Die Strahlkraft der Sonne


Liebe Leserinnen und Leser,

Bis vor wenigen Jahrzehnten war nicht klar, wo die Sonne ihre Energie für so lange Zeit unerschöpflich her nimmt und uns damit wärmt und Leben spendet. In den nächsten Artikeln wird es genau um diese Geschichte gehen, wie man sich langsam der Wahrheit näherte.
Eigentlich dachte ich, ich könnte dieses Thema in einem Artikel abfrühstücken. Das erwies sich aber schon bei der Stoffsammlung als Ding der Unmöglichkeit.
Deshalb geht es heute erst mal um grundsätzliche Fragen, z. B. wieviel Strahlung und Energie wir überhaupt von unserem Heimatstern erhalten. In weiteren Artikeln werden wir dann alle weiteren Aspekte des Kraftwerks Sonne untersuchen.

Die Strahlkraft der Sonne

Auf jeden Quadratmeter einer im Erdabstand von der Sonne außerhalb der Erdatmosphäre aufgestellten und auf sie ausgerichteten Fläche fällt in jeder Sekunde die Energie von 1360 Joule pro Quadratmeter.
Unser Quadratmeter empfängt somit eine Strahlungsleistung von 1,4 Kilowatt. Auf einen Quadratmeter der Erdoberfläche trifft aber wesentlich weniger. Zum einen bleibt ein Teil der Energie in der Erdatmosphäre stecken, zum anderen kommen die Strahlen nicht immer und überall senkrecht von oben. Die Hälfte der Zeit liegt unser Quadratmeter im Dunkel der Nacht, und bei schlechtem Wetter erreichen ihn die Sonnenstrahlen nur stark geschwächt. Die Wolken reflektieren dann die Sonnenenergie wieder in den Raum zurück. So erhält in Mitteleuropa der Quadratmeter durchschnittlich nur etwa 100 Watt. Immerhin, wollte man die Sonnenenergie, die dieser Quadratmeter im Jahr erhält, mit Heizöl decken, müsste man etwa 100 Liter verbrennen.
Das alles weiß man aber erst, seit bekannt ist, wie weit die Erde von der Sonne entfernt ist, und wie die Größenverhältnisse dieser Körper ist.

Die Vermessung des Sonnensystems

Wir wissen, wieviel die Strahlung der Sonne für uns Menschen bedeutet, was bedeutet sie für die Sonne?
Dazu müssen wir zuerst wissen, wie weit wir von ihr entfernt stehen.
Eine nahe Sonne könnte die Energie von 100 Litern Heizöl pro Jahr und Quadratmeter leichter liefern als eine entferntere. Denn von der nach allen Richtungen gleichmäßig in den Raum gehenden Energie, fängt eine Fläche mehr auf, wenn sie nahe bei der Sonne steht, als wenn sie in großem Abstand von ihr beleuchtet wird. Nahe am Feuer ist es immer wärmer, als davon entfernt zu stehen.
Es gilt das einfache Abstands-Quadrat-Gesetz:
Verdoppelt man den Abstand zwischen strahlendem Körper und empfangender Fläche, dann fängt sie nur ein Viertel auf, bei dreifachem Abstand nur ein Neuntel.

Zu diesem Gesetz muss ich euch unbedingt eine kleine Geschichte erzählen, wie unser Mathematiklehrer uns blinden Schüler*innen die Wirkung beschrieb:

Wie uns Blinden das Abstands-Quadrat-Gesetz und die Strahlensätze veranschaulicht wurden

Unser Mathematiklehrer brachte mal einen Dia-Projektor in den Unterricht mit. Er hatte ein Dia mit einem aufgeklebten Dreieck, kleiner als ein Fingernagel in den Projektor gesteckt. Das Bild ließ er nun auf eine weiße Fläche projizieren. Diese weiße Holzwand war mit kleinen Löchern bedeckt. Mit drei Stiften durfte jetzt jemand, aus der Klasse, der noch einen kleinen Sehrest hatte, die Ecken des dargestellten Dreiecks fixieren. Diese Eckpunkte wurden dann mit einem Hosengummi verbunden. Ich war verblüfft, wie riesig das projizierte Dreieck im Gegensatz zum winzigen Original war.
Das Original hatte, wie gesagt, eine Kantenlänge von wenigen Millimetern. Die Projektion war mindestens 30 cm lang.
Nun aber zurück zu unserem Thema.

Bestimmung der Entfernung Erde-Sonne

Wie weit entfernt zieht nun die Erde ihre Bahn um die Sonne? Wir
haben es erst verhältnismäßig spät erfahren. Obwohl die Griechen die Entfernung des Mondes recht gut kannten, lagen ihre mit raffinierten und im Prinzip korrekten Methoden gewonnenen Sonnenentfernungen nur etwa bei einem Zehntel des richtigen Wertes. Die Wahrheit erfuhren die Menschen erst im Jahre 1672.

Damals kam der Planet Mars der Erde besonders nahe. Diese Gelegenheit wurde in Paris und bei einer Expedition nach Cayenne benutzt, die unter der Leitung des französischen Astronomen jean Richer (1630-1696) stand. Beobachtet man den Mars von zwei Orten auf der Erde gleichzeitig, so steht er für jeden Beobachter vor etwas verschiedenen Stellen des Fixstern-Himmel-Hintergrundes. je kleiner der Abstand Erde-Mars, desto größer der Unterschied.
Allerdings muss man zur Bestimmung des Marsabstandes genau wissen, welche Entfernung zwischen den beiden Mess-Orten liegt.
Kurz zuvor hatte der französische Astronom jean Picard (1620-1682) den Radius der Erdkugel
gemessen. Mit der Größe der Erde war nun auch der Abstand Paris-
Cayenne recht genau bekannt. So konnte man den Abstand Erde-Mars
ermitteln. Das war der Anfang der Vermessung des Planetensystems.
Kennt man den Abstand zweier Planetenbahnen und die Zeiten, in
denen sie von ihren Planeten einmal durchlaufen werden, so kann man die Abstände der Bahnen zur Sonne errechnen. Man benötigt dazu das Dritte Keplersche Gesetz, das aus den beobachtbaren Umlaufzeiten zweier Planeten das Verhältnis ihrer Bahndurchmesser liefert. Da die Umlaufzeiten der Planeten leicht zu bestimmen sind, erfuhr man 1672, dass die Sonne etwa 150 Millionen Kilometer von der Erde entfernt ist.
“Etwa” deshalb, weil die Erde eine elliptische Bahn um die Sonne beschreibt.
Inzwischen gibt es bessere Methoden, das System von Sonne und
Planeten auszulosen, und wissen es genau: Im Mittel sind Sonne und Erde 149598000 Kilometer voneinander entfernt. Das Sonnenlicht benötigt etwa acht Minuten, um diese Strecke zurückzulegen. Würde an einem Tag mittags um 12.00 Uhr die Sonne schlagartig verlöschen, wir würden es erst um 12.08 Uhr gewahr.

Nachdem man die Entfernung der Sonne ermittelt hatte, wusste man auch, wie groß sie ist. Am Himmel erscheint sie als eine Scheibe, deren Durchmesser einem Winkel von einem halben Grad entspricht. Mit einer einfachen Dreiecksberechnung erhielt man dann einen Sonnendurchmesser von 1,4 Millionen Kilometern. Das ist etwa das 110fache des Durchmessers der Erde. Setzten wir unseren Planeten in die Mitte der Sonne, so würde der Mond immer noch im Sonneninneren um uns kreisen. Man könnte die Sonnenkugel mit mehr als einer Million Erdkugeln auffüllen.

Aus der hier bei uns auf den Quadratmeter treffenden Strahlungsleistung der Sonne und aus der nunmehr bekannten Entfernung kann man die Strahlkraft der gesamten Sonne bestimmen. In Millionen Watt (Megawatt) ausgedrückt ist es eine 21stellige Zahl!

Was die Sonne in jeder Sekunde an Strahlung in den leeren Raum hinaus verschwendet, könnte eine Million Jahre lang den gesamten Energiebedarf der Menschheit decken.

So, meine lieben, das waren jetzt mal einige Grundlagen zur Strahlkraft der Sonne. Im nächsten Schritt können wir uns dann langsam an das Kraftwerk der Sonne und der Diskussion darüber nähern, wie es funktioniert.
Bis da hin grüßt euch herzlich
Euer Blindnerd.

Ein “Stern” der Arbeiterbewegung


Liebe Leserinnen und Leser,
So, die Feier zum einhundertsten Artikel ist vorbei. Heute erscheint nr. 101.
Eines ist aber noch nicht vorbei. Das Gewinnspiel.
Wer mag, darf gerne noch nachfeiern auf
Hundert Artikel auf Blindnerd mit Gewinnspiel
Nun aber zum heutigen zum Tag der Arbeit passenden Thema:

Einleitung

wer mich besser kennt weiß, dass ich immer in meinem Herzen für Freiheit und Gerechtigkeit brenne. Somit stehe ich bis heute für jemanden, dem sozialdemokratisches Gedankengut ein großes Anliegen sind.
Ganz besonders jetzt zeigt sich, dass es im Krisenfall vielleicht nicht die beste Idee war, alles, aber auch wirklich alles, dem Neoliberalismus und einem wildgewordenen Kapitalismus zu überlassen.

Ich bin davon überzeugt, dass ein System, das uns und unserer Welt nachhaltig dienlich sein soll, eher ein sozialdemokratisches linkes System sein muss, denn Kapitalismus betreibt immer Raubbau an der Schöpfung, wird immer in Ausbeutung, Krieg und Ungerechtigkeit münden.
Vielleicht finden wir ja gerade durch die Krise zurück zu wahrer Menschlichkeit, zu einer gesunden nachhaltigen Sozialdemokratie und zurück zu humanistischen Werten. Und vielleicht dient das dann alles auch der Rettung unseres Klimas.
Nun ist dieses Blog aber alles andere als ein politisches Blog. Das können andere besser.
Da aber die Astronomie etwas ganzheitliches ist, lässt sich das nie ganz vermeiden, was auch gut so ist.
So machte ich mich mal auf die Suche nach Astronomen, die sich auch, passend zum Tag der Arbeit, neben ihrer Forschung auch politisch im linken Spektrum engagierten.
Zugegeben. Viel habe ich nicht gefunden, aber das wenige, werde ich nun mit euch teilen.

Die Fundgrube Namens Florian

Jahrelang lese ich schon die Bücher des Astronomen, Buchautors und Science Busters, Florian Freistetter. Er führt auch das Blog Astrodicticum Simplex und publiziert auf allen Medien. Ganz herausragend ist sein Podcast Sternengeschichten.
In der Spektrum der Wissenschaft schreibt er die Serie “Freistetters Formelwelt”. Nicht zuletzt, und das dürfte vor allem den Hörbuchleser*innen die es ja unter uns Menschen mit Sehbeeinträchtigung reichlich gibt, gefallen;
Ganz viele Bücher von ihm gibt es ungekürzt auf Audible, meist sogar von ihm selbst gelesen. Ich kann alle empfehlen.
Gebt einfach seinen Namen auf Audible ein, und ihr werdet fündig.

Aber nicht er ist der gesuchte linke Astronom, oder vielleicht doch auch einer, so wie ich?
Es geht aber hier um einen Facebook-Artikel von ihm.
Zum 01.05.2015 veröffentlichte er einen großartigen Artikel zu einem kommunistischen Astronomen auf Facebook.

Zugänge zum gemeinten Artikel

Da Dokumente auf Facebook für viele von uns mit Hilfstechnologie nicht flüssig zu lesen sind,
folgt nun zunächst der Link zu Florians Artikel in zwei Versionen.
Einmal so, dass sich die große Facebook-seite mit Bildern und allem für Sehende öffnet, und einmal so, dass die mobile FB-Seite erscheint, die für uns Blinde besser zu lesen ist.

Zur großen Facebook-Seite
Zur mobilen Facebook-Seite

Ganz unten im Artikel, unter die Grußformel, kopiere ich den unveränderten und unbebilderten Text rein, damit ihn auch alle, die nicht Facebook machen, ohne Probleme mit ihrer Hilfstechnologie lesen können.

Ich wünsche euch, dass ihr mit mir empfindet, wie großartig die Astronomie hier uns wieder über den Tellerrand blicken lässt.
Wer noch mer über den Astronomen Pannekoek wissen möchte, findet alles auf
Dem Wiki-Eintrag.
Wenn es heute keine Maibummel geben kann, so wenigstens ein zum Anlass passender Artikel mit dem Wunderbaren Text von Florian Freistetter.
Und wenn es heute auch nur Online-Kundgebungen gibt, dann lasst mich jetzt dem Blog zum Trotze doch noch kurz persönlich politisch werden:
Wir müssen darauf achten, dass wir nach der Krise wirklich alle Freiheiten auch wieder zurück bekommen und vor allem, dass wir nicht aufgrund von Überkonsum aufgrund des langen Verzichtes, in unsere alten egoistischen, neoliberalistischen und Kapitalistischen Grundhaltungn und Gewohnheiten verfallen.
Die Hoffnung hege ich durchaus auch, dass unser Staat beispielsweise erkennt, dass es vielleicht doch nicht ganz klug war, alles zu privatisieren, um das Geschehen einem sinnlosen wildgewordenen Neoliberalismus und Kapitalismus zu überlassen. Es wird nun Zeit für eine neue Generation von Politikern. Gefühlte 40 Jahre Konservativismus reichen jetzt wirklich. Wer konservativ in der Vergangenheit lebt, kann nicht in die Zukunft denken. Weg mit diesem ganzen gescheiterten Leerer- und Juristenpack im Bundestag. Für Corona und Klimawandel bräuchten wir ein Drittel Ingenieure und Naturwissenschaftler im Parlament. Es reicht jetzt wirklich. Tragt Masken in der Farbe eurer wahl, aber rot in euren Herzen…

Auf gehts, Genossinnen und Genossen.

