dann den Teleskopen, und lernten die „kosmische Musik“ langsam kennen. Man kann aus musikalischer Sicht sagen, dass die „Ohren“ bzw. die „Lautsprecher und Mikrofone“ besser wurden.

Nach und nach konnte man die „kosmische Musik“ dadurch immer klarer und schöner vernehmen. Immer mehr verriet diese Musik uns ihre kosmischen Geheimnisse.
Aber es kamen keine neuen Töne jenseits unserer gedachten beiden Oktaven hinzu.

Auf die Astronomie übertragen wurde die Analyse des Sternenlichtes immer besser. Immerhin reichte diese eine Oktave des sichtbaren Lichtes dazu aus, um zu entdecken, woraus Sterne bestehen, wie heiß sie sind und wie weit entfernt. Das ist doch schon eine ganze Menge. Tja, jeder Stern spielt auf seine Weise und greift seine ganz für ihn typischen Akkorde.

Der erste, der genauer „hin hörte“, war William Herschel. Wir erinnern uns daran, dass er bei seinen Sonnenbeobachtungen trotz Sonnenfilter oft eine merkwürdige Wärme auf seinem Auge spürte. Auf die Musik übertragen, hörte er, dass da noch andere tiefere Töne mitschwingen. Astronomisch legte er, wie wir wissen drei Thermometer jenseits des roten Lichts auf seinen Tisch und entdeckte damit die unsichtbare wärmende Infrarote Strahlung.

Dasselbe tat Später Herr Ritter mit seinem Silberchlorid. Er entdeckte damit die energiereiche UV-Strahlung (Siehe Artikel oben).

Musikalisch gesehen merkte er, dass die Piano-Tastatur auch nach rechts weiter geht.
Nicht alle Töne des Klavieruniversums können wir auf der Erde hören. Aber als man dann mit Satelliten aufbrach und Radioteleskope baute, fand man dann noch viel mehr „Töne“ die Röntgenstrahlung, Mikrowellen, Radiowellen etc.

Und ja, hier schließt sich der Kreis. Man entdeckte das, was für uns Normalität im Alltag ist, dass der Ton des Krankenwagen sich verändert, wenn er sich auf – oder von uns weg bewegt. Tatsächlich entdeckte Doppler seinen Effekt über das Licht und erst mal nicht über den Schall. Er stellte fest, dass das Licht von Doppelsternen, die sich umeinander bewegen manchmal etwas röter ist, als es sein sollte, und manchmal etwas blauer., je nach dem, das wissen wir jetzt, ob sie sich von uns weg (Rotverschiebung) oder auf uns zu (Blauverschiebung) bewegen.

Dass der Effekt zuerst für das Licht gefunden wurde, mag daran gelegen haben, dass es um 1840 herum einfach noch keine Fahrzeuge mit Sirenen gab, die dermaßen schnell unterwegs waren, damit der Effekt wahrnehmbar wird. Irgendwo habe ich mal gelesen, dass die ersten Schall-Versuche für den Dopplereffekt mit der Eisenbahn gemacht wurden. Dort spielte ein Blasorchester auf einem offenen Wagon.
Ganz genau kenne ich aber die Geschichte nicht mehr.

Was soll ich sagen. Unser Klavier im Universum wurde immer länger. Das komplette elektromagnetische Spektrum deckt einen Frequenzbereich von $10^16$ hz – $10^(-16)$ Hz ab. Das entspricht einem Intervall der länge einer Zahl mit zweiunddreißig Nullen nach der eins.

Möchte man nun wissen, wie viele Oktaven dort hinein passen, so muss man schauen, wie oft die Formel $2^N$ in diese riesige Zahl passt, wobei N die Anzahl der Oktaven ist. Ihr braucht dazu also den Logarithmus zur Basis 2.
Vielleicht mag das mal jemand von euch ausrechnen?

Das Spektrum ist kontinuierlich. Will sagen, dass es dort nicht nur die Wellen gibt, welchen den Tönen unserer wohltemperierten Tonleiter entsprechen, sondern auch alle dazwischen, wie auf einer sehr langen Violine, die keine Bünde hat.