In diesem Sinne,
gehabt euch wohl,
passt auf euch und andere auf,
tragt brav eure “roten” masken
und bleibt gesund.
Euer Blindnerd.

———————————

Anton Pannekoek: Zwischen Astronomie und Kommunismus
Von Florian Freistetter / 1. Mai 2015

Eigentlich muss man sich ja gar keine große Mühe geben um nach Anlässen für Artikel über Astronomie zu suchen. Jeden Tag veröffentlichen Forscherinnen und Forscher neue Erkenntnisse über das Universum. Teleskope, Raumsonden und Satelliten sammeln mehr Daten, als man auswerten oder verstehen kann und wenn man wollte, könnte man rund um die Uhr neue Texte über neue Forschung schreiben. Aber ich lasse mich bei der Recherche nach den Themen für mein Blog auch gerne mal vom Zufall treiben. Und probiere, Verbindungen zu finden, nach denen man normalerweise nicht sucht. Das ist vielleicht nicht immer unbedingt sinnvoll – aber man entdeckt dabei meistens Themen, auf die man sonst nie gestoßen wäre! Wer hätte zum Beispiel gedacht, dass man von Zwiebelkuchen zur Entstehung des Lebens auf der Erde gelangen kann? Oder vom Tag des deutschen Biers zum Begründer der Mond-Kartografie? Es lohnt sich also (das ist zumindest meine Meinung) auch den absurden Verknüpfungen zu folgen. Das habe ich mir auch an diesem Morgen gedacht und weil ja heute der erste Mai, der “Tag der Arbeit” bzw. “Kampftag der Arbeiterbewegung” ist, habe ich mich mal umgesehen, was das Thema “Astronomie und die Arbeiterbewegung” so hergibt. Und bin dabei auf Anton Pannekoek gestoßen.
Maifeier_Volksstimme_Frankfurt_1901
Pannekoek wurde 1873 in den Niederlanden geboren. Er studierte Astronomie an der Universität Leiden und wie das oft so ist während eines Studiums, begann er sich dabei für Politik zu interessieren. Pannekoek beschäftigte sich um 1900 herum nicht mehr nur mit Astronomie, sondern auch immer mehr mit Marxismus und Sozialismus. Er machte nicht nur seinen Doktor in der Astronomie, sondern entwickelte sich auch zu einem anerkannten marxistischen Theoretiker, dessen Schriften in deutschen und niederländischen Zeitungen publiziert wurden. 1906 ging Pannekoek nach Deutschland, trat in die SPD ein und wurde Dozent an deren Parteischule. Das durfte er aber nur kurz tun; dann wurde es ihm verboten – mit der Drohung, ihn aus Deutschland auszuweisen, wenn er weiter dort unterrichten würde. Pannekoek engagierte sich weiter in der sozialistischen Bewegung, musste bei Ausbruch des ersten Weltkriegs aber zurück in die Niederlande gehen. Dort begann er sich für den Rätekommunismus einzusetzen (das ist – einfach gesagt – eine Gesellschaft, die weder von einem Parlament, noch einer einzigen Partei regiert wird, sondern sich nach basisdemokratischen Prinzipien kollektiv selbstverwaltet und in vielen kleinen Räten organisiert). Damit stand Pannekoek nicht mehr nur im Widerspruch zum Kapitalismus und der parlamentarischen Demokratie, sondern auch zum Marxismus-Leninismus (und zu Stalin sowieso). Er trat verschiedensten linken Vereinigungen und Parteien bei; ebenso oft wieder aus und publizierte seine Theorien zum Rätekommunismus, die in den 1920er Jahren durchaus großen Einfluss auf die politisch linke Szene hatten. In den 1930er Jahren und dann nach dem zweiten Weltkrieg zog er sich aus der politischen Theorie aber immer weiter zurück und veröffentlichte nur noch selten etwas (privat arbeitete und korrespondierte er aber weiter zu diesen Themen).
Seine astronomische Arbeit vernachlässigte Pannekoek bei all der Politik aber keineswegs. In seinen frühen Arbeiten beschäftigte er sich vor allem mit veränderlichen Sternen und publizierte Beobachtungen zu ihren Helligkeitsänderungen. Später ging er dann auch fundamentalere Themen an. 1919 erschien zum Beispiel eine Arbeit mit dem Titel “The Distance of the Milky Way”. Darin ging er der Frage nach, wo sich die Sonne (und mit ihr die Erde) in Bezug auf den Rest der Milchstraße befindet. Das war damals ein wichtiges und vor allem ungeklärtes Problem! Weder wusste man zu Beginn der 1920er Jahre, ob es neben der Milchstraße noch andere Galaxien im Universum gibt oder die Milchstraße das Universum ist, noch war man sich über die Struktur der Milchstraße im klaren. Erst die nächsten Jahre brachten hier Aufklärung, als Edwin Hubble und seine Kollegen zeigen konnten, dass es neben der Milchstraße tatsächlich noch viele andere Galaxien gibt und das wir uns in unserer Galaxis am Rand befinden.

Das war zur Zeit Pannekoeks noch alles andere selbstverständlich. In seinem Artikel schreibt er über Beobachtungen des Astronomen Harlow Shapley, die nahelegen, dass sich die Sonne nicht im Zentrum der Milchstraße befindet:
“Now, Shapley’s result, that in the universe of globular clusters the sun occupies a very eccentric position, is contrary to the common view, which places the sun in our galactic system not far from the center.”
Die Beobachtungen, nach denen die Sonne also eher am Rand der Milchstraße sei, würden – so Pannekoek – der “allgemeinen Ansicht” widersprechen, dass wir in der Nähe des Zentrums beheimatet wären. Pannekoek ist aber von der Korrektheit der Messungen überzeugt und kommt in seiner Arbeit ebenfalls zu dem Schluss, dass wir uns am Rand befinden:
“The sun must then be situated near to the limit of the system in the direction of Perseus.”
Später wechselte Pannekoek von der reinen Beobachtung der Sterne zur Erforschung ihrer Eigenschaften und Entwicklung und war maßgeblich daran beteiligt, diese damals noch neue Disziplin der “Astrophysik” in den Niederlanden zu etablieren. Noch später begann er sich dann auch für die Geschichte der Astronomie zu interessieren und sein Buch auf diesem Gebiet gehörte lange Zeit zur Standardlektüre (und ist immer noch erhältlich*!). Zu seinen vielen Veröffentlichungen über historische Astronomie gehört auch ein interessanter Artikel aus dem Jahr 1930 mit dem Titel “Astrology and its Influence upon the Development of Astronomy”. Darin stellt Pannekoek die Sonderstellung der Astronomie heraus, als Wissenschaft, die im Gegensatz zu den meisten anderen naturwissenschaftlichen Disziplinen eine viel längere Geschichte hat. Wo die anderen Wissenschaften quasi erst vor ein paar Jahrhunderten in den Universitäten entstanden, so Pannekoek, stammt die Astronomie noch aus einer viel älteren Zeit, in der die Suche nach Erkenntnis von deutlich unwissenschaftlicheren Motiven gesteuert wurde. Die Astronomie musste sich erst mühsam davon lösen und dabei die Astrologie abschütteln. Gleichzeitig betont er aber auch, dass die Astrologie den Babyloniern und später auch noch einmal in der Renaissance als Motivation diente, jede Menge Daten über die Himmelskörper zu sammeln, die dann zur Grundlage großer astronomischer Erkenntnisse wurden. Sein Text endet mit folgenden Worten:
“Astrology did not at once disappear, but its practice and theory are now only possible as a superstition, outside of science and beneath it. The astronomers now see new and other larger aims before them. The principle of which it once was the expression, the conception of the unity of the whole world, had now to take a new form; to find not the connection of universe and man – for man is now only a small and accidental attribute to one small planet – but to find the laws of the universe itself. On this new path astronomy has gone upward during the following centuries.”

Nach Pannekoek wurden ein Krater auf dem Mond und ein Asteroid benannt, er bekam die Goldmedaille der Royal Astronomical Society und das Astronomische Institut der Universität Amsterdam trägt heute seinen Namen.
Pannekoek starb am 28. April 1960 und auch wenn er mit seinen politischen Überzeugungen die Welt nicht verändert hat: Mit seinen wissenschaftlichen Leistungen hat er auf jeden Fall dazu beigetragen, dass wir sie besser verstehen können!
————————————

Hundert Artikel auf Blindnerd – Feiert mit und gewinnt…

Jubiläum zum einhundertsten Artikel auf Blindnerd.de
Liebe Leserinnen und Leser,
Kleine Anmerkung vorweg:
Dieser Artikel enthält die Vorlesefunktion nicht, weil sie hier keinen Sinn macht. Der Artikel enthält so viele Links, dass diese Vorlesefunktion zu wenig Möglichkeiten bietet, zu navigieren. Deshalb lasse ich sie hier weg.
Ende der Anmerkung.

Es kann sein, dass dieser Artikel heute etwas länglich wird, aber das hat durchaus seinen Grund.
heute wird auf blindnerd.de gefeiert.
Dieser Artikel ist der einhundertste Beitrag auf Blindnerd. Das ist der Grund, weshalb wir feiern. Dazu lade ich euch ganz herzlich ein. Dieser Artikel ist eine kleine Zeitreise. Bitte seht den Artikel nicht als Selbstbeweihräucherung meinerseits an. Es geht mir darum, einfach mal etwas zurück zu blicken und demutsvoll vor diesem Werk zu stehen, das mir sehr ans Herz gewachsen ist. Wenn es das euch auch ist, dann lasst uns starten.
Wenn ihr den Artikel lest, dann ist das astronomische Ereignis, das ich zum Anlass der Veröffentlichung genommen habe, schon wieder vorbei.
Um 04:27 am 23.04.2020 hatten wir Neumond. Das ist an sich nichts Besonderes, aber ich denke, die einhundert ist schon ein großer Abschnitt, den mit einem Neumond begehen kann. Außerdem wird der Mond ja danach auch wieder voll. Dieser stetig nicht innehaltende Lauf des Mondes soll symbolisieren, dass es nach der einhundert auch eine einhundert und eins, zwei, usw. geben soll. Sicher kann ich den Blog nicht so lange füllen, wie der Mond sich um die Erde dreht, aber vielleicht findet sich ja nach mir jemand, der diesen Blog erbt und weiterführen möchte.
Nicht zuletzt muss man Feste feiern, wenn sie fallen. Da muss halt dann auch mal ein gewöhnlicher Neumond reichen, wenn der Himmel gerade nix anderes anbietet.
Also, wer mag, hole sich ein Getränk seiner Wahl, dass einer Feier oder dem Wohlbefinden würdig erscheint, vielleicht noch was zum Knabbern dazu, lehne sich zurück und genieße meine kleine Reise.

Wie alles begann

Ich bin ganz langsam in die Schreibsucht geraten. Angefangen hat alles mit einem Mailverteiler auf meinem Rechner, der Schöngeister hieß. Hier waren Freunde und Bekannte drin, von denen ich weiß, dass sie sich für meine Dinge interessieren, die ich schön finde. Dort ging es dann um Literatur, Musik und oft auch um Astronomie. Ich glaube, das war so um 2008. Das plätscherte so völlig stressfrei und entspannt vor sich hin. Ich schrieb meine Artikel und chattete mit meinen Freunden darüber. 2013 hatte ich eine schwere berufliche Krise. Ich wusste nicht, ob ich arbeitslos werde, hatte einen neuen Vorgesetzten, alles strukturierte sich um, so dass ich viele Aufgaben verlor und in ein psychisches Loch geriet. Ich wusste das schon aus vergangenen Krisen, dass Schreiben meiner Psyche sehr gut tut. Und diesmal war die Krise offenbar so groß, dass ich mich in ein Schreibprojekt stürzte, das mich zwei Jahre lang beschäftigen sollte. Ich schrieb mein buch „Blind zu den Sternen“, ein autobiographisches Büchlein, das meinen Weg zur Astronomie beschreibt, obwohl ich vollblind bin. Das Buchprojekt war meine Therapie. Es war zu dieser Zeit das einzige, wo ich mich geistig ausgelastet und gefordert fühlte.

Von nun an ging es aufwärts. Das Buch stimmte mich deutlich positiv, was vielleicht auch dazu führte, dass ich positives anzog. Meine Stelle wurde entfristet, ich fand neue Aufgabenfelder und die Umstrukturierungen und Beben waren vorbei.
Hier geht’s zu meinem Buch.
Zu dieser Zeit schrieb ich eine Initiativbewerbung an die Deutsche Astronomische Gesellschaft, wo ich gerne Mitglied werden wollte. Da kann man nicht einfach eintreten. Man muss für gut befunden werden. Man muss seine Arbeit und Projekte vorstellen, und man muss mindestens zwei Personen davon überzeugen, die für einen bürgen.
Naja, etwas altbacken und freimaurerisch das ganze, aber so ist das halt.
Ich schickte einiges, was meine Vorträge etc. betraf und später dann auch in das Buch eingang fand, und habe da überzeugt.
Mein Konzept der „Inklusion am Himmel“ kam an.
Und so bin ich seit Mai 2013 das erste und einzige blinde Mitglied der Deutschen Astronomischen Gesellschaft.
Nun reichte natürlich auf einen Schlag mein kleiner Mailverteiler nicht mehr aus. Im nächsten Schritt, hob ich den Verteiler in eine richtige ausgewachsene Mailingliste auf einem Mailserver mit allen Sicherheitsmaßnahmen etc.
Die hat derzeit so um 240 Mitglieder und läuft aus historischen Gründen noch parallel zu meinem Blog http://blindnerd.de.
Das reichte irgendwann auch nicht mehr aus. Emails kann man nicht aktualisieren, z. B. zur Fehlerbehebung oder richtigstellung einer astronomischen Fehlinformation.
Und so begann ich im Oktober 2017 meinen Blog. Ich kämpfte bis an die Tränen mit WordPress, denn das ist am Anfang wirklich super komplex. Und wenn man niemanden hat, der sich gut damit auskennt und einem die Kniffe zeigt, dann tut man sich als Blinder damit so schwer, dass ich manchmal aufgeben wollte.
Zum Reinschnuppern begann ich meinen Blog direkt mit der kostenlosen Version von WordPress auf deren Server. Das war der https://blindnerd.wordpress.de.
Nun kann man verständlicherweise auf dieser kostenlosen Version nicht einfach schalten und walten. Ich wollte Dinge, z. B. aHochladen von Audiofiles, was nicht ging, verschiedene Punkte der Barrierefreiheit ließen sich nicht umsetzen etc.
Außerdem störte mich das „WordPress“ im Namen des Blogs.
So mietete ich mir einen eigenen Webspace, richtete mein eigenes WordPress ein und exportierte den Blog.
Jetzt habe ich alles, was ich brauche. Ich liebe meinen Blog. Ich hege und pflege ihn und ja, ich bekenne hier feierlich, dass ich schreibsüchtig und Keyboardabhängig bin.

Spoiler Alarm

Lasst uns nun einige Highlights betrachten, die ich zumindest subjektiv so einordne. Am Schluss werdet ihr dann eingeladen, eure Meinung, z. B. in den Kommentaren, zu hinterlassen, welcher Artikel euer persönliches Highlight war. An dieser Stelle kommt ein kleiner Spoiler Alarm. Für jede Einsendung wird es einen kleinen Preis geben. Dazu aber nachher mehr. Es lohnt sich, auf jeden Fall dran zu bleiben.
Ich werde aus manchen, meiner Kategorien ein, zwei vielleicht manchmal auch drei Highlights nominieren. Die Preise gibt es allerdings dann allgemein für eure geschätzten Beiträge, unabhängig der Kategorie, aus welchem euer Favorit stammt.

Kategorie 1, Allgemeines – Artikel für alle

In diese Rubrik ordne ich Artikel, die z. B. nicht nur für Astronomen interessant sind. Sie haben oft gesellschaftlichen Bezug und gehen somit meist auch Nichtastronomen an.
Ein gutes Beispiel hierfür ist der Artikel über die Wichtigkeit, dass digitale Dokumente barrierefrei sein sollten.
Barrierefreie Dokumente nützen allen

Einen großen Teil meines Wissens schöpfe ich aus Podcasts. Sie haben uns blinden Menschen wirklich großes Tor zu Wissen und Bildung geöffnet. Um die Macher all dieser wunderbaren Podcasts zu würdigen, kommt hier:
Podcasts, ein Tor zu Bildung und Wissenschaft

Ganz besonders für uns Menschen mit Blindheit, ist es unerlässlich, dass wir uns schon relativ früh mit viel Technik herumschlagen müssen. Vieles, was ich heute nutze, gab es in meiner Kindheit so noch nicht. Dazu schrieb ich in:
Wie Technik mein Leben veränderte

Kathegorie 2: Astronomie

Eigentlich bräuchte ich hier für die Entscheidung eine Jury von Astronomen, die das auch wirklich beruflich treiben. Ich mache das nur als Hobby. Somit kann es theoretisch sein, dass ausgerechnet die Artikel, für welche ich mich jetzt gleich entscheide, das meiste Halbwissen enthalten. Vielleicht sehen wir ja nach eurer Beurteilung klarer.

Eine der größten Mysterien für mich ist, dass unser All und auch wir quasi aus nichts bestehen. Schon seit alters her beschäftigte man sich mit dem Vakuum. So auch ich auf Blindnerd:
Nichts ist auch was

Dass wir jetzt Gravitationswellen nachweisen können, ist ein wahrhaftiger Durchbruch in der Astronomie. Einige dieser Ereignisse wurden sogar hörbar gemacht.
Gravitation – Schwächste Kraft und heimlicher Herrscherin über Raum und Zeit

Kathegorie 3: Inklusion am Himmel

Eine Hauptmotivation zu diesem Blog und meinem Buch ist, dass ich immer wieder erleben darf, wie inklusiv Astronomie ist. Egal wann, wie und wo. Es bewahrheitet sich immer und immer wieder.
So wichtig Inklusion für Menschen mit Einschränkung auch ist. Eines wird oft vergessen. Eine Gruppe erfährt bis heute Benachteiligungen und knallt gegen Barrieren, die wir nicht als Menschen mit Behinderung einstufen würden. Es geht um unsere Frauen. Deshalb würdige ich jedes Jahr eine zum Weltfrauentag.
Zum Frauentag 2018

Gerade jetzt in der Krise erweist sich die Astronomie z. B. mit ihren zahlreichen Online-Angeboten für Kinder als äußerst inklusiv.
Astronomie für benachteiligte Kinder

Obwohl ich eigentlich keine Artikel hier mit in die Auswahl nehmen wollte, bei denen ich eine wichtige Rolle spiele, muss ich es nun doch tun, weil der Inklusionstag bei der Internationalen Astronomischen Union eines der prägendsten Ereignisse meines astronomischen Lebens war.
Inklusionstag der IAU 2018 in Wien
Ob eine Veranstaltung inklusiv sein kann, hängt nicht nur von mir ab. Auch die Veranstalter müssen hier im Vorfeld die Inklusion mit denken, was im folgenden Beitrag in einer Weise geschah, die ihres gleichen sucht.
Inklusion am Himmel in Gundelfingen

Der dunkelste Ort Deutschlands dürfte auch einer der stillsten Orte sein. Außerdem leben dort unglaublich engagierte Menschen, die ihr ganzes Urlaubsangebot auf Inklusion ausrichten möchten. So muss ein Artikel über sie hier unbedingt mit als Meilenstein ins Jubiläum rein.
Inklusion im Sternenpark
Sie haben es einfach begriffen, was Sport und Inklusion bedeutet, die Studenten eines inklusiven Sportangebotes. Ein kluger Schachzug, die Stunde an Astronomie zu hängen, meine ich.
Astrosport am Sportinstitut des Karlsruher Institutes für Technologie (KIT)

Kategorie 4: Mit dem Ohr am Teleskop

Was die Astronomie u. A. für blinde Menschen so inklusiv macht ist, dass man vieles aus dem All auch hörbar machen kann. Deshalb darf diese Rubrik hier natürlich auch nicht fehlen.
Die Idee, dass unsere Planeten bei ihrem Lauf um die Sonne klingen sollten, ist sehr alt.
Klingende Planetenbahnen

Sogar wir Menschen mit Sehbeeinträchtigung werden von Sternschnuppen nicht vom Glückwunsch ausgeschlossen. Sehende benutzen ihre optischen Hilfsmittel, um welche zu erspähen, und wir bedienen uns einer Antenne…
Sternschnuppen Hören

Wenn Johann Wolfgang von Goethe im Faust I die Sonne tönen lässt, dann tun wir das natürlich auch.
Die Sonne Tönt

Kategorie 5: Dem Mond entgegen.

Aktuell hatte ich ein schönes Erlebnis während eines Online-Vortrages, den ich gemeinsam mit einem sehenden Hobbyastronomen für seine und seiner Bekannten Kinder halten durfte, um den Kindern etwas für die lange Zeit ohne Schule, anzubieten.
Aus einer der zahlreichen Kinderfragen, habe ich einen Artikel gegossen.
Kinderfrage

Für mich war ein ganz großes Erlebnis, als meine Lego-Rakete zusammengebaut vor mir stand. In meinem Buch beschrieb ich, dass Dinge, wie der Ablauf des Mondfluges für uns eher unzugänglich waren, weil es keine Modelle gab.
Das ist nun anders:
Auf den Mond und zurück mit Lego

Blind zum mond zu fliegen ist das eine. Geht jetzt mit Lego. Sich dann aber auf dem Mond zu orientieren, ist eine andere Sache. Hier mein Ansatz dazu:
Sich blind auf dem Mond orientieren; geht das?

Kategorie 6: Der Sonne entgegen

Wer mein Buch kennt weiß, dass ich Feuer für die Astronomie fing, durch einen gewissen heißen Ball, der kein Feuer ist, durch unsere Sonne. Kein Blindnerd wäre denkbar ohne den Stern, von dem wir leben.

Zum Thema Sonnenforschung und wie die Menschheit der Sonne entgegen geht, sind noch längst nicht alle Artikel geschrieben, die ich gerne schreiben würde.
Mich faszinieren all diese Abenteuer.
Hier, wie man sich langsam der Sonne näherte:
Der Aufbruch zur Sonne

Wie wichtig der Menschheit die Sonnenforschung ist, zeigt sich auch, wieviel Geld man dafür bereit ist, auszugeben, aber auch welche Risiken und Abenteuer Astronauten im All bestehen müssen, damit Sonnenforschung getrieben werden kann.
Die Reparatur des Sonnenobservatoriums SMM im All

Der Preis ist Heiß

So, meine lieben. Das soll es mal an meiner Auswahl gewesen sein. Natürlich verstecken sich noch mehr Schätze auf dem Blog, aber die dürft ihr selbst entdecken.
Ich bin mir dessen völlig bewusst, dass eine Jury vermutlich andere Artikel in die Auswahl genommen hätte. Das dürft ihr, wenn ihr mögt, gerne tun, denn wer einen hier nicht aufgeführten Artikel schön bewertet, bekommt auch einen Preis.
Bitte habt Verständnis dafür, dass jemand, der mehrere Artikel kommentiert, trotzdem nur einen Preis bekommen kann. Das hier ist also nix für Preisjäger, weil das dann meine Möglichkeiten und mein Budget sprengen würde.

Jetzt zu den Preisen:
Es geht mir nicht darum, eure besten Kommentare, also die, welche mich eventuell am meisten loben, zu küren. Deshalb gibt es auch keine Preisklassen. Alle, die sich hier beteiligen, werden eine kleine Anerkennung erhalten. Wie das im Einzelnen ablaufen wird, hängt auch etwas von dem Ansturm ab, der hier entstehen wird. Außerdem könnte die Krise die Beschaffung, Verpackung und Versendung der Preise etwas verlangsamen.

Die Aufgabe ist denkbar einfach, könnte allerdings je nachdem, wie ernst man sie nimmt, etwas Zeit in Anspruch nehmen, bis alle Artikel gelesen sind. Aber zum einen haben ja vielleicht viele von euch sowieso bereits einen Favoriten, den sie irgendwann mal gelesen haben, und zum anderen haben viele von uns ja jetzt eventuell etwas mehr Zeit.
Für diejenigen, die keine Zeit haben, weil Kinder zu betreuen sind, die können ja einfach die Kinder mit einbeziehen. Viele meiner Artikel sind auch für Kinder interessant. Außerdem habe ich die wissenschaftlich anspruchsvollsten Artikel hier nicht einbezogen, so dass mehr Chancengleichheit besteht.
Wer einen Favoriten hat, der nicht hier erwähnt wird, kann sich natürlich trotzdem gerne beteiligen. Kommentiert einfach dann euren Favoriten, auch wenn er hier nicht aufgeführt ist.

Schön wäre auch, wenn ihr den Blog an sich kommentiert. Geht einfach auf den Artikel
Willkommen auf Blindnerd
und hinterlasst einen Kommentar, z. B.
• Ob euch der Blog gefällt
• Wieso ihr ihn lest
• Wem ihr ihn empfehlen würdet

Das überlasse ich ganz euch.
Und wenn ihr dann zum Schluss, wenn ihr den Blog gut findet, ihn dann noch in euren Netzwerken teilt, dann hilft das auch mir etwas weiter.

Ja, ich gebe zu, dass ich das ganze hier auch etwas aus Eigennutz mache. Der Blog macht viel Arbeit und verlangt viel Herzblut und Zeit. Ich hätte gerne mal etwas mehr Folger, damit die Arbeit nicht umsonst ist.

Ach ja, eins noch.
Ich lasse das Rätsel bis zum Sternschnuppen-Maximum der Leoniden Mitte August laufen. Wenn es Sternschnuppen regnet, kann es ja dann auch Preise regnen. Nicht wahr?

So, ich denke, jetzt sollte alles klar sein. Auf, ans Werk. Ich bin sehr gespannt.

Bis dahin
Gehabt euch wohl,
passt auf euch und andere auf,
bastelt fleißig masken
und bleibt gesund.

Es grüßt euch ganz herzlich
Euer Blindnerd.