Wer sich das Spektrum mal anschauen möchte, findet auf Wikipedia eine Tabelle mit dreißig Zeilen und etlichen Spalten. In der ersten Spalte steht die Grobeinteilung, z. B. Licht oder Radiowellen. In Spalte 2 sind die Radiowellen dann in Langwelle, Mittelwelle, Ukw, etc. eingeteilt und das Licht in die wichtigsten Farben.
Daneben findet ihr die Frequenzbereiche, Wellenlängen und alles. Super mit Screenreader navigierbar.
Schaut mal hier rein.

Das Orchester

Was uns jetzt noch für unser kosmisches Orchester fehlt, sind die Instrumente an sich.
Dass ein Piano anders klingt wie eine Flöte, Trompete, Oboe etc. liegt daran, dass jedes Instrument sein charakteristisches Tonmuster besitzt. Neben dem gespielten Grundton schwingen immer noch andere Ober- und Untertöne mit, und zwar bei jedem Instrument ein anderes Muster.

dieser klangliche „Fingerabdruck“ sagt uns, um welches Instrument es sich handelt.

Die Grundeigenschaft eines jeden chemischen Elementes ist es, Licht gewisser Wellenlängen zu absorbieren. Das ist sein individueller Fingerabdruck. In diesem Sinne stellt jedes chemische Element ein Musikinstrument dar durch dessen Spektrum sein charakteristischer Klang entsteht. Es verrät sich z. B. im sichtbaren Licht, wenn man dieses durch ein Spektrometer lässt. So haben Astrochemiker beispielsweise entdeckt, dass Sterne zu großen Teilen aus Wasserstoff bestehen und dass es in unserer Sonne sogar Gold gibt. Schon Newton sollte in seinem Prisma-Versuch dunkle Linien in seinem bunten Lichtstreifen gesehen haben.

Und bevor das jetzt noch esoterischer wird und ausartet, kommt ganz zum Schluss noch eine kleine Auflistung der Wellen, die für die Astronomische Forschung wichtig sind.
Die Aufzählung erhebt keinen Anspruch auf Vollständigkeit.

  • Mit dem sichtbaren Sternenlicht lernten wir
    Woraus Sterne bestehen,
    wie sie sich bewegen,
    dass unser Universum sich ausdehnt.
    und vieles mehr.
  • Der Radiobereich zeigte uns:
    Die kosmische Hintergrundstrahlung, die auf den Urknall zurückgeführt wird,
    Ausbrüche auf unserer Sonne,
    Pulsare (Fast schwarze Löcher)
    und schließlich konnten Radioastronomen in diesem Wellenbereich die Umgebungen der beiden schwarzen Löcher SGTA* und M87 fotografieren.
    Radiowellen sind auch super zur Analyse von Molekülwolken und durchdringen Wolken und Staub.
  • Auch der infrarote Bereich hat einiges zu bieten.
    Blickt man durch dieses Fenster, so findet man Staubscheiben um Sterne, ferne Galaxien und kann seit James-Webb extrem weit in die frühste Vergangenheit unseres Universums blicken. Das Teleskop soll auch ferne Planeten und eventuell deren Atmosphären erforschen.
  • Sobald man sich mit Ballonen und Satelliten über unsere Atmosphäre erhob war klar, dass der Kosmos sogar im Röntgenbereich strahlt.
    So verraten sich Pulsare, deren Radiokeule nicht in unsere Beobachtungsrichtung schwingt. Aktive schwarze Löcher sind auch helle Röntgenstrahler.
  • Bis heute ist nicht ganz klar, wodurch die Ausbrüche von Gammastrahlung entstehen, wie sie von Satelliten und anderen Teleskopen manchmal wahrgenommen werden. Das Universum hat uns auch in diesen kurzen Wellenlängen noch so einiges zu erzählen.
  • Welche Wellenart ich jetzt hier noch nicht erwähnte, sind die Gravitationswellen. Dieses deshalb, weil es sich bei ihnen um keine elektromagnetische Welle handelt, sondern um eine Erschütterung der Raumzeit. Ich erwähne sie aber jetzt trotzdem, weil sie uns anzeigen, wo gerade etwas interessantes passiert. Dann können wir alles andere, was wir haben, in diese Richtung ausrichten und erforschen, ob sich das Ereignis auch durch ein Ereignis in einem anderen Fenster zeigt.

    Das ist z. B. passiert, als man mittels Gravitationswellen die Verschmelzung zweier Neutronensterne detektierte. Mit anderen Teleskopen fand man schließlich heraus, dass nicht in Supernovae Elemente die schwerer als Gold sind, gebacken werden, sondern genau in diesem Ereignissen.

Nun wünsche ich dem JWST, dass es uns noch viele schöne Bilder und große Erkenntnisse liefert.
Wer die Geschichte des JWST nochmal in allen Einzelheiten nachlesen möchte, Bitte schön.

Bladventskalender21, 22.12. Keplers Klingende Planetenbahnen

Wer mal auf einem meiner Workshops oder Vorträge war, wird sich daran erinnern, dass wir uns die verklanglichten Planetenbahnen anhörten. Ich lernte diese Klänge in den Sendungen von Joachim Ernst Behrendt, “Nada Brama” und “Das Ohr ist der Weg”, vor fast dreißig Jahren, kennen.
Glücklicherweise sind diese Klänge auch öffentlich im Internet zu finden, so dass ich sie hier präsentieren kann, ohne Urheberrechte zu verletzen.
Johannes Kepler schrieb ein Buch darüber, wie man die Bahnen der Planeten sich musikalisch vorstellen kann. Er legte die Umlaufbahn des Saturn auf das tiefe G, etwas jenseits des linken Endes einer Piano-Tastatur und verteilte dann die Intervalle der anderen Umlaufbahnen auf die Tastatur.
Wer genau wissem möchte, wie das alles funktioniert, den darf ich einladen, meine Artikel aus der Kathegorie „Mit dem Ohr am Teleskop“ zu lesen. Hier geht es mir ganz einfach lediglich um das Klangerlebnis an sich.
Zwei Professoren, Willie Ruff & John Rodgers, haben in den siebziger Jahren des letzten Jahrhunderts Keplers Umlaufbahnen und sein Vorschlag, diese musikalisch darzustellen, aufgegriffen und in einen Computer gespeist, der dann die Klänge synthetisch erzeugte.
Sie nutzten sogar noch das Sterio-Panorama, um das ganze noch etwas plastischer werden zu lassen.
Sie legten die Perihels der Planeten eher auf die rechte Seite und die Aphels auf die linke.
Somit entsteht fast der Eindruck von akustischen Kreisbahnen, wenn man sich das ganze über Kopfhörer zu Gemüte führt.
Man ist quasi die Sonne und hört die Planeten um einen herum laufen.
Hier noch einige Hörhinweise, damit ihr euch in dieser Kackophonie zurecht findet.

  1. Wir starten mit dem schnellen sausenden Merkur auf seiner stark elliptischen Bahn. Er pipst sehr hoch, weil er so nahe an der Sonne, und somit sehr schnell unterwegs ist.
  2. Jetzt folgt das Moll-Dur-Duo von Venus und erde, das immer zwischen Moll und Dur variiert. Zuerst kommt die Venus und dann die Erde etwas später. Kepler nannte dieses Intervall in seinem Buch „Das Ewige Lied des Elends der Erde“.
  3. Nun folgt der Mars, dessen bahn stark elliptisch ist, was man im laufe des Stückes deutlich wahrnimmt. Wenn Jupiter dazu kommt, hört man sehr deutlich, wie Mars beschleunigt, weil er sich seinem sonnen nächsten Punkt, dem Perihel, nähert.
  4. Der Sprung über den großen Abstand und den Asteroidengürtel hinweg zum tiefen brummenden Jupiter, ist unüberhörbar.
  5. Nun setzt das ganz tiefe brummen des Saturn ein. Es kann sein, dass manche Lautsprecher oder Headsetz diesen tiefen Ton kaum noch darstellen können.
  6. Die Planeten Uranus, Neptun und Pluto sind nur noch als Rhythmen wahrnehmbar. Der Uranus tickt so vor sich hin.
    Dann folgt der Neptun als tiefere Trommel und ganz zum Schluss ertönt die Basstrommel des Pluto.

Jetzt wünsche ich erfolgreiches Hören.