Die Radiosonne


Liebe Leserinnen und Leser,

heute stelle ich euch mal ein weiteres Gesicht unseres Muttersterns vor.
Schon in vorigen Beiträgen fiel immer mal wieder das Wort “Radiosonne”, bzw. dass bei Missionen auch Instrumente zur Messung von Radiostrahlung der Sonne mit an Bord waren. Die Entdeckung, dass die Sonne Radioprogramm sendet, wurde aber bereits hier auf Erden gemacht.
Die Radiostrahlung der Sonne gehört zum sog. Weltraumwetter.
In Droht Gefahr durch unsere Sonne beschrieb ich, dass es durchaus für uns aus verschiedensten Gründen gefährlich sein kann, wenn uns ein von einem Radiosturm begleiteter Ausbruch der Sonne erreicht.

Folgende Geschichte, die sich 1942 im zweiten Weltkrieg zugetragen hatte, markiert eindeutig den Beginn der Erforschung der Radiosonne. Was war geschehen:

Die Geburt der Radio-Astronomie

Der große Radiosturm von der Sonne im Februar 1942 markiert den
Anfang der modernen Entwicklung der Radioastronomie.
Gegen 7 Uhr mitteleuropäischer Zeit bewegt sich der Verband auf der Höhe von Cherbourg. Vizeadmiral Otto Ciliax ist zufrieden. Bald werden sie die zwei Stunden Verspätung aufgeholt haben. Aber der schwerste Teil der Wegstrecke steht den drei Schlachtschiffen noch bevor. Erst vier Stunden nach dem Auslaufen in Brest war den Besatzungen der Scharnhorst, der Gneisenau und der Prinz Eugen das Ziel der von
Hitler angeordneten Operation bekanntgegeben worden. Das war vor
fünf Stunden. Die drei Schlachtschiffe sind auf ihrem Weg durch den
englischen Kanal nach Wilhelmshaven, um in der Nordsee zum Schutz der Erztransporte von Norwegen nach Deutschland eingesetzt zu werden. Noch hat sie das englische Radarsystem nicht bemerkt. Tatsächlich
wird der Verband erst um 13.18 Uhr ausgemacht. Da hat er bereits die
engste Stelle des Kanals passiert. Die dann folgenden Angriffe können
nicht mehr verhindern, dass die Operation, die unter dem Decknamen
“Cerberus” läuft, erfolgreich beendet werden kann. Die Schiffe erreichen planmäßig ihre deutschen Bestimmungshäfen. Das englische Radar hatte am 12. Februar 1942 versagt.

Die Deutschen rühmten danach die sorgfältige Vorbereitung, bei der man schon vorher regelmäßig Störsendungen ausgestrahlt hatte, damit die Engländer bei einer starken RadarstÖrung während der Stunden, auf
die es am 12. Februar ankam, keinen Verdacht schöpften. War das Unternehmen gelungen, weil die Deutschen das englische Radar gestört hatten? Winston Churchill hatte schon kurze Zeit nach dem Durchbruch der Schiffe durch den Kanal »atmosphärische Störungen« für das
Versagen verantwortlich gemacht. Einige Wochen danach wurde das
englische Radarsystem wieder gestört. Wollten die Deutschen angreifen? Alles war in Alarmbereitschaft, doch kein Angriff erfolgte. Inzwischen hatte sich ein junger Physiker, j. Stanley Hey, der Sache angenommen. Bald hatte er herausgefunden, dass die Störungen nicht deutschen Ursprungs waren, sondern von der Sonne kamen.

Inzwischen weiß man, dass die Sonne nicht nur Licht und Wärme aussendet, dass von ihr nicht nur die den koronalen Löchern entweichenden Gasmassen an der Erde vorbei strömen. Die Sonne beliefert
uns auch mit einem reichhaltigen Radioprogramm. Den Entdecker der
Radiostrahlung der Sonne aber, der sich vorher mit der Physik von
Kristallen befaßt hatte, ließ das neue Thema nicht mehr los. Stanley Hey
wurde ein angesehener Radioastronom.

Wie wird die Sonne zum Radiosender?

Woher kommen die Radiowellen der Sonne? Sie entstehen nicht anders als in einer Rundfunkstation. Die Antenne eines Rundfunksenders ist ein elektrischer Leiter. In ihrem Metall sind die den Raum zwischen den Ionen des Metalls ausfallenden Elektronen frei beweglich. Der Sender zwingt sie, längs des Antennendrahtes rhythmisch vor und zurückzuschwingen. Die bewegten Elektronen erzeugen einen
elektrischen Strom, der mit ihrer wechselnden Bewegung ständig seine Richtung ändert. Wie jeder Strom ist auch der Wechselstrom in der Antenne von einem Magnetfeld begleitet. Mit der wechselnden Stromrichtung polt sich das Feld ständig um. Radiowellen sind nichts anderes als Lichtwellen, nur sind ihre Wellenlängen größer. Statt bei zehntausendstel Millimetern liegen sie bei Millimetern bis zu Hunderten von Metern. Die in der Antenne entstehenden Radiowellen bewegen sich mit Lichtgeschwindigkeit in den Raum.
Normalerweise sorgen die starken anziehenden Kräfte zwischen den negativen Elektronen und den positiven Ionen des Sonnenplasmas dafür, dass das Plasma stets neutral ist. Sind irgendwo die positiven Ladungen im Überschuß,
dann ziehen sie aus der Nachbarschaft Elektronen herbei, die mit ihren negativen Ladungen den positiven Überschuss neutralisieren. Wenn ein Plasma sich selbst überlassen bleibt, dann wird es elektrisch neutral.
Zu derartigen Ladungsverschiebungen kommt es schon alleine dadurch, dass die Sonne brodelt, wie ein Kessel mit kochendem Wasser und dass sie in verschiedenen Schichten sogar unterschiedlich rasch rotiert.

Werden aber die Elektronen und Ionen gegeneinander bewegt, etwa durch äußere Einflüsse, dann kann dieses Ladungsgleichgewicht gestört werden. Versuchen die starken elektrischen Kräfte die Neutralität wiederherzustellen, so beginnen die Elektronen gegen die Ionen zu schwingen. Da sie mit Bewegungen von Ladungen verknüpft sind, rufen sie Ströme und Magnetfelder hervor. Die Frequenz des Hin- und Her schwingens der Elektronen nennt man die Plasmafrequenz. Sie liegt
um so höher, je dichter die Elektronen stehen. In der Sonnenkorona liegt
die Plasmafrequenz bei zehn Millionen Schwingungen in der Sekunde.
Dabei entstehen Radiowellen mit Wellenlängen von 30 Metern. In der
Nähe der Sonnenoberfläche liegt die Plasmafrequenz wegen der höheren Elektronendichte bei hundert Milliarden Schwingungen in der Sekunde. Die dazugehörenden Radiowellen liegen bei Wellenlängen von MilliMetern und weniger.
Wenn in unterschiedlichen Schichten der Sonne, bzw. Tiefen Wellenlängen unterschiedlicher Länge entstehen, bedeutet das, dass man je nach dem, in welcher Welle man die Sonne betrachtet, unterschiedlich tief in sie hinein schauen, bzw. hinein hören kann.

Aber nicht nur bei regelmäßigen Schwingungen strahlen Elektronen Radiowellen aus, sondern auch wenn sie unregelmäßig bewegt, etwa an einem Hindernis in ihrem Flug gebremst werden. Das kann zum Beispiel geschehen, wenn ein Elektron in die Nähe eines Ions, also eines Atoms, kommt, dem ein oder mehrere Elektronen fehlen. Die Anziehung, die das positive Ion auf das negative Elektron ausübt, lenkt es von seiner geraden Bahn ab. je nachdem, wie nahe die beiden Teilchen aneinander vorübergehen und wie rasch sie sich aneinander vorbeibewegen, wird das Elektron mehr oder weniger gebremst. Bei jeder Änderung seines Fluges sendet es einen kleinen Strahlungsblitz aus. Bald begegnet es dem nächsten Ion oder einem anderen Elektron. Wieder
wird es abgelenkt. Ständig sendet es daher Radiowellen aus. In jedem
Gramm des heißen Sonnengases gehen in jeder Sekunde von Milliarden und Abermilliarden Elektronen Strahlungsblitze aus. Doch wegen der schlechten Durchlässigkeit des Gases der Sonnenatmosphäre erreicht uns nicht alle Strahlung, die dort erzeugt wird.

Die Sonne als Radiospiegel

Eine wichtige Eigenschaft des Plasma-Zustandes, in welchem sich die Sonnenmaterie befindet ist, dass man nicht so einfach von außen magnetische Felder in ein Plasma einbringen kann. Das bedeutet, dass von außen kommende Radiowellen von der Sonne reflektiert werden, wie von einem Spiegel. Somit sollte sich das Weltall in ihr spiegeln, wie das Wohnzimmer in einer Christbaumkugel.
Ob dem so sei, wurde im September 1958 in folgendem Versuch ausprobiert.
Es ging darum, Radioechos von der Sonne zu empfangen.
Das Areal der Radaranlage der Universität in Stanford in Kalifornien bestand damals aus vier Einzelantennen, die über eine rechteckige Fläche von etwa fünf Hektar verteilt waren. Da die Anlage nicht bewegt werden kann, stand die Sonne fast nie in ihrer Blickrichtung. Nur für wenige Tage im Jahr, jeweils im April und im September wies der nach Osten gerichtete Radarstrahl fÜr etwa 30 Minuten auf die Sonne. Diese Gelegenheit wurde im September 1958 zum ersten Mal genutzt. Bei
einer Wellenlänge von 11.7 m wurden Radarsignale zur aufgehenden Sonne geschickt. Die Botschaft war denkbar einfach. Für 30 Sekunden wurde ein gleichförmiges Signal gesendet. Danach folgten 30 Sekunden Funkstille, wieder 30 Sekunden Signal und wieder 30 Sekunden Schweigen. Das wurde 15 Minuten lang fortgesetzt. Dann wurde die
Antenne vom Sender abgekoppelt und mit dem Empfänger der Anlage verbunden.
Die Zeitdauer von 15 Minuten war nicht zufällig gewählt. Ein Signal, das sich wie eine Radarwelle mit Lichtgeschwindigkeit bewegt, benötigt etwa acht Minuten, um von der Erde zur Sonne zu gelangen. Die gleiche Zeit braucht es für den Rückweg. Etwa eine Minute nach dem Umschalten war also – wenn alles gutging – das erste Radarecho von der Sonne zu erwarten. Im Prinzip hätte man die gesamte Sendung der letzten Viertelstunde im Echo wieder hören müssen: 30 Sekunden Signal, dann Stille, Signal, Stille usw.
So einfach ging es nicht. Die Sonne sendet ja selbst Radiowellen aus,
auch solche im Bereich der Betriebsfrequenz der Anlage. Diese Störstrahlung lässt die Echos nur schwer erkennen. Man erhielt in erster Linie die Radiowellen der äußersten Koronaschichten. Das schwache Echo der von Menschen erzeugten Signale war darin nur schwer auszumachen. Die Schwierigkeit gleicht der eines Mannes, der aus dem Lärm eines Münchner Oktoberfestzeltes den Zuruf eines mehrere Tische entfernt sitzenden Bekannten herauszufiltern versucht.
Mit Hilfe von modernen statistischen Methoden gelang es aber nicht nur, das Echo wirklich zu erkennen, sondern auch herauszufinden, wie die Sonne die Signale bei der Reflexion verändert hat. Wenn sich die
reflektierende Materie bewegt, dann ändert der Doppler-Effekt die
ursprüngliche Frequenz. Kommt der das Signal zurückwerfende Stoff auf die Radaranlage zu, so ist das Echo kurzwelliger als die ursprünglich ausgesandte Welle. Bewegt er sich weg, ist das Echo langwelliger. Die
Echos von der Sonne kommen aber von der mit der Sonne rotierenden Korona. Die Drehung bewirkt, dass das Radarsignal sowohl auf die Stellen der Korona trifft, die sich infolge der Rotation von uns wegbewegen,
wie auch auf den Teil, der sich gerade auf uns zu dreht. Ein Teil des
Echos zeigt also eine größere Wellenlänge, der andere Teil eine kleinere als das Ausgangssignal. Das Echo enthielt also auch Information über die Rotation der Sonnenkorona.
Zum anderen gelang es, aus dem Echo etwas über die Bewegungen in der Korona selbst zu erfahren. Wir wissen bereits, dass Materie in der Korona längs der magnetischen Feldlinien von der Sonne nach außen
fliegt und zum Sonnenwind wird. Deshalb herrscht in der Korona eine einheitliche Windrichtung, von innen nach außen. Die Radarechos wurden auch durch diese Bewegung beeinflußt.
Sie waren im Mittel kurzwelliger, ein Zeichen, dass Materie, die sich auf
uns zu bewegt, die irdischen Signale zurückgeworfen hat. So gelang es, die Geschwindigkeit des Sonnenwindes in der Korona zu messen. Man fand, dass er mit mindestens 20 km/s nach oben bläst.

Misst man die Radiostrahlung bei Sonnenausbrüchen, geben sie viel Information über den Ausbruch selbst. Man hat hier beispielsweise zur Kathegorisierung der Flares die Radioausbrüche in verschiedene Typen eingeteilt, aber das ist richtig komplizierte Sonnenphysik und Radioastronomie.

Heute hat sich die Radioforschung an der Sonne längst zur Radioastronomie entwickelt, da es noch deutlich mehr Radioquellen als nur die Sonne oder andere Sterne in unserem Universum gibt. Über diese werden wir uns sicher noch in anderen Artikeln unterhalten.