Klingende Planetenbahnen

Bladventskalender21, 16.12. Sternschnuppen hören

So, und heute verbirgt sich hinter unserem Türchen mal wieder etwas auf die Ohren. Es wird etwas technisch werden, aber das wichtigste ist das Geräusch selbst. Mögen sich auch diejenigen untereuch daran erfreuen, die normalerweise nicht so technisch unterwegs sind.

Ja, ihr habt richtig gelesen. Sternschnuppen kann man auch hören. Und darum geht es in diesem letzten Kalenderblatt, welches von Sternschnuppen handelt.
Hörbar sind Sternschnuppen tatsächlich zumindest für Amateurfunker, die einen Empfänger und eine passende Antenne besitzen. Empfänger plus Antenne istgleich Radio.
Der Sender steht in Frankreich und das Radioprogramm selbst gestalten die Sternschnuppen selbst.

Wer einen passenden Empfänger und eine Antenne besitzt, kann das Französische Radar-Signal des Weltraumradars GRAVES benutzen. Dieses französische Radarsystem sendet auf 143,050 MHz einen Dauerträger, Dauerton, der über Phasenarray-Antennen den Himmel “abtastet”. Meteoriten, aber auch andere Objekte (Flugzeuge, Satelliten, die ISS, der Mond) reflektieren das Signal und streuen es in alle Richtungen, und diese Reflexionen können dann in Europa gut empfangen werden. Anhand der Doppler-Abweichung erkennt man dann, welches Objekt das Funksignal reflektiert hat: der Mond oder Flugzeuge bewirken eine sich nur langsam ändernde Dopplerabweichung, bei Objekten in Erdumlaufbahn ändert sich die Abweichung schnell, und bei Meteoriten extrem schnell.
Diese Disziplin des Amateurfunks nennt man Meteor Scatter.

Als Einstieg in den Empfang von Signalen des GRAVES Radars empfiehlt es sich, den Aufsatz von Rob Hardenberg, mit Rufzeichen PE1ITR, zu lesen.

Dank @dbsv-jugendclub gibt es hier einen Link, wie sich das anhört.
Ich hoffe, der Sound fasziniert euch ebenso, wie mich.
„Sternschnuppen hören“

Bladventskalender21, 11.12., Und so klingt ein Komet

Heute geht es nochmal um meine Begeisterung für Kometen, die ja durchaus als Weihnachtsstern gehandelt werden
Ganz am Schluss meiner heutigen Geschichte werden wir sogar einen Kometen hören, natürlich nicht wirklich, denn im Vakuum des Alls kann man nichts hören, Nun aber erst meine Geschichte:
Die Nacht vom 13. auf den 14. März 1986

Glücklicherweise war am nächsten Tag schulfrei, sonst hätte ich im Fernsehen nicht erleben dürfen, wie die Raumsonde Giotto durch den Kometenschweif des Halleyschen Kometen flog. Hier waren sogar die auftreffenden Partikel zu hören, denn die Sonde hatte einen Sensor dafür hinter ihrem Schutzschild. Bedauerlicherweise erblindete die Kamera leider recht früh, weil ein Partikel den Schutzschild durchschlug. Nichtsdestotrotz gibt es Bilder des Kometenkerns, der Koma und seines Schweifes. Diese Mission war eine Glanzleistung der Europäischen Weltraumorganisation (ESA). Hätte sie nicht funktioniert, böte sich erst wieder das Jahr 2061 an, da der Komet nur alle 76 Jahre erscheint. Sein Auftauchen war durchaus nicht immer willkommen. Im Jahre 1910 fand man mittels Spektralanalyse des Schweifes Blausäure darin. Panikmacher dachten, jetzt würden alle eines Todes durch Blausäure sterben, wenn die Erde durch den Schweif fliegt.
Ein Englischer König wurde gekrönt, als der Komet gut sichtbar am Himmel stand. Es war kein gutes Omen für ihn, denn er verstarb noch im selben Jahr.
Der Fernsehsprecher erklärte sehr ausführlich, wie ein Komet aussieht, in welche Richtung sein Schweif zeigt und dass der Sonnenwind den Kometenschweif stets von der Sonne weg wehen lässt. Bis dahin wusste ich gar nicht, dass es einen Sonnenwind aus geladenen Teilchen gibt. Dieses Wissen hat mich damals sehr bereichert: der Schweif, der einer Fahne gleich im Sonnenwind weht.
Es ist ein schönes Gefühl, an den Sonnenwind zu denken. Die Vorstellung passt gut zur Wärme, die wir von ihr empfangen.