Nun zum Schluss noch eine Ankündigung einer kleinen Feier auf Blindnerd. Der nächste Beitrag wird der hundertste Artikel sein. Dafür überlege ich mir, wie ich das mit euch zelebrieren kann.

Bis dahin
Alles gute

Euer Blindnerd.

Der Sonne entgegen – Das ungebrochene Interesse


Liebe Leserinnen und Leser,

auch heute geht es nochmal um Raumsonden, welche die Sonne erforschten. Bis heute ist das Interesse der Menscheit an unserem Stern ungebrochen.

Die beiden Deutsch-Amerikanischen Planeten

Die Instrumente von SKYLAB und des späteren SPACELAB haben die
Sonne von einer Umlaufbahn um die Erde aus untersucht. Die beiden
HELIOS-Sonden dagegen sind direkt auf die Sonne zugeflogen. Sie
waren keine künstlichen Erdmonde, sondern künstliche Planeten.
HELIOS war ein amerikanisch-deutsches Gemeinschaftsunternehmen. Im Dezember 1974 hob von Cape Canaveral eine fünfstufige Titan-Centaur-Rakete ab. Sie trug an ihrer Spitze die 371 Kilogramm schwere Sonde HELIOS 1. Außerhalb der Erdbahn angelangt, wurde das Gerät in eine Umlaufbahn in Richtung Sonne geschossen. War die Sonde im Augenblick des Abschusses ebenso weit von der Sonne entfernt wie die Erde, also 150 Millionen Kilometer, so sollte sie sich dem
Stern bis auf 46 Millionen Kilometer nähern. Das ist näher als der Planet Merkur, der die Sonne in einem mittleren Abstand von 58 Millionen Kilometern umkreist.
Am 15. März 1975 erreichte HELIOS 1 zum ersten Mal den sonnennächsten Punkt ihrer Umlaufbahn. Die Strahlung war zehnmal so stark wie in Erdnähe. An Bord herrschten Temperaturen um 150 Grad. Trotzdem
arbeitete nahezu alles einwandfrei. Nur eine Antenne, die niedrigfrequente Wellen in dem von der Sonne ausströmenden Plasma messen sollte, war durch einen Fehler unempfindlicher geworden als man erwartet hatte. An Bord waren insgesamt zwölf Messeinrichtungen. Sieben stammten von Arbeitsgruppen aus der Bundesrepublik, drei von Teams aus den USA und zwei weitere betrieb man gemeinsam. Die Messdaten wurden per Funk zur Erde übertragen, wo Radioantennen der NASA mit Durchmessern von 64 Metern und das Radioteleskop des Max-Planck-Instituts für Radio-astronomie in Effelsberg in der Eifel mit seinem Antennenspiegel von 100 Metern Durchmesser die Signale des amerikanisch-deutschen Planeten empfingen. Während seines 190tägigen Umlaufes gab es zwei Phasen, in denen die Verbindung zusammenbrach: Wenn die Sonde von der Erde aus gesehen vor oder hinter der Sonne stand, störte deren
Radiostrahlung den Empfang für Tage oder Wochen. Im Januar 1976 wurde die Schwestersonde HELIOS 11 gestartet und auf eine ähnliche Bahn gebracht. Sie kam bei jedem ihrer Umläufe der Sonne sogar bis auf 43,4 Millionen Kilometer nahe. Eigentlich sollten die HELIOS-Sonden ihre Aufgaben nach etwa drei Monaten Flug erfüllt haben. Für einen längeren Zeitraum waren sie nicht ausgelegt. Doch sie arbeiteten weiter und wurden noch lange genutzt. Nach drei Jahren traten bei HELIOS II Temperaturprobleme auf; am 3. März 1980
wurde die Sonde aufgegeben. Zu Beginn des Jahres 1986, also zwölf Jahre nach ihrem Start, wurde die Verbindung mit HELIOS 1 schwierig. Die Sonde reagierte nicht mehr auf Kommandos von der Erde. War es bisher gelungen, die Orientierung von HELIOS 1 mittels Düsen aufrechtzuerhalten, dass die Bordantenne immer auf die Erde wies, so gelang das nun nicht mehr. Obwohl die meisten Experimente noch liefen, driftete die Antenne langsam von der Erde weg. Von HELIOS 1 kam keine Nachricht mehr.

ULYSSES und SOHO

Die HELIOS-Sonden haben uns Daten über die Gasmassen geliefert, die von der Sonne in den Raum geblasen werden und die auch die Erde erreichen. Doch die Erdbahn und die Bahnen der von ihr gestarteten Satelliten, wie auch die Bahnen der HELIOS-Sonden lagen nicht allzu weit von der Äquatorebene der Sonne entfernt. Deshalb wussten wir bis dato nichts von den Gasmassen, die von der Sonne in Richtung ihrer Pole abgestoßen werden. Dem sollte ULYSSES abhelfen, ein Gemeinschaftsunternehmen der NASA und der europäischen Weltraumorganisation ESA.

Der Start war für Mai 1986 mit der Mission STS-61-F auf einer Centaur-Oberstufe vorgesehen, doch aufgrund des Absturzes der Raumfähre Challenger am 28. Januar 1986 rutschte der Start schließlich auf den 6. Oktober 1990 und wurde dann mit der Mission STS-41 auf einer IUS/PAM-S-Oberstufenkombination durchgeführt.

Ihre Bahn war so ausgerichtet, dass sie in weitem Bogen über die
Pole der Sonne flog. Wissenschaftler aus 44 Instituten waren mit Messgeräten an ULYSSES beteiligt.

Radioantennen maßen Plasmawellen,
von der Sonne kommende Teilchen wurden nach Anzahl und Geschwindigkeit registriert,
Magnetometer untersuchten die im Plasma enthaltenen Magnetfelder,
Detektoren hielten nach den von Flares kommenden Röntgenstrahlen Ausschau.
Beinahe wäre schon vor dem Start ein Fehlschlag vorprogrammiert gewesen. Erst kurz vor dem Start wurde bemerkt, dass eine Anzahl von Chips, die man eingebaut hatte, fehlerhaft waren und ersetzt werden mussten.

Der Start war so geplant, dass die Sonde genau zum Zeitpunkt des Sonnenflecken-Maximums 1990/91 über den Südpol der Sonne flog.
Und damit noch nicht genug der Sonnenforschung.

Das Sonnenobservatorium SOHO

1995 wurde das Sonnenobservatorium SOHO gestartet.
Der Name ist aus Teilen von Solar und Helio-spheric Observatory zusammengebastelt. Vorschergruppen aus Finnland, Frankreich, Großbritannien, Deutschlands, aus der Schweiz und den USA waren mit Instrumenten an dieser Mission beteiligt.

Die Sonde überwachte in einer Entfernung von 1,5 Millionen Kilometern von der
Erde, dort, wo sich die Schwerkraft von Sonne und Erde die Waage halten, dem Sog. Lagrange-Punkt 1, die Sonne.
Neben zahlreichen Messgeräten, die nicht nur die von der Sonne ausströmenden Gase untersuchten, sondern auch die von ihnen mitgebrachten magnetischen und elektrischen Felder, wurde von den Bordinstrumenten die Oszillation der Sonnenoberfläche registriert.

Gelingt es zwar vom Südpol der Erde aus, die Sonne tagelang lückenlos zu überwachen, so begrenzt dort das Wetter die Zeitdauer langer Beobachtungsreihen.
Weit innerhalb der Bahn der Erde um die Sonne, wurde SOHO von keiner Sonnenfinsternis, sei sie nun durch die vor die Sonne tretende MondScheibe, sei sie durch den Erdball hervorgerufen, gestört.

Das ist nun für den Moment der letzte Artikel zu sonnenforschenden Raumsonden.
Aktuell erforscht die Sonde Parker die Sonne und der Solar-Orbiter ist unterwegs.
Somit ist das Interesse an ihr bis heute ungebrochen.

Wir werden dann in den nächsten Artikeln einen zeitlichen Sprung in die Vergangenheit machen und werden gewisse Aspekte der Sonnenforschung einzeln herausgreifen, die dann letztlich als Konsequenz diese vielen Raumsonden zur Erforschung des Sternes von dem wir leben, zur Folge hatten.

Bis da hin

Gehabt euch wohl,

passt auf euch und andere auf und bleibt gesund.

euer Blindnerd.

Das Kosmische Ei


Liebe Leserinnen und Leser,

lange habe ich nach einem Osterthema gesucht. Wie man Ostern berechnet, hatte ich schon geschrieben.
Ich dachte auch über einen Artikel nach, der von jemandem handelt, der für seine moderne Weltanschauung hingerichtet wurde, z. B. Giordano Bruno. Dann hätte man gewisse Parallelen zur Hinrichtung Jesu herstellen können.
Aber irgendwie wollte ich gerade für diese schwierigen Zeiten etwas frölicheres finden. So suchte ich und fand…

Es gibt sie in allen formen. Aus Zucker, Schokolade, mit und ohne Füllung, gekochte, bunte, ausgeblasene und gebastelte. Die Rede ist vom Ei.
Keine Angst. Ich stelle jetzt die Frage nicht, was zuerst da war, das Huhn oder das Ei. Mein Vater stellte sie uns Kindern gefühlt bei jedem Osterfest mindestens ein mal…

Das Ei steht für den Anfang des Lebens, für Fruchtbarkeit und neues. Deshalb ist es für uns ein so wichtiges österliches Zeichen. Jesus überwindet den Tot, ein Symbol für neues und ewiges Leben.
So verwundert es nicht, dass sich zahlreiche Schöpfungsmythen um das Ei ranken. Selbst heutige rational denkende Naturwissenschaftler ziehen gelegentlich das “Kosmische Ei” als Vergleich heran, wenn die Entstehung des Universums beschrieben werden soll.
Hier nun zunächst einige Mythen zur Entstehung der Welt aus einem Ei von Wikipedia. Danach gehen wir dann noch auf unser Thema, dem modernen kosmischen Eies ein.

Hinduismus

Das Gesetz des ersten indischen Gesetzgebers beginnt mit einem Schöpfungsmythos: „Er (Prajapati) hatte den Wunsch, Wesen aller Art aus seinem eigenen Körper hervorgehen zu lassen. Zu diesem Zweck erschuf er durch einen bloßen Gedanken das Wasser und legte seinen Samen darein. Der Same wurde zu einem goldenen Ei (Hiranyagarbha), leuchtend wie die Sonne, und in diesem Ei wurde er selbst geboren als Brahman, der Schöpfer der Welt … Der Göttliche wohnte ein Jahr lang in diesem Ei, dann teilte er es Kraft seines Gedankens in zwei Hälften, und aus den beiden Hälften formte er Himmel und Erde … Indem er seinen eigenen Körper teilte, wurde er halb männlich und halb weiblich …

Chinesische Mythologie

In einem chinesischen Weltentstehungsmythos enthielt das Urchaos in der Form eines Hühnereis das kosmische Prinzip Yin und Yang (zwei sich ergänzende Pole, die sowohl Ursprung als auch das Wesen aller Dinge sind). Aus diesem Ei wurde Pangu geboren.
Pangu steht als Weltachse im Mittelpunkt von Himmel und Erde. Seine Gestalt muss anfangs zwergenhaft gewesen sein. Nach 18.000 Jahren lichtete sich das Chaos und zerteilte sich in Yin und Yang (Erde und Himmel). Jeden Tag wuchs der Himmel nach oben und die Erde verfestigte sich und sank nach unten. Im selben Maß wuchs Pangu, bis er nach weiteren 18.000 Jahren zu einem Riesen geworden war, dessen Körper von der Erde bis zum Himmel reichte.
Er beschloss sein Leben durch eine Selbstopferung und bildete aus seinem Körper in einer Kosmogonie das Universum. Sein Odem wurde zum Wind, seine Stimme zum Donner, das linke Auge zur Sonne, das rechte bildete den Mond, aus seinem Leib bildeten sich die vier Pole und die fünf heiligen Berge, sein Blut ergab die Flüsse, Zähne und Knochen ergaben die Metalle, sein Haar die Pflanzen, sein Speichel den Regen und das an ihm haftende Ungeziefer die Menschheit. Aus Samen und Knochenmark wurden Perlen und Jade.

Japanische Mythologie

Der japanische Mythos der Weltentstehung ist in den frühesten japanischen Chroniken Kojiki (712) und Nihonshoki (720) festgehalten und besitzt chinesische Wurzeln, die auf die Einführung der chinesischen Kultur wie auch auf Einwanderer zurückgehen. Dem Nihonshoki gemäß war die Welt anfangs ein Chaos in Gestalt eines Ur-Eies, in dem Himmel und Erde (bzw. Yin und Yang) noch nicht getrennt voneinander existierten. Nachdem diese Trennung vollzogen war, trieben fisch- oder quallenartige Gebilde auf dem Wasser umher; aus diesen entstanden schilfartige Sprosse und diese wurden zu den ersten Gottheiten[6]. Es gab sechs Generationen von sehr unbestimmt beschriebenen Urgöttern und erst mit der siebten Generation, dem Geschwisterpaar Izanagi und Izanami, setzt die eigentliche mythologische Erzählung ein.

Griechische und römische Antike

In Griechenland gehört der Mythos vom Welten-Ei zum Dionysoskult. Die heiligen Geschichten dieses Kultes berichten, dass der – mehr oder weniger mit Dionysos identische – Schöpfergott aus einem Ei schlüpfte. So geheimnisvoll sein Wesen ist, so unsicher ist auch sein Name, er heißt Phanes, Protogonos, Eros oder Kronos. Da er selbst unerzeugt ist und vielmehr alles erzeugt, ist er – wie Brahman und wie Amun – mann-weiblich. Als Eigeborener hat er Flügel. In einem orphischen Hymnos wird er angerufen:„ Urwesen, doppelgestaltiger, ätherdurchfliegender Riese, / der du dem Ei entschlüpftest, prangend mit goldenen Schwingen, / brüllend so laut wie ein Stier, du Ursprung der Götter und Menschen …/ seliger, Kluger, an Samen Reicher, besuche voll Freude/ uns, die Kenner der Feiern, zur heiligen, leuchtenden Weihe“ Ähnlich wie der ägyptische Amun gilt auch der orphische Protogonos/Phanes als eine besonders „geheimnisumwitterte Gottheit“. Er zieht den „Kennern der Feier“ den „Schleier der dunstigen Finsternis fort von den Augen“.[9]
Im römischen Mithraskult taucht Mithras in der Erscheinungsform des orphischen Phanes auf. Geflügelt und schlangenumwunden, umgeben von den zwölf Sternbildern des Tierkreises und den aus den vier Himmelsrichtungen blasenden Winden steht er zwischen der unteren und der oberen Hälfte des Welteneies. In der Rechten hält er den herrschaftlichen Donnerkeil, in der Linken die Weltachse.

Das moderne Kosmische Ei

Der Kirchenmann und Astronom Georges Lemaître veröffentlichte 1927 die Idee, dass sich der Kosmos aus einem Uratom entwickelt habe.
Dieser Entstehungsprozess, wenn also quasi die Schale des Eis aufspringt, und das junge Universum frei gibt, nennt man seither in der Kosmologie Urknall oder Big Bang.

Etwas genauer ausgedrückt wird in der Kosmologie der Beginn des Universums, also der Anfangspunkt der Entstehung von Materie, Raum und Zeit als Urknall bezeichnet. Nach dem kosmologischen Standardmodell ereignete sich der Urknall vor etwa 13,8 Milliarden Jahren. Urknalltheorien beschreiben nicht den Urknall selbst, sondern das frühe Universum in seiner zeitlichen Entwicklung nach dem Urknall.
„Urknall“ bezeichnet keine Explosion in einem bestehenden Raum, sondern die gemeinsame Entstehung von Materie, Raum und Zeit aus einer ursprünglichen Singularität. Diese ergibt sich formal, indem man die Entwicklung des expandierenden Universums zeitlich rückwärts bis zu dem Punkt betrachtet, an dem die Materie- und Energiedichte unendlich wird.

Eine Singularität ist ein Zustand, ein Ort, wo unsere physikalischen Gesetze aufhören zu existieren. Masse wird unendlich, Zeit unendlich langsam etc. Weder die Gesetze der Relativitätstheorie, noch diejenigen der Quantenphysik und die Newtonsche Mechanik, greifen hier nicht mehr. Das sog. Standard-Modell, das diese Gesetze und Theorien zu vereinen sucht, versagt an so einem Ort.

Es wird krampfhaft nach einer Theorie, der Quantengravitation gesucht, die alles miteinander verbindet.

Die Bezeichnung des “kosmischen Eis” wurde von der modernen Wissenschaft in den 1930er Jahren wieder entdeckt. Nach modernen kosmologischen Modellen war vor 13.8 Milliarden Jahren die gesamte Masse des Universums in einer gravitativen Singularität komprimiert, dem sogenannten Kosmischen Ei, von dem aus sich das Universum bis zu seinem heutigen Zustand entwickelte.

So, das waren also jetzt mal einige Mythen über das Ei und die Entstehung von allem bis in die heutige Zeit.

Jetzt wünsche ich euch trotz allem schöne viele bunte Ostereier. Und Vorsicht, daran kann man sich auch überfressen… Ist mir als Kind regelmäßig passiert.

Also, gehabt euch wohl,
feiert schön im Rahmen eurer Möglichkeiten,
passt auf euch auf
und bleibt gesund.
Frohe Ostern wünscht euch

euer Blindnerd.

Kinderfrage: Gibt es auch einen Supermond bei Neumond?


Liebe Leserinnen und Leser,
Das folgende und wirklich rührende Erlebnis muss ich unbedingt mit euch teilen.
Ein Familienvater, der mal in einem meiner Vorträge war, fragte mich, ob ich nicht mal für seine Kinder und für Kinder von Freunden zum Zeitvertreib im Rahmen einer Videokonferenz mal etwas zum Thema Astronomie erzählen könnte.

Schwierig, denn meine Modelle sind alle im Büro und ich sitze hier fest in Isolation. Also überlegten wir Thema und Ablauf. Modelle ergänzten wir, indem der Vater es irgendwie schaffte, Fotos und Grafiken aus dem Netz für alle sichtbar einzuspielen. Das Thema moderierte ich.

Es ging zum einen um die Frage, wieso Ostern manchmal so früh, und manchmal so spät sei. Zum anderen durften die Kinder dann frei ihre Fragen zu Weltraumthemen stellen.

Ein kind hatte in dem Medien aufgeschnappt, dass heute, am 08.04. nicht nur Ostervollmond, sondern auch Supermond sei. Es wollte zunächst wissen, was der Supermond eigentlich ist.
Unterstützt von einem Vater, der einen Globus und einen Tennisball in seine Kamera brachte, erklärte ich den Supermond und er bewegte seinen Tennisball um seinen Globus. Ich glaube, er hatte noch was als Sonne im Hintergrund, ein Wasserball oder so. Das weiß ich nicht mehr genau.
Allen, die nochmal genau wissen möchten, was der Supermond ist, und wie er entsteht, darf ich meinen schon gut abgehangenen Artikel, Was ist der Supermond, wärmstens ans Herz legen.

Ich teile mit euch jetzt die Frage, die das Kind stellte, nachdem der Supermond erklärt und verstanden war.

“Wenn Supermond immer bei Vollmond ist, gibt es dann auch einen Super-Neumond?”

Da musste ich erst mal kurz schlucken und nachdenken. Stimmt eigentlich. Wieso haben die Medienmacher nicht auch den Neumond so schön tituliert.

“Ist doch klar”, kann man hier sofort anbringen. Den Neumond sieht man ja nie. “Was sollen wir Journalisten mit etwas anfangen, das niemand sehen kann. Das ist langweilig und bringt keine Verkaufs- oder Einschaltquoten”.

Aber stimmt das wirklich immer?
Wir erinnern uns. Super-Vollmond ist immer dann, wenn der Mond auf seiner elliptischen Bahn um die Erde gleichzeitig zum Vollmond seinen erdnächsten Punkt das Perigäum, durchläuft. Dann zeigt sich uns der Vollmond etwas größer, also super. Dieses “super” ist aber mit bloßem Auge nicht wahrnehmbar….

Das kann man sich natürlich jetzt auch für den Neumond denken. Gut, wir sehen ihn zwar nie, aber es spricht ja nichts dagegen, dass es gleichzeitig, wenn der Mond das Perigäum passiert, auch mal Neumond sein kann. So weit, so gut.
Die Frage ist damit beantwortet. Es gibt auch einen langweiligen Super-Neumond, den niemand sieht und der deshalb uninteressant ist.

Ist er das wirklich?
Ich sage entschieden nein!!! Er ermöglicht uns den Blick auf das spannendste Phänomen, das unsere Sonne uns zu bieten hat. Manche menschen stürzen sich in Abenteuer, reisen um die ganze Welt, investieren ein imenses vermögen, nur um den Super-Neumond für wenige Sekunden bis Minuten zu erleben. Sie sind süchtig davon. Es gibt in den USA ein Wort für diesen Menschenschlag. Man nennt sie dort “Eclipse Chasers”.
OK, alle haben es mittlerweile erraten. Es hat mit Finsternissen zu tun.
Der Super-Neumond wird nur selten sichtbar, obwohl er eigentlich eben so oft stattfindet, wie der Super-Vollmond. Er zeigt sich bei einer totalen Sonnenfinsternis.
Es ist schon ein Wunder, dass die Größenverhältnisse und der Abstand zwischen Sonne und Mond gerade so sind, dass der Mond in der Lage ist, die helle Sonnenscheibe abzudecken, damit uns die wunderbare Korona offenbar werde.
Wäre unser Mond der Erde näher, oder wäre er größer, dann würde er mehr als nur die helle Sonnenscheibe verdecken. Dann könnten wir die Korona vermutlich nur sehr kurz vor der totalen Bedeckung oder kurz nach der Bedeckung erhaschen, wie wir jetzt die sog. Perlenschnur erhaschen, wenn die Sonne kurz vor der Totalität noch am Rande der Mondscheibe zwischen einigen Mondgebirgen hindurch lukt.

Unser Mond deckt die Sonnenscheibe vor allem dann so wunderbar ab, wenn Neumond und der Durchgang des Mondes durch sein Perigäum gleichzeitig stattfinden.
Das ist im Grunde dasselbe, wie beim Super-Vollmond. Man muss nur das Voll durch Neu ersetzen.
Ich sagte vorhin, dass man die Super-Eigenschaft des Vollmondes, etwas größer, mit bloßem Auge nicht schauen kann, weil 13 % Unterschied bei der kleinen Mondscheibe nicht wahrgenommen werden können.
Das ist beim Super-Neumond durchaus anders.
Findet der Neumond gleichzeitig mit dem Durchgang des Mondes durch seinen erdfernsten Punkt, das Apogäum statt, dann kann, bei einer Sonnenfinsternis, das Mondscheibchen nicht mehr die ganze Sonne abdecken, weil er für uns kleiner erscheint. Es entsteht eine ringförmige Finsternis. Der Mondschatten bohrt ein Loch in die Sonnenscheibe. Ein heller Rand bleibt stehen, und die Korona bleibt verborgen, weil sie davon überstrahlt wird.
Was einen Neumond zur Sonnenfinsternis, und einen Vollmond zur Mondfinsternis macht, beschrieb ich ausführlich beispielsweise in Finstere Erinnerungen.

Fazit:
Es gibt auch einen Super-Neumond. Der zeigt sich uns bei seltenen Sonnenfinsternissen. Naja, so selten sind die gar nicht, aber man muss halt hin kommen, wo sie stattfindet.
Und es gibt auch das Gegenteil. Der Sub-Vollmond, der uns in Erdferne, dem Apogäum, etwas kleiner als der Supper-Vollmond in Erdnähe erscheint. Fällt nicht ins Gewicht.
Anders beim Sub-Neumond.
Der ist bei ringförmigen Sonnenfinsternissen für das Loch verantwortlich.

Der Vollständigkeit halber muss ich noch erwähnen, dass in dem Fall auch eine Rolle spielt, wo sich die Erde gerade auf der Umlaufbahn um die Sonne befindet. Denn auch dieser Abstand variiert und lässt die Sonne im Perihel etwas größer erscheinen, als im ihrem Aphel. Davon merken wir aber ohne die optischen Schattenwürfe von Finsternissen im alltag nichts.

So, meine lieben, das war der Super-Neumond. Lassen wir ihn auch mitmachen und behandeln wir ihn künftig nicht mehr so stifmütterlich neben seinem Bruder, dem Supermond…
Gehabt euch wohl,
passt auf euch auf
und bleibt gesund.

Es grüßt euch österlich
Euer Blindnerd.

Der Sonne entgegen – Spacelab


Liebe Leserinnen und Leser,
Mögt ihr die Sonne, die Musikgruppe Kraftwerk, meinen Blog und vielleicht auch mich, dann findet ihr all dieses im folgenden Artikel vereint.
Es geht heute nochmal um eine Mission, die u. A. Geschichte der Sonnen- und Weltraumforschung schrieb.