Spannend war für mich natürlich auch, dass bis heute Kometen nicht nur als Unheilsbringer dienen, sondern eventuell Kandidaten dafür sind, wie das Wasser auf die Erde gekommen sein könnte. Es wäre sogar möglich, dass sie die chemischen Formeln auf die Erde brachten, welche letztlich Leben ermöglichten.
Zu dieser Weltraum-Chemie hat Tim Pritlove eine Raumzeit-Folge veröffentlicht, die ich wärmstens empfehle.
In Folge 79 interviewte Tim eine Professorin, die maßgeblich an den Missionen Giotto und der Nachfolgemission Rosetta beteiligt war und viel zum Thema Kosmische Chemie erzählt. Im gleichen Podcast werden in Folge 20 die beiden Missionen Giotto und Rosetta genauer behandelt. Der DLF brachte eine wunderbare Folge in Wissenschaft im Brennpunkt zu Rosetta heraus, die ich aber leider wegen Urheberrechten nicht hier teilen darf.
die @Riffreporter haben in ihren @Astrogeo-Podcast vor einigen Jahren auch maleine Folge mit der Dame aufgenommen. Zu dieser sehr hörenswerten Folge geht es hier lang.

Als nun Rosetta den Kometen 67P erreichte, beobachtete die Sonde mit ihren Messinstrumenten, dass der Komet im Vorgang des Auftauens in Sonnennähe zu schwingen begann. Das kann man sich so vorstellen. Wenn man einen Eiswürfel in ein Getränk wirft, um es zu kühlen, dann knistert der Eiswürfel, weil sich in ihm eingeschlossene Luftbläschen durch die Wärme des Getränks ausdehnen und den Eiswürfel aufreißen. Gerät ein Komet in die Nähe der Sonne, so geschieht mit ihm dasselbe. Er platzt auf, Gas und Teilchen entweichen und bilden die Schweife, und das alles bringt den Kometen dann eben zum Schwingen.
Wie das im Zeitraffer klingt, hört ihr jetzt am Schluss des Artikels.
Singender Komet 67P

Große Vortragsankündigung zu „Blind zu den Sternen

seid herzlich gegrüßt,,
hier kommt eine Ankündigung, die ich zwischen den Adventskalender einschieben muss.
Heute lege ich zu meinem Adventskalender auf Blindnerd.de noch einen drauf.

ein großer Traum wird sich erfüllen. An kommendem Dienstag darf ich für die Online-Reihe FasziAstro des Hauses der Astronomie von 19:00 – 19:30 Uhr einen öffentlich gestreamten Vortrag zum Thema „Blind zu den Sternen“ halten. Hiermit lade ich euch dazu herzlich ein. Ihr findet den Link unten in der Ankündigung.
Man kann sich jetzt sogar auf Youtube schon das Häkchen für eine Erinnerung setzen.

Noch nie wurde eine Veranstaltung von mir öffentlich über Youtube gestreamt. Na, immerhin hat die Technikprobe heute mit dem Haus der Astronomie über deren Streamingdienst, den ich bisher noch nicht kannte, schon mal perfekt funktioniert. Alles, was ich brauche, ist dort zugänglich bedienbar. Eine Sorge weniger also.

Aufgeregt bin ich trotzdem.
Inhaltlich werde ich im Vortrag meinen Weg zur Astronomie mit meiner Blindheit aufzeigen. Ich werde einige Geschichten erzählen, es wird für die Gucklinge auch viel zu sehen geben und natürlich werden auch Weltraum-Sounds erklingen.

Ich würde mich freuen, wenn jemand die Gelegenheit nutzen würde, mal auf einen meiner Vorträge zu kommen, ohne, dass man reisen muss. Und wer gerne gekommen wäre, darf ich trösten. Der Vortrag ist unter dem Link unten in diesem Beitrag noch immer verfügbar und darf gerne nachgehört werden.

Hier nun noch der Link, den ihr auch gerne teilen dürft.

Morgen geht es dann in gewohnter Weise mit dem Bladventskalender weiter.
Herzliche Grüße