Die Gruppe Kraftwerk veröffentlichte 1978 auf ihrem Album “Die Mensch-Maschine” einen Titel, der den Namen der Mission trägt, um die es heute gehen soll.
Kraftwerk muss vom Bau dieses, wie wir noch sehen werden, von sehr langer Hand geplanten Labors, Wind bekommen haben, und machte es zum Gegenstand ihres Songs.
Das war die Musik meiner Kindheit. Ich besaß damals so einen kleinen Casettenrecorder, den man flach auf den Tisch legte von ITT. Da lief diese LP rauf und runter…
Dann will ich euch nicht länger auf die Folter spannen Es geht um dieses schöne Lied.
Und jetzt zu Spacelab:

Countdown und Start

Am Ende des Countdowns werden die Flüssigkeitsraketen gezündet und 6.6 Sekunden später die Feststoffraketen. Alles scheint planmäßig zu verlaufen. Es ist 16.00 Weltzeit, 11 Uhr vormittags im Kennedy Raumfahrtzentrum in Florida. Die Raumfähre COLUMBIA hebt langsam vom Boden ab und bewegt sich senkrecht nach oben. 30 Millionen Newton Schubkraft beschleunigt die Fähre, bis sie 16 Sekunden nach dem Start die Schallgrenze überschreitet, Ihre Geschwindigkeit liegt bei 1200 Stundenkilometern. Als die vierfache Schallgeschwindigkeit erreicht wird, werden die beiden leeren Feststoffraketen abgestoßen.
An Fallschirmen gleiten sie ins Meer, wo bereits Bergungsschiffe auf sie warten.
Die Fähre selbst aber wird nun von drei aus einem großen Tank gespeisten Raketen weiter nach oben gebracht. Nach sechs weiteren Minuten werden auch diese Triebwerke abgeschaltet und der Tank kurz danach abgestoßen. Die Höhe beträgt bereits 120 Kilometer, und der Tank tritt mit einer so großen Geschwindigkeit in die Erdatmosphäre ein, dass er verbrennt. Inzwischen hat die Fähre die Umlaufbahn erreicht.
Man schreibt den 28. November 1983. Es war der neunte SPACE-SHUTTLE-Flug. Die Fähre hatte das Weltraumlaboratorium SPACELAB an Bord. In den nächsten 10 Tagen, 7 Stunden und 47 Minuten, sollte sie mit ihrer Nutzlast 166mal die Erde umkreisen, um am 8. Dezember um 23.47 Uhr Weltzeit planmäßig auf einem Luftwaffenstützpunkt in Kalifornien zu landen.
In Deutschland wurde die Mission mit besonderem Interesse verfolgt, da zum ersten Mal ein deutscher Astronaut, Ulf Merbold, in den Raum
geschossen wurde. Neben den zahlreichen Experimenten während des
Fluges wurde auch wieder die Stärke der Sonnenstrahlung, vor allem im ultravioletten Bereich des Sonnenspektrums, gemessen. Das wurde der Anfang einer Reihe von SPACE-Shuttle-Flügen, bei denen astronomische Messungen, vor allem Messungen an der Sonne, ausgeführt werden sollten. Durch die CHALLENGER-Katastrophe im Jahre 1986 wurde jedoch das gesamte Programm der SHUTTLE-Flüge verzögert.
Aufgeschoben ist aber nicht aufgehoben.
Das Spacelab flog erstmals 1983 auf der Mission STS-9 und wurde bis zu seiner Außerdienststellung 1998 insgesamt 22 Mal eingesetzt.

Was Spacelab war

Das Spacelab war ein wiederverwendbares Raumlabor zur Durchführung wissenschaftlicher Experimente und Beobachtungen in der Schwerelosigkeit, das ausschließlich für den Einsatz mit dem Space Shuttle konzipiert war. Dazu konnte es in die Ladebucht der Raumfähre integriert werden. Entwickelt und gebaut wurde das Spacelab im Auftrag der ESA von einem europäischen Firmenkonsortium unter Leitung des deutschen Hauptauftragnehmers VFW-Fokker/ERNO.

Spacelab war ein modulares System, das aus vier Elementen bestand, die miteinander kombiniert und je nach Aufgabenstellung zusammengesetzt werden konnten:
ein zylindrisches Druckmodul mit Schränken und Fächern für Versuche in Schwerelosigkeit,
ein Verbindungstunnel zum Druckmodul für die Astronauten,
die Palette, auf welcher ebenfalls Versuche unterschiedlichster Art aufgebaut werden konnten
und eine Instrument Pointing System (IPS) genannte Nachführungseinheit, die insbesondere zur Sonnen- und Sternbeobachten mit Teleskopen oder für Antennen unverzichtbar war.
Außerdem gab es noch das Iglu, das bei Nur-Paletten-Flügen für die Energieversorgung, die Kommunikation sowie Datenverarbeitung zuständig war.

Das modulare Konzept findet sich auch heute beispielsweise im Columbus-Modul auf der ISS wieder.

Etwas Geschichte

Noch vor der ersten Mondlandung unterbreitete die NASA 1969 der European Space Research Organisation (ESRO), der Vorgängerin der ESA, das Angebot, sich am US-Raumfahrtprogramm der Nach-Apollo-Ära zu beteiligen. Unter den Vorschlägen der NASA war auch das Spacelab. Kurz nachdem 1972 offiziell die Entscheidung der USA gefallen war, das Space Shuttle zu bauen, erklärten die Wissenschaftsminister auf der europäischen Weltraumkonferenz im Dezember des Jahres, das Raumfährenlabor zu entwickeln und zu bauen. Der endgültige Vertrag zwischen ESRO und NASA wurde im September 1973 geschlossen. Und im Juni des folgenden Jahres vergab die europäische Raumfahrtorganisation den Auftrag zum Bau des Spacelab an das von VFW-Fokker/ERNO geführte Firmenkonsortium.

Ich bin immer wieder beeindruckt, mit welch langer Hand derartige Missionen geplant werden müssen. Die Wiederverwendbarkeit des Labors zeugt von einer unglaublichen Nachhaltigkeit.
Dieses Labor war mit seinem modularen Aufbau, der verschiedenen Konfigurationen und Versuchsaufbauten imgrunde schon ganz klein das, was heute die Internationale Raumstation mit ihren zahlreichen modularen Laboren ist, nur, musste das Labor halt immer wieder mal nach hause, um für den nächsten Flug umgebaut zu werden.
Bei der ISS ist das umgekehrt. Dort bringt man die Versuche und Experimente von der Erde zum Labor und nimmt am Ende die Messergebnisse wieder zur Erde zurück mit.

Neben vielen Experimenten in der Schwerelosigkeit, hat uns die Raumfahrt gerade mit Spacelab den Blick in Bereiche des Sonnenspektrums geöffnet, in dem uns die Sonne ein aufregendes Schauspiel vor Augen führte, von dem wir von der Erde aus nichts geahnt hatten. Spacelab
gab Sonnenphysikern und Astronomen auch die Möglichkeit, den Stoff, der von der Sonnen-korona in den Raum geschleudert wird, direkt zu untersuchen.
Das wird dann der Stoff einer neuen Folge auf Blindnerd.de werden.

Bis da hin
Gehabt euch wohl,
Passt auf euch auf
und bleibt gesund.

Es grüßt ganz herzlich
Euer Blindnerd.

Der Sonne entgegen – Das Abenteuer der Reparatur des Sonnenobservatoriums SMM im All


Liebe Leserinnen und Leser,

auch heute befassen wir uns nochmal mit der Historie der Sonnenforschung. Diesmal geht es um ein großes Abenteuer; genauer um die Reparatur der Raumsonde SMM (Solar Maximum Mission). Ich finde diese Geschichte so aufregend, dass ich hoffe, dass auch ihr sie spannend findet.

Also los:
Was Skylab während der neun Monate 1973 – 1974 im All auf der Sonne sah, beschrieb ich im letzten Artikel. Zu dieser Zeit befand sich die Sonne gerade in einem Flecken-Minimum. Es liegt nun nahe, dass man sich mittels einer Raumsonde, SMM, auch mal betrachten wollte, was sich so auf der Sonne während eines Flecken-Maximums tut.

Das nächste Maximum erwartete man in den Jahren 1979 – 1980.
Am 14. Februar 1980 wurde SMM gestartet, welche die Sonne während der Zeit ihrer größten Aktivität überwachen sollte. Die unbemannte Sonde hatte sieben Instrumente an Bord, die vor allem Flares auf der Sonne untersuchen sollten. Auch die Stärke der Sonnenstrahlung wurde von Smm überwacht.
Flares sind Strahlenausbrüche auf der Sonne, die dadurch hervorgerufen werden, dass sich entgegengesetzte Magnetfelder gegenseitig auslöschen, und deren Stärke dann in Energie umgewandelt wird.
Die Sonde arbeitete nach ihrem Start zwei Monate einwandfrei. Dann
versagte ihr Orientierungssystem, das die Instrumente genau auf die
gewünschte Stelle der Sonne richten sollte, die man gerade untersuchen wollte. Viele unbemannte Sonden
sind seither in den Raum geschossen worden, die nach einiger Zeit
fehlerhaft arbeiteten und aufgegeben werden mussten. Das war bei
SMM anders. Mit ihrer Flughöhe von 600 Kilometern lag die Station in
der Reichweite des SPACE-SHUTTLES. Deswegen war das Gerät
bereits so gebaut worden, dass Einzelteile leicht ausgewechselt werden konnten. Für die Vorbereitungen zur Reparatur benötigte man nahezu drei Jahre. Werkzeuge wurden neu entwickelt und jeder Handgriff im Wassertank unter weltraumähnlichen Bedingungen geübt. Schließlich war es soweit.

Die Space Shuttle trug im April 1984 fünf Astronauten nach oben.
Nachdem sie einen anderen Satelliten in eine Umlaufbahn gebracht hatten, steuerte Kapitän Crippen mit der Raumfähre CHALLENGER, unterstützt von Astronaut Scobie, der 21 Monate später im gleichen
Raumschiff den Tod finden sollte, das Sonnenobservatorium SMM an.
Die NASA hat Einzelheiten des Manövers mit Kameras an Bord per Video festgehalten. Das sollte sich im Internet leicht finden lassen. Mir wurde es vor langer Zeit folgendermaßen beschrieben:

Wie ein riesiges, von der Sonne beleuchtetes Fass hebt sich die schadhafte Sonde hell vor dem schwarzen Himmelshintergrund ab. Die beiden Sonnenpaddel, welche die Station mit Energie versorgen, hängen wie zwei große Flügel an beiden Seiten. Der Astronaut Crippen bringt die Fähre bis auf 90 Meter an die Station heran. Die beiden Körper fliegen nun parallel nebeneinander um die Erde. Aber noch dreht sich die Station um ihre eigene Achse. Am nächsten Tag verlassen zwei Astronauten in Raumanzügen die Fähre. Sie haben sich auf das Arbeiten außerhalb des sie schützenden Raumschiffs vorbereitet. Seit vier Stunden atmen sie eine reine Sauerstoffatmosphäre. Auch während ihrer Arbeiten draußen werden sie in ihren Raumanzügen reinen Sauerstoff atmen.

Reinen Sauerstoff atmen die Astronauten deshalb, weil man dadurch Gasvolumen sparen kann. Wenn man bedenkt, dass 78 % der Luft hier auf der Erde aus Stickstoff besteht, mit welchem unser Körper nichts anfängt, dann ist das absolut nachvollziehbar, wenn man die Atemluft auf das Gas beschränkt, das man wirklich zum überleben benötigt, den Sauerstoff. Aus diesem Grunde haben beispielsweise auch die Apollo-Astronauten während ihrer ganzen Mission reinen Sauerstoff geatmet.

Zurück zur Geschichte.
Dann legt sich einer von ihnen die Antriebseinheit an, mit der er sich im Raum frei bewegen wird. Wie ein riesiger Tornister, fast wie ein umgeschnallter Großvaterstuhl sieht das Gerät aus, mit Armstützen, welche die Schalthebel für die zwölf Antriebsdüsen tragen, mit denen der Astronaut Stickstoff in den Raum blasen kann, der ihn mit seinem Rückstoß in jede beliebige Richtung bewegt und dreht. Das Gerät, das auf der
Erde nahezu 150 Kilogramm wiegt, bereitet den Astronauten in der Schwerelosigkeit keine Probleme. es geht nur alles entsprechend langsamer.

Langsam ist hier ganz wichtig, denn, wenn z. B. dieser Düsenantrieb im All auch nichts wiegt, so besitzt er ob seiner Masse Trägheit. Einmal beschleunigt und verloren, könnte kein Astronaut ihn wieder aufhalten, bzw. ihm im All “hinter her schwimmen”, um den Stuhl wieder einzufangen. Selbiges gilt auch für Werkzeuge und Ersatzteile. Irgendwo fliegt beispielsweise noch eine Werkzeugtasche herum, die bei einem Außeneinsatz einem Astronauten entglitten war.

Nun beginnt die Reise im stickstoffgetriebenen Lehnstuhl.
In Zeitlupen-Tempo verlässt der Astronaut den offenen Laderaum des Shuttles in Richtung SMM.
Nach zehn Minuten hat er die Station erreicht. Er soll die Drehbewegung der Sonde mit Hilfe seines Düsenantriebes abstoppen. Dazu befestigt er sich an einer Seite der Station und erzeugt mit seinem Stickstoffgebläse die nötige Gegenbewegung. Schwindelig dürfte ihm dabei wahrscheinlich nicht geworden sein, denn ohne Schwerkraft gibt es im All kein oben und unten, und wenn er unbeirrt auf die Sonde blickt, so steht sie nahezu ruhig zu ihm, weil er mit ihr ja fest verbunden ist. Mit Blick auf die wartende Raumfähre dürfte er festgestellt haben, dass die Sonde und auch er nun die Drehung gestoppt haben. Ich weiß nicht, ob der Astronaut während dieser Aktion über eine Leine mit dem Shuttle verbunden war. Kann ich mir eigentlich nicht vorstellen. Er könnte sich durch die Drehung von SMM doch darin verfangen… Sicher stand in der Fähre ein weiterer Astronaut mit Düsenantrieb bereit, um ihm zur Seite zu schweben, sollte es Probleme geben. Verraten sei an dieser Stelle, dass es keine gab.

Als die Sonde sich nicht mehr drehte, konnte man sie in den Laderaum bringen, ohne die sperrigen Sonnenpaddel zu beschädigen.
Zur bergung der Sonde nähert sich die Fähre der Station auf neun Meter. Ein speziell dafür konstruierter Greifarm, gesteuert von Astronaut Nelson, ergreift das Sonnenobservatorium, um es vorsichtig in eine dafür vorbereitete Halterung in der offenen Ladeluke zu bringen. SMM wird befestigt, und die Reparatur kann beginnen.
Die Umlaufzeit von Sonde und Fähre um die Erde beträgt 100 Minuten. Für jeweils 60 Minuten hat man Tageslicht, während der restlichen Zeit bewegt man sich im Erdschatten.

Huch, wieso nicht 45 Minuten Tag und 45 Minuten Nacht? Genau. Die Sonde bewegt sich nicht in der Ekliptik, sondern hat eine zu ihr gekippte bahn. Das ist sinnvoll, denn man wollte ja nicht nur die Äquator-Region der Sonne betrachten, sondern auch etwas näher bei den Polen forschen.

Scheinwerfer erhellen bei Nacht die provisorische Werkstatt. Einzelteile werden von den beiden Astronauten ausgetauscht. Dabei müssen die Männer vorsichtig arbeiten, obwohl das Gewicht der auszuwechselnden Teile in der Umlaufbahn keine Rolle spielt. Schließlich müssen Massen bewegt werden, deren Gewicht auf der Erde Hunderte von Kilogramm betragen würden. Oben schrieb ich schon, dass Einmal bewegt, sind sie nicht leicht wieder
zu stoppen. Die Sonnenpaddel, die zu beiden Seiten aus der Raumfähre herausragen, dürfen nicht beschädigt werden.

Während einer Arbeitspause sind alle fünf Astronauten wieder im Inneren der Fähre. Der Präsident der Vereinigten Staaten ist am Telefon. Der NASA-Film zeigt Präsident Reagan an seinem Arbeitstisch im Weißen Haus. Man sieht auch die fünf Astronauten im Schiff frei schwebend, ohne Schuhe, nur in Strümpfen, während sie vom Präsidenten den Dank der Nation entgegennehmen. Ich glaube, dass nur selten in der Geschichte der Vereinigten Staaten Amerikaner in
Strümpfen mit ihrem Präsidenten gesprochen haben.

Danach gehen die Arbeiten draußen weiter. Zwei Astronauten wechseln Teile aus. Während der Arbeiten haben sie, jetzt zur Sicherheit an langen Leinen hängend, dicke Spezialhandschuhe an, die ihre Hände
vor der luftleeren Umgebung schützen. Damit müssen sie Kabel ergreifen und Schrauben drehen. Bei der Reparatur werden auch noch zwei Meßgeräte an Bord von SMM überholt. Die Station ist wieder betriebsbereit.
Vorsichtig hebt der Greifarm das Gerät aus dem Laderaum heraus und das Observatorium wird abgekoppelt. Solar Maximum Mission ist wieder auf einer eigenen Umlaufbahn um die Erde.

Im Jahre 1988 machte SMM wieder von sich reden, als bekannt
wurde, dass die Messungen von aus dem Weltraum kommenden Gammastrahlen durch sowjetische Spionagesatelliten ernstlich gestört werden. Verursacher dafür waren die Kernreaktoren, welche die Agenten im Orbit mit Energie versorgen. Dabei treten nämlich aus den Reaktoren positiv geladene Teilchen aus, Positronen.

Positronen sind quasi das Gegenstück aus der Antimaterie zu den Elektronen. Stößt so ein Antiteilchen auf normale Materie, z. B. auf die Wand von SMM oder gar ein Messinstrument, dann verstrahlt es in einem Lichtblitz, der im Gamma-Bereich liegt, mit einem Teilchen der getroffenen Materie.

Das störte die Messungen der Gamma-Detektoren an Bord von SMM.
Von diesem Problem abgesehen, war SMM eine der erfolgreichsten wissenschaftlichen Missionen zur Erforschung der Sonne. Langsam drang die Sonde inzwischen während der vergangenen Jahre immer tiefer in die Erdatmosphäre ein. Aber noch im November 1989 lieferte sie wichtige Daten.
Am 2. Dezember 1989 trat die 2268 Kilogramm schwere Messstation
zu ihrem letzten Umlauf an. Kurz danach verglühte sie über dem Indischen Ozean in der Erdatmosphäre.

Während ihrer nahezu zehnjährigen Betriebszeit hat die Sonnensonde SMM 12 500 Flares auf der Sonne
registriert. Doch neben ihrer eigentlichen Aufgabe hat sie mehrere
Kometen entdeckt, die berühmte Supernova vom Februar 1987 in der
Großen Magellanschen Wolke am Südhimmel vermessen und die
Ozonschicht der Erdatmosphäre untersucht.

Eine weitere Frage, die SMM erforschen sollte war, ob die Strahlung der Sonne schwankt. Es gab Wissenschaftler, die in Erwägung zogen, dass beispielsweise die sog. kleine Eiszeit während des Mounder-Minimums von einer geringeren Sonnenstrahlung her gerührt haben könnte. Manchmal hält sich die Sonne mit ihrem Fleckenzyklus leider nicht an ihre elf Jahre. Von 1645 – 1715 blieben jegliche Sonnenflecken aus. Dieses verlängerte Minimum ist nach ihrem Entdecker Edward Walter Maunder benannt. Von der Erde aus ist es nicht leicht, die Variation der Sonnenstrahlung zu beobachten, da Wolken und sonstige atmosphärische Bewegungen derartige Messungen unbrauchbar machen können. Deshalb misst man Die Intensität der Sonnenstrahlung besser vom Weltall aus. Die Ergebnisse von SMM war,dass die Sonnenstrahlung um weniger ein Promille schwankt. Diese Schwankung hängt z. B. auch damit zusammen, dass es in Zeiten eines Flecken-Maximums mehr dunklere Stellen auf der Sonne gibt, als bei einer blank geputzten Sonne ohne Flecken. Da die Flecken mit der Sonnenoberfläche rotieren, ist der Schwankung der Sonnenstrahlung auch diese Periode aufgeprägt.

So, meine lieben, das war das große Abenteuer der Reparatur von SMM.
Wenn es euch gefallen hat, dann freut es mich. Wer mag, darf das gerne verteilen, liken oder noch besser, einen Kommentar auf dem Blog hinterlassen.

Gehabt euch wohl, passt gut auf euch auf und bleibt gesund.
Es grüßt euch ganz herzlich
euer Blindnerd.

Was Skylab sah


Liebe Leserinnen und Leser,

irgendwie bin ich von dem Thema der Sonnenforschung ganz angefressen.
1987 stieg ich quasi über dieses Thema in die Astronomie ein. In “Blind zu den Sternen” schrieb ich im Kapitel “Mittlere Reife” über dieses Schlüsselerlebnis.
Das Wetter ist super, der Frühling ist da, und wir dürfen trotzdem alle nicht so richtig raus…
Damit aufhören kann ich jetzt einfach nicht. Durch die Erwartungen an den Solar Orbiter, ist dieses Thema wieder neu in mir erwacht und meine Begeisterung darüber neu entflammt.
Sie ist ja auch noch so unvollständig, meine Serie zu “Der Sonne entgegen”.

Also, gehen wir heute ein Stück weiter.
Wie angekündigt geht es heute um das erste richtige bemannte Sonnenobservatorium der Welt, um Skylab, die 1973 ins All startete.
Heute werde ich speziell darauf eingehen, was Skylab sah. Wer mehr über den Aufbau dieser Station wissen möchte, dem darf ich wärmstens meinen Artikel “Gedenken an die erste Raumstation der Welt” empfehlen.
Es wird auch in diesem Beitrag viel um die Röntgensonne gehen, die man wegen der Atmosphäre vom Boden aus nicht beobachten kann. Es macht aber viel Sinn, die Sonne nicht nur im weißen Lichte zu betrachten, sondern sie sich auch mal im Licht, einzelner Wellenlängen, z. B. eben auch die Ultraviolett- und Röntgenstrahlung, anzusehen.
Im einfarbigen Licht treten Dinge zu Tage, die normalerweise entweder von unserer Atmosphäre verschluckt, bzw. vom vom weißen Licht überstrahlt werden.
Also, es war nun so weit und Skylab begann seine Beobachtungen.
Man fand im ultravioletten Licht beispielsweise Spektrallinien von Helium, die von der Erde nicht beobachtbar waren. Hierfür war ein sehr empfindlicher Spektro-Heliograph an Bord. Das ist ein Instrument, mit welchem Beobachtungen in sehr kurzwelligen, dem Auge unsichtbaren Sonnenlicht möglich wurden. Helio in Helio-Spektrograph bezieht sich hier nicht auf das Helium, das damit beobachtet wurde. Mit einem Spektroheliographen kann man die Sonne im Lichte verschiedener Wellenlängen beobachten.

Man fand auch die sechseckige Struktur der Granulen im ultravioletten Bereich wieder, die man schon von einer Spektrallinie des Kalcium von der Erde her kannte. Auch in Linien des Elementes Sauerstoff ließ sich dies nachweisen. Auffallend war das Bild der Sonne in einer Linie von Magnesium. Dieses Licht entsteht über der Sonnenoberfläche, quasi erst in der Korona.

Da diese Linie die Feinstruktur der Sonnenoberfläche nicht mehr zeigte, war klar, dass die hierfür verantwortlichen Magnetfelder nicht bis in die Korona reichten.
Dafür konnte man aber viele andere magnetische Strukturen im kurzwelligen Sonnenlicht erkennen.

In “Die Röntgensonne” erwähnte ich, dass es nicht ganz einfach ist, eine Kamera zu bauen, die auch bei Röntgenlicht funktioniert.
Vor Skylab standen den Forschern z. B. für ihre Ballon-Flüge meist nur Lochkameras zur Verfügung.
Es gibt aber einen Trick, bei dem man ausnutzt, dass Röntgenlicht von Metalloberflächen
gespiegelt wird, wenn es schräg, nur streifend, auf eine Metalloberfläche
trifft. Der Physiker Hans Wolter (1911-1978)
hatte diesen Fernrohrtyp 1952 erfunden. Seither spricht man vom
Wolter-Teleskop, mit dem man Röntgenbilder von Himmelskörpern
aufnehmen kann. Die Röntgen-Reihenuntersuchung der Sonne durch
SkyLAB zeigte nun, dass sich magnetische Felder der Sonnenoberfläche hinaus in die Korona fortsetzen.

Man sah den Zusammenhang, dass wo man stärkere Magnetfelder in der Korona fand, auch die Röntgenstrahlung intensiver war.
Man erkennt im Röntgenlicht große magnetische Bögen, die mit beiden Beinen in der Sonnenoberfläche verankert sind und offene Feldlinien, die nur mit einem Bein in der Sonne stehen und weit in den Raum hinausragen. Einige der magnetischen Bögen leuchten stärker
als andere, obwohl die magnetische Stärke dieselbe ist. Es scheint, als ob die Teile der Korona besonders heiß sind und stärker leuchten, in denen die Feldlinien vorher stark verbogen worden sind.

Das bringt die Frage wieder auf, warum die Sonnen-korona eine Temperatur von zwei Millionen Grad besitzt, wogegen die unter ihr liegende Sonnenoberfläche mit ihren einigen tausend Grad eigentlich kalt ist.

Durch die heißen Bögen in der Sonnenkorona ist wieder eine alte Idee ins Zentrum des Interesses gerückt, die auf den Astronomen Ludwig Biermann (1907-1986) zurückgeht. Nach Biermann wandern von der Zone, in der
die Granulation die Materie in ständiger Bewegung hält, Schallwellen
nach außen, die Energie in die Korona transportieren und so für die
heiße Korona verantwortlich sind.

Und da ist er wieder, der Schall, der Klang der Sonne. Ich schrieb darüber in “Klingel oder Orgelpfeife”. Die von SKYLAB aus aufgenommenen Röntgenbilder zeigen koronale Löcher und die
hellen Röntgenflecken, in denen die Energie sich gegenseitig vernichtender entgegengesetzter Magnetfelder in Wärme verwandelt wird.

Die im weißen Licht gewonnenen Bilder der Sonnenkorona zeigten rasche Veränderungen. Da steigen gelegentlich riesige Blasen in der Korona auf, Materie, die mit Geschwindigkeiten von tausend Kilometern pro Sekunde die Sonne verlassen.

Koronale Löcher, aus welchen bereits Materie ins All entwichen ist, sah man als dunkle Streifen auf der Sonnenscheibe. Dort war keine Materie mehr vorhanden, die im Röntgenlicht strahlte.

Durch SKYLAB sah man erstmals Vorgänge auf der Sonne, die der Koronaforschung ganz neue Wendungen gaben. Eigentlich ist das nicht verwunderlich. Von der Erde aus kann man die Sonnenkorona nur während einer totalen Sonnenfinsternis ungestört beobachten. Koronographen lassen die Korona nur in unmittelbarer Nähe der Sonnenscheibe
erkennen. In einem Abstand von mehr als einem Fünftel des Sonnenradius vom Scheibenrand kann man sie nicht mehr untersuchen.
Mit einem Konorographen kann man die Sonne bei normalem Taghimmel in gewissen Grenzen beobachten, als herrsche eine totale Sonnenfinsternis.
Zählt man alle Sonnenfinsternisse der jüngeren Menschheitsgeschichte
zusammen, so kommt man auf eine Gesamtdauer von einigen Stunden,
während derer sich die Korona dem irdischen Beobachter in voller Pracht darbot. Da man von SKYLAB aus die Sonnenkorona nahezu ununterbrochen beobachten konnte, sind durch diese Mission einige tausend Stunden Beobachtungszeit hinzugekommen.
Und das alles ganz unabhängig von Wind und Wetter…

Mich fasziniert es sehr, was Wissenschaftler aus dem Sonnenlicht lesen. Die Sonnenobservation aus dem All ging natürlich nach Skylab noch weiter, aber dies ist eine neue Folge wert.

Gehabt euch wohl, passt auf euch auf und bleibt gesund.

Euer Blindnerd.